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Abstract

We present a multiagent coordination technique to maintain throughput of
a large-scale agent network system in the face of failures of agents. The jobs
have to be processed at multiple agents in a given sequence and unexpected
failure of agents deteriorates system throughput besides creating and changing
bottlenecks in the system. Since loss of bottleneck’s capacity degrades the over-
all system performance, the system should identify bottlenecks dynamically and
keep their utilization at a high level. In our system, CABS, information about
an agent’s criticality to fulfill demanded throughput and maintain its designated
utilization is passed to upstream agents in the network in the form of messages.
The upstream agents utilize this information to identify bottleneck agents and
coordinate their actions to provide the bottlenecks with necessary and sufficient
jobs for preventing their starvation and congestion. We empirically evaluate
CABS using a benchmark problem of the semiconductor fabrication process,
which is a good example of a large-scale network system, in comparison with
a well-known traditional manufacturing control method, CONWIP. We show
CABS outperforms CONWIP in terms of trade-off between throughput and
leadtime under various conditions of manufacturing. We also investigate how
network flexibility (such as buffers and job releases) makes influences on the
performance of CABS, and analyze effectiveness of each component in CABS’s
message for coordinating agents’ behavior.





Acknowledgements

It is a pleasure to acknowledge and thank the people who made this thesis
possible.

First of foremost, I would like to express my sincere gratitude to Kazuo
Miyashita, Ph.D., who has been my advisor since the beginning of my study.
He provided me with many helpful suggestions, important advice and constant
encouragement during the course of this work. Without his invaluable help in
research and technical writing, this research would never have reached the level
it has. Because of him, I thoroughly enjoyed the four years of this research
and I feel extremely privileged and grateful for his tutelage, mentoring, and
friendship.

I would like to thank the committee Chair Prof. Seiichi Nishihara for his
help related to academic matters. I also thank other committee members Prof.
Hitoshi Kanoh, Prof. Ushio Sumita and Prof. Yukio Fukui for their valuable
advice.

I would like to thank Dr. Haruhisa Kurokawa, the group leader of Dis-
tributed System Design Research Group of AIST where I did my research for
this thesis. I am extremely grateful to him and other staff members of group
for their kind support. I greatly benefited from their valuable inputs and inter-
actions. Their friendship, support and willingness to help me in technical and
other matters made my work and stay in Japan very pleasurable.

I would like to thank my wife, Sheelam, for her love, support and coopera-
tion. To help me fulfil my ambition, she has gone through difficult times and
besides bearing with my late hours, spoiled weekends and my bad temper, she
single-handedly raised our newborn daughter, Sayuri. Without her help and
encouragement, this study would not have been completed. My grateful thanks
to my parents who always kept me away from other responsibilities and allowed
me to concentrate on my studies.





Contents

1 Introduction 1
1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . 7
1.3 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . 9

2 Past Research 11
2.1 Conventional approaches . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Dispatching and Simulation based Techniques . . . . . . 16
2.1.2 Artificial Intelligence Based Techniques . . . . . . . . . . 19

Heuristics Based Techniques . . . . . . . . . . . . . . . . 19
Meta-Heuristics Based Techniques . . . . . . . . . . . . . 20
Knowledge Based Techniques . . . . . . . . . . . . . . . 23

2.2 Multiagent Based Techniques . . . . . . . . . . . . . . . . . . . 24
2.2.1 Agents and Multiagent Systems . . . . . . . . . . . . . . 25
2.2.2 Multiagent Control for Manufacturing . . . . . . . . . . 32

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Proposed Multiagent Control Mechanism 39
3.1 Agent Actions in CABS . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Lot Dispatching . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Message Passing . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Coordinated Behaviors in CABS . . . . . . . . . . . . . . . . . . 50
3.2.1 Behaviors of Conventional System . . . . . . . . . . . . . 51
3.2.2 Behaviors of CABS . . . . . . . . . . . . . . . . . . . . . 54

Before Failure . . . . . . . . . . . . . . . . . . . . . . . . 60
During Failure . . . . . . . . . . . . . . . . . . . . . . . . 62
After Resolution of Failure . . . . . . . . . . . . . . . . . 63

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

i



CONTENTS

4 Empirical Validation 67
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Experimental Agent Network . . . . . . . . . . . . . . . 68
4.1.2 Criteria of Performance Evaluation . . . . . . . . . . . . 69
4.1.3 Details of Experiments . . . . . . . . . . . . . . . . . . . 71

4.2 Experimental results of CABS . . . . . . . . . . . . . . . . . . . 71
4.3 CONWIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Comparison with CONWIP . . . . . . . . . . . . . . . . . . . . 76
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Applicability of CABS 80
5.1 Effect of Limitation on Buffer Capacity . . . . . . . . . . . . . . 81

5.1.1 Maximum System Wide Buffer Capacity . . . . . . . . . 88
5.1.2 Issue of Deadlocks . . . . . . . . . . . . . . . . . . . . . 89
5.1.3 Individual Agents’ Buffer Capacity . . . . . . . . . . . . 92

5.2 Effect of Limitation on Early Release . . . . . . . . . . . . . . . 93
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Significance of Message Parameters 96
6.1 Significance of time limit parameter . . . . . . . . . . . . . . . 96
6.2 Significance of request rate parameter . . . . . . . . . . . . . 98
6.3 Significance of amount parameter . . . . . . . . . . . . . . . . . 99
6.4 Significance of criticality parameter . . . . . . . . . . . . . . 101
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusions 103

8 Future Work 109

A Mechanism of Kanbans 132

B Events in CABS 135

C Deadlock Avoidance 142

ii



List of Figures

1.1 WIP-Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 WIP-LeadTime . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Throughput-Lead Time . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Throughput-LeadTime (with failures) . . . . . . . . . . . . . . . 4

3.1 Agent interactions in CABS . . . . . . . . . . . . . . . . . . . . 41
3.2 Agent’s internal details in CABS . . . . . . . . . . . . . . . . . 42
3.3 Example agent network . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Conventional System: Throughput . . . . . . . . . . . . . . . . 51
3.5 Conventional System: Finished Product Inventory . . . . . . . . 52
3.6 Conventional System: Utilization . . . . . . . . . . . . . . . . . 52
3.7 Conventional System: WIP . . . . . . . . . . . . . . . . . . . . 53
3.8 CABS: Throughput . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.9 CABS: Finished Product Inventory . . . . . . . . . . . . . . . . 56
3.10 CABS: Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.11 CABS: WIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.12 CABS Message: time limit . . . . . . . . . . . . . . . . . . . . 58
3.13 CABS Message: request rate . . . . . . . . . . . . . . . . . . 58
3.14 CABS Message: amount . . . . . . . . . . . . . . . . . . . . . . 59
3.15 CABS Message: criticality . . . . . . . . . . . . . . . . . . . 59
3.16 CABS: Agents’ instantaneous criticalities . . . . . . . . . . . . . 60

4.1 Process flows of test problem . . . . . . . . . . . . . . . . . . . . 69
4.2 Experimental results of CABS . . . . . . . . . . . . . . . . . . . 72
4.3 CABS: Agents’ instantaneous criticalities . . . . . . . . . . . . . 73
4.4 CONWIP: Different WIP levels . . . . . . . . . . . . . . . . . . 76
4.5 Comparison of CABS and CONWIP . . . . . . . . . . . . . . . 77

5.1 CABS(Buffers=100): WIP . . . . . . . . . . . . . . . . . . . . 82
5.2 CABS(Buffers=38): WIP . . . . . . . . . . . . . . . . . . . . . 82
5.3 CABS(Buffers=100): Throughput . . . . . . . . . . . . . . . . 83
5.4 CABS(Buffers=38): Throughput . . . . . . . . . . . . . . . . 83

iii



LIST OF FIGURES

5.5 CABS(Buffers=100): Finished Product Inventory . . . . . . 84
5.6 CABS(Buffers=38): Finished Product Inventory . . . . . . 84
5.7 Conventional System(Buffers=100): WIP . . . . . . . . . . . . 85
5.8 Conventional System(Buffers=100): Throughput . . . . . . . . 85
5.9 Conventional System(Buffers=100): Finished Product Inven-

tory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.10 CABS with different system-wide buffer capacities . . . . . . . . 89
5.11 Deadlock: without specific buffers . . . . . . . . . . . . . . . . . 91
5.12 Deadlock: with specific buffers . . . . . . . . . . . . . . . . . . . 91
5.13 CABS with different buffer capacities of agents . . . . . . . . . . 93
5.14 CABS with limitations on release flexibility . . . . . . . . . . . . 94

6.1 CABS with limitations on time limit . . . . . . . . . . . . . . 97
6.2 CABS with limitations on request rate . . . . . . . . . . . . . 98
6.3 CABS with limitations on amount . . . . . . . . . . . . . . . . . 99
6.4 CABS with limitations on criticality . . . . . . . . . . . . . 101

A.1 States of an agent’s Kanban . . . . . . . . . . . . . . . . . . . . 133

B.1 Triggers for event generation . . . . . . . . . . . . . . . . . . . . 139

iv



Chapter 1

Introduction

Many real-world systems are a manifestation of queuing networks. The queue-

ing theory (Allen 1990) has addressed analysis and control of such networks in

a steady state. Nevertheless, to understand and control their dynamic behav-

ior in unstable situations is considered critically important for realizing smooth

operations of today’s complicated network systems. Transportation, communi-

cation and manufacturing are typical examples of such large networks, for which

uninterrupted and stable operations are highly required.

Influences of failures propagate unexpectedly in a complex network system.

Network systems have multiple resources (i.e. nodes) that collectively perform

desired tasks that are not atomic but rather comprise a set of steps to be

accomplished in a specific sequence by different resources. As each resource of

the network is involved in intricate interactions with other resources, even a

small failure at a single resource can make ripple effects and damage operations

of the entire network. Heavy traffic jams in a transportation network and large-

scale blackouts in a power-transmission network are typical outcomes of such

cascading phenomena. Therefore, a robust method for controlling behaviors

of the network to avert catastrophe caused by failures and maintain smooth

operations is of keen interest among many researchers (Barabási 2002).

Manufacturing processes are examples of such networks which have become

increasingly complex over time. Due to globalization of economy, manufacturing

industry has also become very competitive and has to face new challenges. In

addition to the persistent challenge of reducing the manufacturing cost, same
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CHAPTER 1. INTRODUCTION

manufacturing infrastructure is utilized to simultaneously produce numerous

customized products which have aggressive time to market and short life cycles.

Simultaneously, in order to avoid technological obsolescence and remain com-

petitive, parts of manufacturing infrastructure constantly get modified which

adds to the volatility of manufacturing process. In such large, complex and

dynamic systems, unexpected failures can have unanticipated affect throughout

the system. Because of the size and complexity of the problem, analysis and

provisioning of preventive measures for the huge number of possible conditions

is not possible during the planning phase. To maintain desired performance

of such time-critical systems in the face of unexpected failures, developing ro-

bust control mechanisms is an active area of research. As a benchmark for

controlling large-scale network systems, we have used the semiconductor man-

ufacturing process which is among the most complicated and capital-intensive

manufacturing processes in the world.

1.1 The Problem

The capital cost to build and equip a semiconductor fabrication facility (fabs)

runs into billions of (US) dollars1. This requires the manufacturer to utilize

every opportunity to increase the utilization and throughput of fab in order

to maximize the return on investment (RoI). The semiconductor fabrication

process consists of a complex sequence of process steps, with the number of

operations typically in hundreds (Pfund, Mason & Fowler 2006). The various

steps of the sequence are to be processed at different workstations in the given

order. The process routes contain numerous cycles and fab produces a diversity

of products (having different process routes) simultaneously which result in

complex flow of jobs through the system.

Manufacturing systems are a kind of queuing network and are governed by

the Little’s Law (Little 1961) of queueing theory. Little’s Law states that the

expected number of work in process (WIP) equals average leadtime multiplied

by average throughput as shown in Equation 1.1. The leadtime, also known as

turn-around time, is the duration of time for which a job stays in the system i.e.

1http://www.icknowledge.com/economics/fab costs.html
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CHAPTER 1. INTRODUCTION

the sum of its total processing and waiting time in the system. This relation of

WIP, throughput and leadtime is shown graphically in Figure 1.1 and Figure

1.2.

WIP = Throughput x Leadtime (1.1)

WIP
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Figure 1.1: WIP-Throughput
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optimal

Figure 1.2: WIP-LeadTime

As shown in Figure 1.1, the availability of lots in the system (WIP) has to

be increased in order to achieve higher throughput. As the system has finite

capacity, after its utilization reaches 100%, increasing WIP further cannot in-

crease the throughput which saturates at its maximum value. Figure 1.2 shows

that when there is less WIP, the system has capacity to process its WIP which

implies that lots do not wait at workstations before getting processed and the

lead time thus remains constant (equal to the processing time). Figure 1.2 also

shows that after the system capacity is reached, the extra lots (WIP) have to

wait in the queue as the system is already fully occupied and cannot process the

lots at increased rate. The amount of surplus WIP increases the queue lengths

which results in longer waiting time (leadtime) that the lots experience in the

system.

Besides increasing the throughput of manufacturing system, another objec-

tive of manufacturers is to simultaneously minimize the leadtime of jobs. With

shorter leadtimes, a manufacturer can meet the dynamic customer orders more

quickly and be more responsive to the market by reducing the time to mar-

ket for new products. In semiconductor fabrication, definitive results are not

available until circuits are completely fabricated on the wafer. The number of

process steps in semiconductor fabrication is typically in hundreds and average
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CHAPTER 1. INTRODUCTION

lead time over a couple of months (Atherton & Atherton 1995) and shorter lead-

time enables early diagnosis of problems in products and processes, allowing for

faster refinement and avoiding potential losses. As the leadtime is proportional

to the amount of WIP (according to Equation 1.1), longer leadtime also causes

higher carrying costs for partially finished goods, more space for WIP storage,

additional resources for product tracking and control, and many other addi-

tional expenses. Consequently, besides achieving high throughput rates due to

the capital-intensive nature of the manufacturing infrastructure, simultaneously

minimizing the leaditme is critically important in order to be profitable (Kumar

& Kumar 2001).

Percentage of Maximum Capacity
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Figure 1.3: Throughput-Lead Time
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Figure 1.4: Throughput-LeadTime
(with failures)

The plot of throughput versus leadtime corresponding to Figure 1.1 and

Figure 1.2 is shown in Figure 1.3. Figure 1.3 shows that the leadtime remains

constant till the throughput of system increases to its capacity, after which it

linearly increases as more WIP is added in the system. The optimal operating

condition that maximizes the throughput and has the minimum leadtime is

highlighted in Figures 1.1, 1.2 and 1.3. This ideal performance means that the

system should have only enough WIP to utilize the full capacity of system.

In a network system, due to connectivity of the steps to be processed, even

if a system might have many overcapacity resources, the final throughput of

the system is limited by the resource that has the smallest capacity (called a

bottleneck). The optimal functionality thus means that a new lot invariably

arrives at the bottleneck exactly at the time when it finishes processing its

current job so that (a) the resource is never idle to keep its 100% utilization
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CHAPTER 1. INTRODUCTION

and (b) the lot never waits for processing which is required to keep its leadtime

to minimum. As lots have to pass through many workstations depending on the

process routes of products, such ideal performance can be achieved only when

there is no variability in the system, which is seldom the case in real world.

Variability is anything that causes the manufacturing system to vary from

regular predictable behavior. The flow of jobs from a workstation is delayed

unexpectedly due to random events such as workstation failure, rework on a job

due to some quality problem and operator non-availability. We refer to all such

unexpected disruptions as resource failures because all of them have same effect,

i.e. the lots to succeeding workstations are delayed for a random duration at

random times. The network system usually has multiple and overlapping flows

of tasks. When a failure occurs at a resource in the system, the flows using

that resource are blocked in the middle and their tasks are delayed. As a

result, workloads from the failed resource and downstream resource of its tasks

are reduced during the failure and throughput of the affected tasks decreases.

After recovery of the failure, for restoring throughput of the affected tasks,

downstream resources of the failed resource must process excess flows of these

tasks. If those resources should also process other tasks that are not affected by

the failure as usual, the resources get congested and deteriorate throughput of

those tasks as well. Besides degrading the throughput, the failure causes the lots

to be held up for longer duration in the queues which adds up to their leadtimes

of completed lots. As such inevitable random events prohibit the system from

maintaining ideal behavior, the achieved performance of real systems is shown

in Figure 1.4.

As the demand is admitted to realize maximum utilization of system (bot-

tlenecks), the starvation due to failures can cause irrecoverable loss of manu-

facturing yield. Maximizing throughput of the system therefore means keeping

the maximum utilization of the bottleneck resources. High utilization of the

such critical resources can be achieved by ensuring availability of jobs for such

resources during possible failures of preceding resources. Maintaining extra

amount of jobs (WIP) before a resource acts as safety buffer which the resource

can process to maintain its utilization when flow of its incoming jobs gets dis-

rupted during random failure on some preceding resource. As increasing the

amount of WIP in system increases the leadtime (Equation 1.1), it is desired
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CHAPTER 1. INTRODUCTION

that the surplus WIP is kept to minimum. However, with a variable and unpre-

dictable environment, reducing WIP tends to reduce throughput by decreasing

the buffering among resources so that downtime periods at any resource have

a high probability of forcing idle time spent elsewhere due to lack of work to

process. Hence, there is a trade-off between leadtime and throughput in the

unstable network systems and the typical performance achieved in real systems

is similar to what is shown in 1.4.

Lean manufacturing, that combines high throughput with low WIP has be-

come a minimum requirement for competitiveness in manufacturing industry

(Womack, Jones & Roos 1991). The performance of manufacturing system is

dependent on (a) the entry of jobs in the system (release control), (b) the move-

ment of jobs within the system by sequencing of jobs at individual workstations,

and (c) possible routing. These decisions are taken by a manufacturing control

system which is responsible for the execution of manufacturing process. As

shown in Figure 1.4, a manufacturing control mechanism that achieves higher

throughput with lesser leadtime is considered better. The manufacturing con-

trol mechanism can improve system performance by dynamically adapting its

behavior to the volatile environment which results from unexpected failures and

other disruptions.

The traditional manufacturing control systems are unable to adapt and

evolve in the face of disruptions. By aggregating the information that is dis-

tributed across the system at a central point, the decision making of centralized

and hierarchical control mechanisms can provide good optimization. However,

due to their high computational and messaging overheads, effectiveness of such

approaches is greatly reduced in large dynamic environments in which frequent

random disruptions occur all over the system. The heterarchical control ap-

proaches on the other hand are able to provide responsiveness to dynamic situ-

ations, but they may not be able to achieve desired global performance due to

the myopic vision of its decision making entities.

Because of the limitations of centralized solutions to inherently distributed

and dynamic problem, efforts have been made to use distributed intelligent

techniques for controlling large manufacturing systems. Recently, multiagent

systems have shown great potential in solving complex and dynamic problems.

A multiagent system is a distributed system made up of autonomous intelligent
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agents that are able to sense and influence only their local environment. Owing

to the distribution of decision making, agent based systems can react locally to

local changes faster than their centralized counterparts, thus providing scalabil-

ity and adaptability to rapid changes. Rather than finding a optimal solution

by gathering and using all the relevant information at one place, multiagent

systems have an emergent behavior which results from the decision making of

individual agents. As the overall system performance is dependent on the ac-

tions taken by all the agents of system, coordination among agents is of prime

importance in order to ensure global coherence of agents’ local decisions. In

order to make globally coherent decisions, agents coordinate their actions by

communicating and interacting with other agents.

Although multiagent technology is an active area of research, its success in

large complicated systems such as semiconductor fabrication has been limited.

Coordination among agents is the cornerstone of distributed multiagent systems

and new coordination algorithms are constantly being developed. The sophis-

ticated coordination algorithms that require extensive interaction among large

number of agents for making globally optimal decisions cannot work for large

complex networks due to high messaging and computations requirements. On

the other hand, the coordination algorithms which use simple interactions be-

tween small number of agents are although scalable, their efficiency is poor and

the resulting emergent system behavior can deviate greatly from the desired

behavior. Although multiagent framework suits well to the distributed nature

of manufacturing systems, it is still a challenge to develop autonomous and dis-

tributed manufacturing control which is robust against unpredictable failures

and achieves desired global optimization from today’s dynamic manufacturing

systems.

1.2 Objectives and Contributions

The objective of this dissertation is to propose a multiagent coordination mecha-

nism for large scale networks which can improve the overall system performance

by promptly and effectively reacting to unexpected failures in the system. In

order to mitigate the adverse effect of unexpected disruptions, agents work to-

wards the goal of avoiding starvation of bottleneck agents. Agents monitor
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CHAPTER 1. INTRODUCTION

the starvation of resources and avoid it by requesting jobs from other agents by

sending messages. By analyzing the information in propagated messages, agents

identify the location and requirements of dynamically emerging bottlenecks and

coordinate their actions to avoid the bottleneck’s starvation. Towards the goal

of improving the performance of manufacturing system by using proposed mech-

anism, the contributions of the thesis are as follows:

• Agent model of manufacturing system: We have developed the agent sys-

tem by modelling the resources (workstations) as the agents. Centralized

control mechanisms cannot handle large, complex and dynamic manufac-

turing systems effectively and trend is to move towards more distributed

control. By having a distributed agent model, it is possible to apply dis-

tributed control strategies and manage the execution of manufacturing

system in a robust manner.

• New coordination mechanism: we propose a decentralized coordination

mechanism to improve the global performance of dynamic systems. In

order to successfully adapt to the changes in the system, the relevant

agents should be informed about the changes in the system. Through

message passing defined in our coordination mechanism, relevant agents

are informed about the changing status of system. Agents decide on their

actions by analyzing their local environment and information that they

receive from other agents. Besides changing their own actions, agents send

additional messages to other agents based on the severity of disruptions.

• Identification of dynamic bottlenecks : Due to connectivity and dependency

of processing steps, the performance of manufacturing system is critically

driven by the bottlenecks in the system. Bottleneck resources limit the

throughput of the system and many temporary bottlenecks are created

during the course of execution due to capacity losses caused by random

failures. Our mechanism identifies bottlenecks in a distributed manner

which enables effective coordination of agents’ actions resulting in better

system performance.

• Development of Simulation Prototype: The software prototype is devel-

oped to realize the proposed mechanism. The experiments are done using

8
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realistic industrial test data in order to study and evaluate the perfor-

mance of proposed mechanism.

• Measurable performance improvement : Simultaneously increasing the through-

put and decreasing the leadtime in large failure-prone manufacturing sys-

tems is a challenging task. By using our coordination mechanism, rel-

evant resources of the manufacturing system can autonomously change

their behavior appropriately to mitigate the affect of failures. In com-

parison with popular conventional system, our system achieves a better

throughput-leadtime ratio which is an important metric of manufacturing

system performance.

• Scalability of coordination mechanism: We have improved on the measur-

able global system performance of relatively large network system (semi-

conductor fabrication). This is significant as existing sophisticated multi-

agent coordination mechanisms do not scale well to large agent networks.

• Applicability to other agent networks: Networks such as wide-area trans-

port and data networks have similar characteristics and objectives like

the manufacturing systems. We have evaluated the performance of pro-

posed coordination mechanism by regulating the system parameters that

are more relevant to other networks.

1.3 Organization of Dissertation

The dissertation describes the background of the problem domain, challenges

and past research in Chapter 2. In Chapter 3 we define the multiagent coordina-

tion mechanisms that is proposed is in dissertation. The proposed coordination

mechanism is validated by a series of experiments in Chapters 4, 5 and 6. Chap-

ter 7 and Chapter 8 conclude the dissertation by discussions on conclusions and

future works.

Chapter 2 reviews of the state-of-the-art in control of manufacturing sys-

tems. After describing the problem of manufacturing control, survey of various

techniques are provided. The chapter surveys the various centralized and artifi-

cial intelligence based techniques. An overview of agents and multiagent system
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CHAPTER 1. INTRODUCTION

is provided and various multiagent based techniques and models from past re-

search are surveyed. The last section of the chapter compares and evaluates the

various surveyed techniques, which provides the basis for the definition of our

proposed mechanism.

In Chapter 3 the proposed coordination mechanism is defined. The agent

model, details of messages and algorithms used by agents for actions and mes-

sage generations are presented. Later in the chapter, the working of proposed

coordination mechanism is explained in details by using an example of a small

manufacturing system.

Chapter 4 describes the semiconductor manufacturing process that we have

used for experiments in the dissertation. After providing details of experiments,

the empirical results of comparison with a conventional system are presented.

Chapter 5 evaluate the applicability of proposed mechanism systems with

different characteristics. The effects of buffer capacity and the flexibility of re-

leasing jobs in the system are evaluated in the various experiments presented the

chapter. The chapter also describes the integrated deadlock avoidance mecha-

nism that is utililized in the proposed mechanism.

Chapter 6 evaluates the significance of various message parameters that are

used for coordination in the proposed mechanism. Results of regulating each

individual message parameter are provided in the chapter.

Chapter 7 summarizes the main achievements of the research, presents the

general conclusions, and then Chapter 8 proposes directions for future research

that might be undertaken.

Additional details about implementation and features which are not the

main focus of research are provided in appendixes.
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Chapter 2

Past Research

After their entry into the network system, jobs of have to pass (get processed)

through a number of nodes before they leave the system after completion. The

behavior of network that decides the flow of jobs is dependent on following

decisions:

• Release: The performance of individual resources and system as a whole

is limited by the availability of jobs, which in turn is dependent on the

entry of jobs in the system. As the law of conservation should hold, the

output from system cannot be more than the number of jobs that enter

in it. The entry of jobs, i.e. when and how many jobs enter the system

limits the availability of jobs within the system and the flow of completed

jobs that comes out of it. In the domain of manufacturing systems this

control of feeding jobs to system is also known as release control.

• Dispatching: In network systems, the nodes generally have buffers in

which the incoming jobs are parked before they are processed. Many

nodes of network process multiple kind of jobs and at times, different

kind of jobs accumulate in node’s incoming buffer when it is not able

to process the jobs at their incoming rate. When the resource at node

becomes ready to process another job, it can choose any one of the buffered

jobs to process next and this decision in manufacturing domain is called

sequencing or dispatching control. As the processing of jobs at a node

takes time, the dispatching decisions of a node control the availability

of jobs at their subsequent nodes. After its entry into the system, the

11
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dispatching decisions of relevant nodes affects the waiting duration and

completion time of individual jobs.

• Routing: In many network systems, jobs can be completed by different

alternative routes. The possible routes may depend on the capability

of nodes and job’s requirements. The possibility of alternative routes

means that at some nodes, the processed job can be sent to a set possible

nodes for further processing. The decision of choosing the node to which

the processed job is sent is called routing control. Routing control is

not considered in this thesis and the work is done under the

assumption that routes of jobs are fixed.

Because of the capacity constrains of various nodes and dependency rela-

tionship between processing steps of jobs, a single decision at a node affects the

availability of jobs at other, remote nodes in future. Performance of individual

nodes depends on the availability of jobs and final throughput of system is de-

cided by the completed jobs that leave the system. The system behavior and

its final throughput results from the cumulative effect of all the decisions taken

in system during the course of time.

This thesis focuses on the manufacturing systems which are a good exam-

ple of network systems. Manufacturing systems have been widely studied in

research and a wide range of techniques are utilized to improve the system

performance. In particular, this thesis uses semiconductor fabrication process

which represents a large, complex and dynamic network. Behavior of manu-

facturing systems is mainly controlled by the release and dispatching decisions.

The routes of jobs in system are relatively fixed, which is in line with our as-

sumptions about routing. This chapter gives an overview of past research in

the control of manufacturing systems.

2.1 Conventional approaches

Starting from the raw material, manufacturing process involves processing of

jobs at different shared resources in order to output the completed jobs. Before

commencing the execution, predictive schedules are utilized to plan other activ-

ities such as ordering and preparing the raw materials, tooling, set-up planning,

12
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short-term labour planning, shipping logistics etc. Besides supporting these

other planning activities, the schedules made in advance are utilized to direct

manufacturing operations. Scheduling can be defined as the optimal allocation

of resources to jobs, under the constraints of temporal relationships between

jobs and capacity limitations of resources. The goal of scheduling process is to

generate a plan which optimizes the various performance objectives. Objective

may include the maximization of throughput, the minimization of running cost

(i.e. the work in process), the minimization of lead time and minimization of

tardiness. Optimal schedules for small scheduling problems can be calculated

by simple algorithms. However, scheduling is a non-polynomial (NP) problem

and it quickly becomes intractable to find optimal schedule due to exponential

number of possible solutions. For a generic m machines and n jobs problem, the

possible number of schedules are (n!)m. Due to its high combinatorial aspect

scheduling has been widely studied in past research under the implicit assump-

tion that no unexpected events occur during the execution. A review of such de-

terministic scheduling for can be found in MacCarthy & Liu (1993), BÃlażewicz,

Ecker, Pesch, Schmidt & Wkeglarz (1996), Wiers (1997), Jain & Meeran (1998),

Jain & Meeran (1999), Jones & Rabelo (1998) and Pinedo (2002).

The predictive schedules are utilized by the PPC (Production Planning and

Control) systems which deal with the higher level control of one or several man-

ufacturing plants, materials and manpower requirement planning and other pro-

duction activities. After the high-level objectives have been finalized, in order to

realize the manufacturing plans and achieve planned production, Manufacturing

Control system is responsible for managing and controlling the physical activ-

ities within a manufacturing plant. The focus of this thesis is Manufacturing

Control, which makes the job release and dispatching decisions at workstations

to produce stipulated finished products by optimizing the performance measures

such as minimizing running cost (i.e. the work in process), minimization of lead

time, minimization of tardiness etc.

Although predictive scheduling assists in other planning activities, the opti-

mal schedules made in advance quickly become obsolete during their execution

because of unpredictable events in system. The classical scheduling models and

algorithms are unable to use real-time information and as a result there is a gap

between theory and practice of classical scheduling (Cowling & Johansson 2002),
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(Shukla & Frank Chen 1996), (MacCarthy & Liu 1993). Most manufacturing

systems work in dynamic enviromnements in which various unexpected disrup-

tions affect the system performance. In order to be effective in dynamic systems,

the scheduling and planning should take place in tandem with execution by ac-

comodating the unexpected changes.

The real-time events that affect the existing plan and execution of man-

ufacturing can be of two types (Stoop & Wiers 1996), (Suresh & Chaudhuri

1993), (Mehta & Uzsoy 1999), (Cowling & Johansson 2002), (Abumaizar &

Svestka 1997), (Schumacher, Verwater-Lukszo & Weijnen 1999), (Shafaei &

Brunn 2000), (Sabuncuoglu & Bayiz 2000), (Vieira & Herrmann 2000), (Jensen

2001), (Vieira, Herrmann & Lin 2003).

• Performance related: machine failure, operator illness, unavailability

of specific tools, unavailability of materials, defective material, etc.

• Demand related: rush orders, order cancellation, due date or deadline

changes, orders that arrive early/late, change in order priority etc.

In this thesis only the performance related events are considered and they

are collectively referred to as failures. Similar to the failure event, a resource

cannot be utilized for any manufacturing during the event of unavailability of

operator and specific tools, which are required to operate the machine. The

demand related events are not considered in thesis and it is assumed

that the demand remains unchanged during the course of execution

and additionally, all the orders are considered to have equal priority.

As unexpected failures invalidate the existing schedules, dynamic scheduling

methods are required that react to dynamic events by using real-time informa-

tion related to status of the resources and tasks present in system. In a dynamic

system, where unexpected failures occur frequently, scheduling is an ongoing

process and it is desired that the scheduling method is robust against failures.

According to Shafaei & Brunn (1999), a scheduling method is said to be robust

if it provides a schedule, the performance of which remains high in the presence

of uncertainties.

In response to dynamic events, the dynamic scheduling methods change

the plans in order to keep them synchronized with updated status of system.
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The two policies based on how to change the existing schedule can be classi-

fied as schedule repair and complete rescheduling (Sanmarti, Huercio, Espuna

& Puigjaner 1996), (Sanmarti 1997), (Sabuncuoglu & Bayiz 2000), (Cowling

& Johansson 2002), (Vieira et al. 2003). Complete rescheduling policy is sim-

ple in the sense that while rescheduling, it regenerates a new schedule from

scratch every time. However, this solution has limited practical applicability

because disturbances tend to appear very often, and because of the complexity

of scheduling, creating a completely new schedule every time requires prohibitive

computation time. Furthermore, frequent changes to the schedule can result in

instability of the system which results in additional manufacturing costs. The

second, more feasible alternative is to only revise parts of the existing schedule

rather than generating the complete schedule from scratch. Compared to com-

plete rescheduling, schedule repair is more feasible in terms of computation and

provides higher stability (Sabuncuoglu & Bayiz 2000).

Besides controlling the amount of change in the schedule, another decision to

make is the frequency of changes in the schedule (Sabuncuoglu & Bayiz 2000),

(Vieira et al. 2003). As a regular scheduled activity of production, the schedules

can be generated periodically at fixed intervals by gathering the system informa-

tion. After generation, the schedule is executed and is not renewed till the next

scheduling cycle. Although the periodic updating mechanism provides more

stability to the schedules, its effectiveness is reduced when significant events oc-

cur in the middle of scheduling cycle. The frequency of scheduling in a dynamic

environment critically affects the performance of schedules which degrades when

the rescheduling period is increased (Muhlemann, Lockett & Farn 1982). As an

alternative event-driven rescheduling approach, schedule in revised whenever

there is an unexpected event that changes the status of system and affects the

applicability of existing schedule. Rescheduling in response to relevant events

such as failures improves the adaptability and effectiveness of generated sched-

ules (Yamamoto & Nof 1985). However, in a large dynamic system, where large

number of events are constantly generated, rescheduling at all the events might

not be feasible due to computation overheads and the high volatility of schedule

might effect the system performance adversely (Vieira & Herrmann 2000). In a

hybrid rescheduling policy, schedules are updated periodically and additionally

when an exceptional event occurs. Besides regular periodic updates, the perfor-
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mance improves due to increased responsiveness when additional rescheduling

is done for critical events such as machine breakdowns and order related change

such as addition, deletion or change in priority of orders (Church & Uzsoy 1992).

The control mechanisms for manufacturing systems can be broadly clas-

sified into the following categories (Suresh & Chaudhuri 1993), (Shukla &

Frank Chen 1996), (Stoop & Wiers 1996), (Jeong & Kim 1998), (MacCarthy

2001): dispatching rules and simulation-based techniques, artificial intelligence-

based techniques, and multiagent-based techniques.

2.1.1 Dispatching and Simulation based Techniques

Since scheduling all the jobs on all the machines is a intractable problem in large

and dynamic systems, dispatching heuristics have been used as an alternative.

Dispatching at a machine refers to sequencing of buffered jobs for processing

according to some criteria. Hundreds of dispatching rules have been proposed

by researchers and practitioners (Blackstone, Phillips & Hogg 1982). Generally,

dispatching rules are applied at individual workstations and hence they are

myopic in nature. Since the best decision to pick the next job for processing

depends on future jobs as well as the situation at other machines, no dispatching

rule works best in all the conditions. However, due to limited availability of

scheduling solutions for large realistic systems, dispatching continues to find

extensive use in industry.

In order to analyze different dispatching rules, computer simulations are used

to assess their performance under different dynamic and stochastic working con-

ditions. Computer simulations provides a mechanism in which one can capture

the essence of a real manufacturing system in the form of a detailed model which

can be run, tested, and analyzed in many different ways (O’kane 2000). Due

to increased availability of computation power and enhancements in modelling

capabilities and visualization of generated results, simulation has been exten-

sively used of analysis and validation for all aspects of manufacturing systems.

In practice, the simulation engine is provided with the model of manufacturing

system and is fed with the demand information and current status of system

in term of location and state of jobs in the system. After feeding the current

information, the model is run forward in time by applying selected dispatching
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rules at each workstation. The schedules are generated by collecting the infor-

mation about arrival and departure times of jobs from the simulation results.

Different schedules are generated by changing the scheduling rules, and the best

one according to the desired performance criteria is selected for application.

Apart from dispatching rules, which sequence the available jobs at a worksta-

tion, regulating the number of jobs has also been used as mechanism to control

the system behavior. Regulating the workload in the system can smooth the

system operations by avoiding congestion and achieve shorter and more reliable

lead times. Such WIP regulating control is known as pull mechanism and in

such systems, a job moves ahead only when it is authorized by the following

workstation. The amount of WIP is regulated at some predetermined level, and

the scope of regulation can be at each individual workstation or at the system

level. A Kanban (Ohno 1988) pull system uses card sets to tightly control WIP

between each pair of workstations. Processing of a job occurs at a workstation

only if the job has a card authorizing its processing from the corresponding suc-

ceeding workstation. As a result, the Kanban system limits maximum of WIP

at each workstation, and the upstream workstation is blocked when the buffer

is full. In contrast, a CONWIP (Hopp & Spearman 2000) system maintains

a global set of cards to control the total amount of WIP in the system. Un-

like Kanban, CONWIP pulls jobs only at the beginning of the manufacturing

process and the distribution of WIP within the system is not considered. In

CONWIP, when a completed job leaves the system, the card associated with

the job is released which authorizes release of a new job in the system. Similar

to the selection of dispatching rules, the best WIP levels to be maintained dur-

ing execution are decided by simulations by generating different schedules with

different WIP levels. Past research has shown that besides dispatching rules

which take effect after the jobs are available in the system, discretionary input

control can provide significant improvements in the system performance. As the

new jobs are released in controlled manner by using the input regulation poli-

cies, lower and more stable leadtimes can be achieved (Hendry & Wong 1994),

(Wein 1988).

In order to simplify the intractable problem of scheduling all the machines,

various approaches have been developed which focus only on the critical work-

stations. In a network system, due to connectivity of the steps to be processed,
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even if a system might have many overcapacity resources, the final throughput

of the system is limited by the resource that has the smallest capacity (called

bottleneck). As behavior of manufacturing system is dominated by the bottle-

necks, it is most critical to schedule them. The problem is thus reduced to

independently scheduling the bottleneck machines and non-bottleneck worksta-

tions can be scheduled by propagating the schedule of bottleneck. Throughput

of system is tied with the utilization of bottleneck resource which has to be

ensured by maintaining appropriate amount of jobs before the bottleneck in

order to avoid its starvation. The idea is motivated by the concept of “theory

of constraints” (TOC) (Goldratt 1990) according to which, any manufacturing

system is restricted by one or a few constraint machines. The capacity of the

constraint machine determines the overall system throughput. In order to max-

imize the throughput against limited resources, the constraint machine should

be protected with a certain level of work in progress (WIP), which is defined as

a constraint buffer. The size of the constraint buffer should be kept big enough

to avoid starvation on the constraint machine and, meanwhile, relatively small

to cut down the WIP inventories.

In Glassey & Resende (1988), Glassey & Petrakian (1989), Glassey & Weng

(1991), Lozinski & Glassey (1988) a concept of bottleneck starvation indicators

is presented which is used to develop input regulation policies and dispatching

rules. The risk of bottleneck’s starvation is accessed by the starvation avoidance

indicator. They have experimented with semiconductor manufacturing which

has process cycles and each job may visit the bottleneck machine several times

during the whole manufacturing process. The cycles are different and or each

visit to the bottleneck machine, there is a different sequence of upstream ma-

chines from the bottleneck where the jobs need to visit. Each sequence through

the bottleneck is denoted as a flow and the risk of starvation is evaluated by

computing the desired amount of WIP required in the flows for the bottleneck

workstation. Due to its highest utilization, any lost time at the bottleneck due

to starvation represents an irretrievable loss of final output. As maintaining

large amount of WIP increases the leadtime, the appropriate level of WIP to

be maintained in the flows to the bottleneck can be calculated a priori. Dis-

patching and release rules are then used to maintain the preset level of WIP in

the flows. A drawback of the starvation avoidance approach is the assumption
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of a single and fixed bottleneck whose location is known a priori. The impor-

tance of bottlenecks was also shown by Wein (1988), Wein (1990), Wein (1991),

Wein (1992), Wein & Chevalier (1992). They also experimented with semicon-

ductor fabrication with different number of predetermined bottlenecks. They

experimented with different dispatching and release rules including a workload

regulation rule in which new jobs are released into the system when the total

work content for the bottleneck workstation falls below the preset limit. They

emphasized the importance of bottlenecks and observed that besides the release

control, the performance of dispatching rules is highly dependent on the number

of bottlenecks in the system. In dynamic systems, the random capacity losses

due to failure can cause the existing bottlenecks to shift and new temporary

bottlenecks can emerge. In order to identify shifting bottlenecks more accu-

rately in dynamic scenarios, Roser, Nakano & Tanaka (2001) Roser, Nakano &

Tanaka (2002), Roser, Nakano & Tanaka (2003) and Faget, Eriksson & Her-

rmann (2005) utilize the information of prevailing system status to identify

primary and secondary bottlenecks along with their magnitudes.

2.1.2 Artificial Intelligence Based Techniques

Artificial Intelligence techniques have been used to develop heuristics that can

find satisfactory solutions for complex and realistic manufacturing scheduling

problems. Various scheduling applications have been developed based on ar-

tificial intelligence techniques which include heuristics, knowledge-based sys-

tems, fuzzy logic, neural networks, case based reasoning, meta-heuristics which

include tabu search, genetic algorithms, simulated annealing etc. (Suresh &

Chaudhuri 1993), (Szelke 1994), (Kerr & Szelke 1995), (Zweben & Fox 1994),

(Shukla & Frank Chen 1996), (MacCarthy 2001), (Meziane, Vadera, Kobbacy

& Proudlove 2000).

Heuristics Based Techniques

Due to the intractable nature of finding the optimal solution to scheduling

problem, heuristics have been used to find reasonably good solutions in a short

time. Reeves (1993) defines heuristic as a technique which seeks good (i.e. near-

optimal) solutions at a reasonable computational cost without being able to guar-
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antee either feasibility or optimality, or even in many cases to state how close

to optimality a particular feasible solution is. Even though heuristics are not

exact, these algorithms are very useful in efficiently solving hard computational

problems such as scheduling.

When an existing schedule becomes infeasible due to disruptions, three com-

mon methods are used to update (repair) a schedule: right shift rescheduling,

regeneration, and partial rescheduling. Using the right shift rescheduling ap-

proach, the remaining operations are postponed (shifted) by an amount which

will make the schedule feasible (Abumaizar & Svestka 1997). The right-shift

refers to shifting the operations to right in a Gnatt chart. Most of the heuristics

update the schedule partially, and only repair the operation which are directly

or indirectly affected by disruptions. Partial scheduling is also known as affected

operations scheduling. Match-up scheduling is another kind of partial scheduling

which repairs the production schedule in an event of disruption (Bean, Birge,

Mittenthal & Noon 1991). When a disruption occurs, match-up mechanism

re-sequences all jobs scheduled before a matchup point, after which the new

modified schedule is completely consistent with the initial schedule. The dis-

ruptions can be accommodated during the transient period. The matchup point

is increased according to the tardiness of jobs, and if matchup point becomes

too large, the jobs are reassigned to different machines using integer program

or priority rules.

Meta-Heuristics Based Techniques

Various modern heuristics, also called meta-heuristics have also been used to

solve the manufacturing scheduling problem. The techniques include tabu-

search, simulated annealing and genetic algorithms. Meta-heuristics are meth-

ods that sit on top of local search algorithms and are used to improve the the

local search heuristics by enabling them to escape or avoid local optima or pre-

mature convergence (Reeves 1993), (Voss, Martello, Osman & Roucairol 1999).

Local search heuristics are neighborhood search methods based on the idea

of searching neighborhood. Local search algorithms work by starting with a

initial solution which is generated randomly or heuristically. The solution is

then improved by iteratively changing it. The solution is changed by analyz-

ing the neighboring solutions through iterations. The search process terminates
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when the current solution cannot be improved any further by moving it to any

neighboring solution. The local search is then stuck in what is known as local

optimum. Meta-heuristics are designed to control the local search algorithms in

order to improve their performance by enabling them to either avoid or escape

from the local optima.

After starting from a feasible solution, the search process in tabu search

(Glover 1989), (Glover 1990), (Glover, Taillard & de Werra 1993), (Glover &

Laguna 1997) iteratively moves from the current solution to its best neighbor-

ing solution even if that move worsens the quality of the result. The search

mechanism maintains a history of recently examined solution, which is called a

tabu-list. Tabu list is a short-term memory, which contains a pre-determined

number of previous moves, which are forbidden or declared tabu. The entries in

tabu list are maintained for a certain number of iterations and are used to avoid

cycles by avoiding revisits to the them in future iterations. In addition, based

on a defined aspiration criterion, a move is made by ignoring its tabu status if

it improves the best found solution so far.

Simulated annealing meta-heuristic (Aarts & Korst 1989), (Reeves 1993),

(Tan & Narasimhan 1997), (Kolonko 1999), (Satake, Morikawa, Takahashi &

Nakamura 1999), (Pham & Karaboga 2000) uses an analogy with the way in

which liquids freeze and crystallize. Physical annealing of solids is the process

of initially melting a substance, and then lowering the temperature gradually.

At high temperature, when the substance is in liquid form, its molecules are not

restricted and they can move very freely in relation to each other. As the tem-

perature is lowered, the movement of particles is progressively restricted and the

substance begins to solidify. The aim of the physical annealing process is to grow

solids with a crystalline structure in which the molecules have minimum energy

and the resulting solid is said to be in ground state. However, if the liquid is

cooled very rapidly, the resulting solid will not be a perfect crystalline structure

but a meta-stable structure with irregularities and defects whose molecules will

not be in a minimum energy state. The main idea of simulated annealing mech-

anism is to solve combinatorial optimization problems by a process analogous

to the physical annealing. By associating the moves of iterative improvement

algorithm to the re-arrangements of the molecules and the quality of solution

to the energy of those molecules, simulated annealing mimics the real annealing
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process in order to converge on the global optimum. After starting the search

from the initial solution with a high temperature, the successive iterations are

made on the basis of temperature, which decreases during the course of execu-

tion. During an iteration, if the neighboring solution is worse than the current

solution, the move is still made but with an probability that is proportional to

the current temperature. As the temperature is reduced with the number of

iterations, the probability of accept worsening moves decreases resulting in the

convergence of the result.

Genetic algorithms (Holland 1975) mimic the way in which species evolve

and are analogous to the Darwinian natural selection and mutations in bio-

logical reproductions. The solutions are represented by chromosomes and the

search process starts with an initial population of individual chromosomes which

are generated randomly or heuristically. Each search iteration is analogous to

a generation, and the next generation of individuals is generated by applying

crossover and mutation operators to the individuals of the current population.

Mutation introduces random modification to the individuals, and crossover com-

bines the genetic materials of two individuals of the current population (parents)

in to an individual of the next generation (offspring). The individuals for the

new generation are selected according to their fitness which is related to the

quality of result that an individual represents. The offsprings with higher fit-

ness level are selected for next generation which mimics the principle of survival

of fittest in natural selection.

Meta-heuristics have been used for both static and dynamic scheduling.

While repairing a schedule, the local search and simple mechanism can get

stuck in a local optimum and meta-heuristics can come over this limitation

and enable better repairs (Dorn, Kerr & Thalhammer 1995), (Zweben, Daun &

Deale 1994), (Dorn et al. 1995), (Zweben et al. 1994). Various meta-heuristics

such as tabu search (Mehta & Uzsoy 1999), (Dorn et al. 1995), genetic al-

gorithms (Jensen 2001), (Chryssolouris & Subramaniam 2001), (Rossi, Dini,

Chryssolouris & Subramaniam 2000), (Leon, Wu & Storer 1994), (Wu, Storer

& Chang 1993), (Bierwirth & Mattfeld 1999), simulated annealing (Zweben &

Fox 1994). These studies have shown that meta-heuristics can find better sched-

ules than local search mechanisms when the existing schedules are repaired in

response to the disturbances. They also show that compared to the dispatching

22



CHAPTER 2. PAST RESEARCH

rules approach, the performance of system is better when meta-heuristics are

used for scheduling.

Knowledge Based Techniques

Finding optimal schedules for large manufacturing systems is infeasible due to

the size of complexity of problem and the computational costs involved. The

problem is further compounded by the fact that unexpected disruptions require

prompt corrective action in order to ensure that the execution takes place consis-

tently towards achieving the manufacturing goals in a dynamic environment. As

a result, besides the use of computation, system-specific knowledge and human

judgement is also utilized to take corrective actions during disruptions and finds

an important place in practical scheduling. Knowledge-based systems capture

the domain specific knowledge and expertise in a knowledge-base which is then

used by an inference mechanism to derive conclusions and recommendations

from the captured knowledge. In manufacturing scheduling, knowledge-based

systems are utilized to make decisions when corrective actions are taken dur-

ing disruptions. When random disturbances occur, the knowledge-base advises

the corrective actions based on knowledge gained from experience (Suresh &

Chaudhuri 1993), (Szelke 1994), (Zweben & Fox 1994), (Kerr & Szelke 1995),

(Shukla & Frank Chen 1996), (MacCarthy 2001), (Meziane et al. 2000). The

information is used to generate and repair the schedules. CABINS framework

(Miyashita & Sycara 1995) uses case-based reasoning to repair the schedule in

job shops. The knowledge base of cases maintains the repair-context and the

corresponding repair actions. Using case-based reasoning, the knowledge about

similar situations (contexts) in the past is re-used to make repair accordingly.

Using the cases stored in the system, the schedule is repaired incrementally

when necessary. Besides repairing the schedules, knowledge based techniques

have also be been to select dispatching rules (Jahangirian & Conroy 2000), (Li,

Li, Li & Hu 2000).
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2.2 Multiagent Based Techniques

The final performance of the manufacturing control system is critically depen-

dent on its control structure. The conventional control architectures can be

broadly classified as centralized, which rely on top-down process of command

and response. A centralized database is maintained to make the control deci-

sions. The central control entity does the information processing and makes

decisions which are distributed to manufacturing resources for execution. In

contrast with the control flow, information flows from various manufacturing

entities to a central computer, which uses the information for scheduling, dis-

patching, monitoring any deviation, and dispatching corrective actions.

Although the availability of system’s complete information in centralized

and hierarchical manufacturing control systems may help in making globally

optimal decisions, they are found to be inefficient in dynamic environments of

today’s dynamic manufacturing processes. Experience has shown that central-

ized systems are unable to respond to the real-time events in large dynamic

systems. The occurrence of events in different parts of the system require the

centralized controlling entity to be informed about the unexpected change in

status. The centralized controller has to collect, manage and process all the

information and respond to it by promptly sending information about updated

course of action to various relevant entities of system. Today’s large manufac-

turing systems consist of large number of resources and frequent occurrence of

events make the central controller a information and processing bottleneck, thus

adversely affecting the responsiveness and performance of system.

Due to the increased dynamism of the markets and environment in which

today’s manufacturing systems operate, in order to remain competitive, there is

need for enhanced responsiveness and robustness from the next-generation man-

ufacturing control systems. The next-generation manufacturing control system

should be expandable and reconfigurable, i.e. it should be possible to add,

remove or reconfigure the components of manufacturing without stopping or

re-starting the process. Due to constant integration of new technologies and

the market dynamism, manufacturing resources fail unexpectedly, additional

resources and new products are introduced in the system, orders’ specifica-

tion and priorities are changed unexpectedly. It is required that next gener-
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ation of manufacturing control systems should be robust in handling the dis-

turbances and should minimize the effect of disturbances by reacting promptly

and intelligently. Due to the limitations of centralized hierarchical architec-

tures, the decentralized control architecture has been suggested as an alterna-

tive to achieve the desired features. As a result, the current trend has been to

design modular and distributed automated systems that can offer robustness,

stability and adaptability (Parunak 1993), (Parunak 1995), (Parunak 1998b),

(Parunak 1998a), (Tharumarajah & Bemelman 1997), (Brennan & Norrie 1998),

(Liu & Zhang 1998), (Shen & Norrie 1999).

Recent research has shown that multiagent technology is a promising ap-

proach to provide robust control for dynamic production systems. The features

provided by the agent technology closely match those required for efficient con-

trol of manufacturing systems i.e. modularity, decentralization, and dynamic

and complex structures characteristics (Parunak 1998b). Apart from manufac-

turing control, agent-based approaches have been applied in variety of other

domains such as electronic commerce, e-business, air traffic control, process

control, telecommunications etc.

2.2.1 Agents and Multiagent Systems

The concept of computational agents can be said to originate from distributed

artificial intelligence (DAI) (Bond & Glasser 1988). Over the time, the focus

of AI research has shifted from ideal goal-seeking to resource-bound rational

behavior. At the same time, due to the advances in technology, computing is

becoming more and more ubiquitous. These developments also coincided with

the evolution and popularity of network-based computing technology such as In-

ternet and mobile computing due to which the exchange of information between

remote entities is becoming a common practice. As a result of these develop-

ments there is an increased interest in the study of multiple cognitive entities

acting in communities, which represent the new agent paradigm of computing.

Although researchers broadly agree on the characteristics of agents, many

researchers and groups have proposed their definition of agents, and no definition

is universally accepted. Various definitions from different disciplines have been

proposed for the term agent. Wooldridge & Jennings (1995) definition seems
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to be the most popular and widely used working definition of agent; according

to them: an agent is a computer system, situated in some environment, and

capable of flexible and autonomous action in that environment in order to meet

its design objectives. By flexible we mean that the system must be responsive,

proactive, and social. Recently, Ferber (1999) arrived at a minimal common

definition of an agent. An agent is a physical or virtual entity that:

• is capable of acting in an environment;

• can communicate directly with other agents;

• is driven by an autonomous set of individual goals or objectives;

• possesses resources of its own;

• is capable of perceiving its environment to some extent;

• has only a partial representation of this environment;

• possesses skills and can offer services;

• may be able to reproduce itself;

• whose behavior tends towards satisfying its objectives, taking account of

the resources and skills available to it.

Based on the various definitions of agents, important capabilities of compu-

tational agents can be considered as autonomy, reactivity, proactiveness, social

ability, flexibility, personalization, adaptation, cooperation, deliberative capa-

bility, and mobility (Papazoglou, Laufmann & Sellis 1992).

• Autonomy: Agents themselves control their internal state and behavior

and operate without the intervention of users.

• Reactivity: Agents perceive their environment in which they exist, and

respond to various stimuli in a timely fashion in order to meet their design

objectives.

• Proactiveness: Besides reacting to the changes in their environment,

agents constantly exhibit goal-directed behavior in order to satisfy their

design objectives.
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• Social ability: Based on the selected communication language and pro-

tocol, agents interact with other agents of the system.

• Flexibility: Agents are able to show reactivity, proactiveness, and social

ability simultaneously.

• Personalization: The agents are able to personalize their behavior ac-

cording to user specific interests and preferences.

• Adaptation: By learning to react and interact with the changing envi-

ronment, the agents can adapt themselves to dynamic conditions.

• Cooperation: The agents can interact act with other agents and to coop-

erate their actions in order to work towards a common, high-level objec-

tive.

• Deliberative capability: The agents can plan by reasoning about the

world model.

• Mobility: The agents can transport itself and migrate to different nodes

of a network.

The implemented agents may show only some of the above properties. Nev-

ertheless, what differentiates agent based intelligence from the classical intel-

ligence is the fact that agents generally have incomplete knowledge about the

system, and are designed and supposed to have the resources for limited rea-

soning.

A multiagent system (MAS) is formed by a network of interacting agents.

There are various definitions for the term multiagent system. According to Dur-

fee, Lesser & Corkill (1989b) MAS is a loosely coupled network of problem solvers

that work together to solve problems that are beyond the individual capabilities or

knowledge of each problem solver. More recently, Ferber (1999) defined a MAS

as a system composed of a population of autonomous agents, which interact with

each other to reach common objectives, while simultaneously each agent pursues

individual objectives. According to Jennings, Sycara & Wooldridge (1998), the

main characteristics of MAS are:
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• Each agent has incomplete information, or capabilities for solving the

problem, thus each agent has a limited viewpoint;

• There is no global system control;

• Data is decentralized;

• Computation is asynchronous.

In MAS, the agents are autonomous which implies that they are not con-

trolled or managed by any other entity or agent. Knowledge and control of

system is distributed across agents and each agent maintains its own knowledge

and is responsible for its own actions. In order to achieve the global objec-

tive, agents communicate and interact with other agents in the system. As

the agents are present in the same environment, the actions and decisions of

various agents are affected either by direct communication between them or

through the changes that they make to the environment. Due to lack of central-

ized information and control, a global behavior cannot be imposed on system

and emergent behavior results from the interaction of individual agents that

have limited knowledge and competence.

As the global behavior depends on the collective behavior of individual

agents, the agents of MAS must cooperate, coordinate, and communicate with

each other in order to solve the global problem coherently. The interactions are

required either because individual agents do not have sufficient capabilities or

resources to solve the problem alone, or because there are inter-dependencies

between actions of different agents that arise from the sharing of a common

environment (Faratin & Jennings 1998). The interactions can be of different

types such as cooperation (agents work together to achieve a common objec-

tive), coordination (planning interdependent activities to be performed in a co-

herent manner), and negotiation (a process by which a group of agents reach an

agreement on some decision that is mutually acceptable) (Jennings, P. Faratin,

Parsons, Sierra & Wooldridge 2001).

Multiagent systems is a approach for cooperative distributed problem solving

which can be defined as (Durfee, Lesser & Corkill 1989a), (Durfee et al. 1989b):

cooperative distributed problem solving studies how a loosely coupled network

of problem solvers can work together to solve problems that are beyond their
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individual capabilities. Each problem-solving node in the network is capable of

sophisticated problem solving and can work independently, but the problems faced

by the nodes cannot be completed without cooperation. Cooperation is necessary

because no single node has sufficient expertise, resources, and information to

solve a problem, and different nodes might have expertise for solving different

parts of the problem.

Achieving a predictable behavior of a large distributed system is a difficult

task. Current research such as Xu, Scerri, Yu, Okamoto, Lewis & Sycara (2005),

Shen, Zhang & Lesser (2004) focuses breaking the system into smaller manage-

able local models to generate desirable global properties. By enforcing desired

properties on the smaller sub-networks of a large network system, the idea of

this approach is to propagate the properties throughput the network. Although

this bottom-up approach has potential, it is difficult to achieve a globally coher-

ent behavior from a population of autonomous distributed entities which have

only limited knowledge. Due to the individual component’s incomplete knowl-

edge about the system, large groups of such entities are liable to experience

unexpected emergent behaviour (Scerri, Liao, Lai, Sycara, Xu & Lewis 2004).

As a result, systems made up of purely local and small-scale models cannot

guarantee a desired behavior at a global level. According to Nwana, Lee &

Jennings (1996): coordination is a process in which agents engage in order to

insure their community acts in a coherent manner. Coherent means that the

agents’ actions gel well, and that they do not conflict with one another. Addi-

tionally, the reasons that might necessitate coordination in multiagent system

are summarized as follows:

• Preventing anarchy or chaos: co-ordination is necessary or desirable

because, with the decentralization in agent-based systems, anarchy can

set in easily. No longer does any agent possess a global view of the entire

agency to which it belongs. This is simply not feasible in any community

of reasonable complexity.

• Meeting global constraints: there usually exist global constraints which

a group of agents must satisfy if they are to be deemed successful. Agents

need to co-ordinate their behavior if they are to meet such global con-

straints.

29



CHAPTER 2. PAST RESEARCH

• Distributed expertise, resources, or information: In multiagent sys-

tems, the problem and solution is distributed across multiple agents. Indi-

vidual agents do not have sufficient competence, resources, or information

to solve the problem independently. Resources or expertise distributed

across agents may need to be combined to solve a problem.

• Dependencies between agents actions: Because of being present in a

common environment, the goals and actions of different agents are inter-

dependent. The actions taken by one agent can change some information

or part of environment based on which some other agents make their de-

cision.

• Efficiency: Even when individuals can function independently, thereby

obviating the need for coordination, information discovered by one agent

can be of utilized solve the problem in a better way.

As another definition, according to Jennings (1996): coordination is the pro-

cess by which an agent reasons about its local actions and the anticipated actions

of others to try and ensure the community acts in a coherent manner. In order

enable coherent decision making of distributed agents, variety of coordination

mechanisms have been developed.

As it is not feasible/desirable to have centralized information, the partial

knowledge of distributed agents can lead to conflicting situations among differ-

ent agents. Negotiation has been uses extensively used an coordination mech-

anism to evolve and deduce coherent decisions among interdependent agents.

According to Bussmann & Müller (1993): negotiation is the communication

process of a group of agents in order to reach a mutual accepted agreement on

some matter. According to a more generic framework proposed by Jennings

et al. (2001), negotiation is considered as a distributed search through a space

of potential agreements. During the process of negotiation, the direction of

the search is determined by the entities involved in negotiation. Negotiation is

viewed as an iterative process in which the negotiating agents repeatedly make

and respond to proposals. During successive iterations, the agents need to be

able to provide more useful feedback on the proposals it receives. This feedback

can either be an evaluation of the proposal, identifying parts of the proposal as

undesirable/infeasible or a alternative counter proposal. For the search process
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to converge and terminate, the feedback provided by agents should assist the

proposing agent to generate more acceptable proposals. Since negotiation in-

volves interaction, the protocol for dialogue between involved need to be defined

and various protocols for negotiation have been studied which are described be-

low.

In order to coordinate the activities of various agents, by intelligently de-

ciding which agents perform which task can control the performance of system

over time. Dynamic task allocation can take the current system status into

consideration and adapt the system’s behavior according to the performance

requirements and capability of agents. Contract net protocol (Smith 1980) is

a very popular technique for distributed task allocation in multiagent systems

(Shen, Norrie, D. & Barthes 2001), (Wooldridge 2002). The algorithm is based

on the way that companies float the tenders in market to contract some pre-

scribed work to potential bidders. Using the contract net protocol, the tasks

are assigned using a contracting mechanism with an objective of assigning the

tasks to the agents best suitable for the job. The agent can have two roles in the

protocol, manager or contractor. The manager agent advertises the task to be

performed by a making an announcement to some other (contractor) agents in

the system. On receiving the task announcement, contracting agents evaluate

the task with respect to their capabilities and availability and reply the man-

ager with a bid. A bid contains the information about the various parameters

of the service that the contractor can provide. The submitted bids are evalu-

ated by the manager agent which selects the most suitable bidder to execute

the task and awards the contract to the selected bidder. The contractor then

executes the prescribed task and sends a report to manager after the task is

completed. Besides contract-net other mechanisms based on markets such as

auctions (Hunsberger & Grosz 2000) have also been used to execute negotiation

between agents.

Besides market based mechanisms, game-theory based negotiations have also

been utilized for coordination (Kraus 1997), (Rosenschein & Zlotkin 1994),

(Sandholm 1999). Another kinds of algorithms that are inspired by “swarm

intelligence” are also utilized for coordination of multiagent systems. Swarm

Intelligence is the property of a system whereby the collective behaviors of (un-

sophisticated) agents interacting locally with their environment cause coherent
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functional global patterns to emerge (Bonabeau, Dorigo & Theraulaz 1999),

(Cicirello & Smith 2001), (Tolksdorf & Menezes 2003).

Recent research shows that token-based algorithms can address the prob-

lems of other coordination mechanisms and provide efficient and scalable co-

ordination for large agent networks in various domains (Wagner, Guralnik &

Phelps 2003, Xu et al. 2005, Moyaux, Chaib-draa & D’Amours 2003, Scerri,

Farinelli, Okamoto & Tambe 2004). For example, token-based coordination

was used to reduce bullwhip effect, which is amplification of order variability

induced by leadtimes for handling demand fluctuations, in a supply chain net-

work problem (Moyaux et al. 2003). In addition to a token which conveys usual

demand information as a request from a market, agents in the supply chain

use another type of token for sharing information about their own inventory

request to meet the demand fluctuations in a timely manner. Thus, each agent

can distinguish between original demands from the market and those of inter-

mediate agents and can avoid reacting blindly to temporal demands. Although

a fluctuation of demands has a big influence on performance of the network, it

can be reduced outside the network in cooperation with other networks.

2.2.2 Multiagent Control for Manufacturing

Due to the ever increasing global competitiveness, there have been fundamen-

tal changes in the way manufacturing systems operate. Today’s manufacturing

systems have to consistently minimize the product cycle times, maximize pro-

ductivity, maximize operational flexibility and these goals have to met in a dy-

namic environment which is characterized by unexpected failures and changes

in customer demand. In order to face this challenge, the current trend has been

towards deploying automated systems that can offer robustness, stability, adapt-

ability, and efficient use of available resources through a modular and distributed

design (Parunak 1993, Parunak 1995, Parunak 1998b, Parunak 1998a, Tharu-

marajah & Bemelman 1997, Brennan & Norrie 1998, Liu & Zhang 1998, Shen

& Norrie 1999, Maturana & Norrie 1997, Shen et al. 2001). Due to the limita-

tions of centralised hierarchical architectures in handling the challenges posed

by current manufacturing systems, the applicability of decentralized control ar-

chitecture has been explored. By decentralizing the control of manufacturing

32



CHAPTER 2. PAST RESEARCH

system, the idea is to reduce the complexity, increase flexibility, and enhance

fault tolerance. Because of their flexibility and robustness against disruptions,

it is believed that multiagent systems are a promising approach to build robust

and flexible control systems for large, dynamic and complex production systems.

The studies have highlighted that the multiagent based control is better

suited for dynamic manufacturing systems. The basic philosophy that differen-

tiates multiagent architectures from hierarchical and centralized manufacturing

control systems is that the multiagent systems recognize and correspond to the

fact that data and control are distributed through the system. Additionally,

this agentification implies natural flexibility as it is possible to add or remove

new entities with their attached agents to or from the system with minimal

changes in the existing software. The autonomous agents could correspond to

different entities in the system such as resources, operators, parts, jobs, orders,

etc. This local autonomy of control and data allows the agents to constantly act

according to the dynamic state of the relevant (partial) environment. Because

of the interaction ability of agents, they can coordinate with other agents to

make globally coherent decision. There is no global planning, and the over-

all system performance emerges through the dynamic interaction of the agents

during execution. As the software for each agent in a multiagent control is less

complex and simpler than the centralized counterpart, the writing, installation,

and maintenance of control software becomes easier. Some surveys on agent-

based manufacturing control are present in Ouelhadj (2003), Monostori, Vancza

& Kumara (2006), Caridi & Cavalieri (2004), Babiceanu & Chen (2006).

The multiagent architectures used for manufacturing vary in the concen-

tration of control. Centralized/hierarchical mechanisms are complex and due

to their rigidity of control structure their applicability is limited in real-time,

dynamically changing circumstances. The heterarchical and autonomous ar-

chitectures on the other hand provide advantage of modularity, reconfigurabil-

ity, adaptability, fault tolerance and extensibility (Hatvany 1985, Duffie 1990,

Vamos 1983, Prabhu & Duffie 1995, Prabhu & Duffie 1996). Nevertheless, due to

absence of global information at a single point in such distributed architectures,

achieving globally optimal behavior at large scale is difficult and local deci-

sions based on partial information can lead to a undesirable emergent behavior

and unstable system (Brennan & Norrie 1998, Shen & Norrie 1999, Bongaerts,
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Brussel, Valckenaers & Peeters 1997, Shen et al. 2001, Tharumarajah 2001).

Yams (Yet Another Manufacturing System) (Parunak 1987) is one of the ear-

liest application of autonomous architecture in which entities like factory, cell,

workstation, machine, parts are modelled as agents. In Yams, for assignment

of tasks to resources, task agents use contract net protocol to negotiate with

resource agents. Another application of autonomous architecture to cellular

manufacturing system treats cells as agent (Shaw 1988). The tasks of orders in

their approach are sub-contracted by cell agents to other cells through a bidding

mechanism. On receiving the broadcasted bid messages for a given task, the

cell agents evaluate the operation and reply with the details of service they can

provide in terms of processing time. Based on the bids of different cells, the task

is assigned to the cell which optimizes some predefined performance criteria.

In order to achieve robustness against disturbances along with performance

optimisation and predictability, several researchers have proposed mediator ar-

chitectures that combine features of both hierarchical and heterarchical frame-

works. In mediator architecture, the basic structure of autonomous local agents

is extended with special mediator agents (Brennan & Norrie 1998, Gou, Luh &

Kyoya 1998, Shen & Norrie 1999, Bongaerts, Monostori, McFarlane & Kádár

2000, Shen et al. 2001). Compared to local agents, the mediator agents have

a larger view of system. Mediator agents work with local agents and coor-

dinate the behavior of multiple agents resulting in a better informed decision

making process. Various multiagent control mechanisms are based on mediator

architecture, which have different number and roles of mediators (Maturana

& Norrie 1997, Maturana, Shen & Norrie 1999, Rabelo, Camarinha-Matos &

Afsarmanesh 1998, Bongaerts et al. 1997, Xue, Sun & Norrie 2001, Sun &

Xue 2001, Ramos 1994). Mediator agents assist in making globally coherent

decisions and Brennan & Norrie (1998), Brennan & Norrie (2001), Bongaerts

et al. (2000) and Cavalieri, Garetti, Macchi & Taisch (2000) in their comparative

studies have shown that mediator architectures can simultaneously provide sta-

bility and satisfactory performance due to enhanced vision of mediators, which

enables better planning and coordination in combination with system’s ability

to react to disturbances.

Market based approaches: Because of various constraints, conflict res-

olution has been a critical issue for dynamic manufacturing control. Market-
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oriented approaches to achieve have been widely used in multiagent control.

They have been used for controlling execution by deciding the dispatching at

workstations (Maley 1988, Shaw 1988). Market mechanisms have been used for

scheduling, where announce-bid-award cycles are applied recursively through

different resources in order to plan and schedule the required activities for manu-

facturing (Iwata, Onosato & Koike 1994, Tseng, Lei & Su 1997, Marcus, Vancza

& Monostori 1996). For negotiation, contract-net protocol has been widely used

with different variations.

Holonic Manufacturing Systems: A new paradigm of manufacturing

control, holonic systems consist of holons or agents that are autonomous, in-

telligent, flexible, distributed, cooperative (Valckenaers, Bonneville, Van Brus-

sel, Bongaerts & Wyns 1994). Holonic is a flexible approach and can be used

to utilize features of both hierarchical and heterarchical systems (Bongaerts

et al. 2000). Holons can be organized into flexible hierarchies, which can be

both temporal and permanent. Various architectures have been based on the

organization and roles of holons in the system. The PROSA reference architec-

ture (Brussel, Wyns, Valckenaers, Bongaerts & Peeters 1998) has three basic

kind of holons i.e. resource holons, product holons and order holons, and the

architecture defines the information flows in the system. Another system that

is based on PROSA architecture, is HoMuCS (agile holonic multi-cell control

system) (Langer & Alting 2001). In another similar architecture, ADACOR

(Paulo Leit & Restivo 2006), a special supervisor holon acts as a mediator to

manage dynamic group formation and coordination of other holons to achieve

global optimization. Besides these sophisticated architectures, various simple

holonic architectures with fewer kind of holons have also been proposed such

as Wiendahl & Ahrens (1997) utilizes order and machine agents, Tseng et al.

(1997) uses job and resource agents, and Kadar, Monostori & Szelke (1998)

refers to order and machine holons.

2.3 Conclusion

As reviewed in this chapter, various techniques have been developed and uti-

lized in the past to control manufacturing process. The various approaches can

be identified as dispatching rules and simulation based techniques, artificial in-
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telligence based techniques such as heuristics, meta-heuristics, knowledge-based

systems and a relatively new technique of multi-agent systems. The comparative

evaluation of various techniques has been done in past by Suresh & Chaudhuri

(1993), Shukla & Frank Chen (1996), Stoop & Wiers (1996) and MacCarthy

(2001).

Dispatching rules control the system in a distributed manner by sequencing

the jobs at each workstation and are easy to implement. The performance of

various dispatching rules can vary according to the condition of system. Simula-

tions are used to access the performance of dispatching rule before applying it for

execution. As the simulations done in advance utilize the forecasted conditions,

the success of dispatching rules depends on accuracy of system information. In

dynamic systems, the unexpected events can change the system state to a large

extent and all possible scenarios cannot be analyzed due to the computational

overheads involved. As a result, such approaches provide an approximated so-

lution and are poor in responding to the real-time events. Dispatching rules

represent a local and on-line control mechanism in which no centralized plans

are maintained. The other approaches use more global information and search

in a large solution space to generate and maintain schedules. As the schedules

frequently become unusable due to unexpected disruptions during execution,

various approaches have been used to maintain consistency of schedules in dy-

namic manufacturing environments. Complete rescheduling i.e. regenerating

the schedule from scratch in a event of disruption although can provide optimal

schedules, it is not feasible due to complexity and computational requirements

for large and dynamic system. Schedule repair is a alternative approach which

tries to maintain the consistency of schedule by modifying only the part of over-

all schedule that is affected by disruptions. In order to search for alternative

schedules during schedule repair, various local-heuristics have been developed.

The searches using local-heuristics may get stuck in a poor local optima and

various meta-heuristics have been applied to overcome this limitation. Various

meta-heuristics such as tabu search, simulated annealing and genetic algorithms

have been utilized for generation of better alternative schedules during the re-

pair. Knowledge-based systems have also been used to make use of acquired

expertise and knowledge. By capturing the knowledge about the system and

similar scenarios in the past, the knowledge based systems can intelligently sug-
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gest actions which can be taken to repair schedules, thus making the schedule

repair process more efficient.

Most of manufacturing control systems that are developed previously have

centralized and hierarchical control structure. Making use of consistent global

view of complete system can enable globally optimal decision making and better

control. However, due to centralization, such architectures have high rigidity

and they tend to have problems with reactivity to disturbances. In contrast with

the centralized control architectures, in multiagent control systems the decision

making structure corresponds more closely to the information and decision ex-

ecution structure. By decentralizing the control of manufacturing control, mul-

tiagent system aim to reduce the complexity, increase flexibility, and enhance

fault tolerance. Comparative studies have shown that multiagent systems are

the most suitable approach for controlling large and dynamic manufacturing

systems. The agents in a multiagent system have limited view of system and

can make decisions only in a part of system. Due to lack of a centralized infor-

mation an control structure, the agents rely on interaction with other agents to

coordinate their actions. Coordination is vital for decentralized multiagent sys-

tems in order to prevent chaos and enable individual agents to make decisions

that are globally coherent.

Because of the importance of autonomous coordination, various coordina-

tion mechanism based on market based mechanisms, game-theory principles and

swarm based interactions have been proposed in the generic multiagent domain.

However the sophisticated algorithms which show good performance do not scale

to large systems, either due to the extensive messaging that the coordination

mechanism requires or due to the computational complexity of locally central-

ized mediators or auctioneers. Although the simpler, swarm based approaches

can provide large-scale coordination, the resulting overall system performance

can be very inefficient. In the domain of manufacturing control also, vari-

ous coordination mechanism ranging from market based to swarm based have

been applied. Although the agent-based approach allows for improved, flexible

and robust control of dynamic production system, due to lack of efficient and

scalable coordination mechanisms, achieving good performance for large and

complex manufacturing systems such as semiconductor fabrication remains an

issue.
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In subsequent chapters the details of multiagent system that we have devel-

oped for semiconductor manufacturing is presented.
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Chapter 3

Proposed Multiagent Control

Mechanism

As reviewed in Chapter 2, centralized control and maintaining global plans

although provide optimization but are not feasible in large dynamic manufac-

turing systems. As an alternative to generating optimal schedules which is an

intractable problem, various simplifications and heuristics have been developed

and practiced.

The behavior of manufacturing system is dominated by bottleneck resources

and their starvation results in irrecoverable loss of throughput (Goldratt &

Cox 1992). Due to failures on various resources, the flow of jobs gets disrupted

and the resulting drop in utilization of bottlenecks due lack of jobs is hard

to recover. Researchers in the past have also highlighted the importance of

avoiding starvation of bottlenecks and have proposed mechanisms to ensure the

availability of jobs at the bottlenecks. The past studies have assumed that the

bottlenecks are fixed and can be determined by preliminary analysis of the sys-

tem (Glassey & Resende 1988, Glassey & Petrakian 1989, Glassey & Weng 1991,

Lozinski & Glassey 1988, Wein 1988, Wein 1990, Wein 1991, Wein 1992, Wein

& Chevalier 1992). To avoid starvation of identified bottlenecks, release rules

and dispatching heuristics were used in conjunction with simulation to identify

adequte safety buffer levels to be maintained during execution. However, due

to the capacity loss of resources resulting from random failures, the bottlenecks

shift and numerous temporary and secondary bottlenecks can emerge during
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subsequent execution. Few researchers have developed methods that utilize the

evolving state of system to identify dynamic and shifting bottlenecks (Roser

et al. 2001, Roser et al. 2002, Roser et al. 2003, Faget et al. 2005). However, in

all the previous studies mathematical or simulation analysis of system is done

offline to identify the system bottlenecks. After identification of anticipated

bottlenecks, measures to avoid their starvation are calculated (such as level

of safety buffers) and applied during subsequent execution. The effectiveness

of existing techniques is limited by the frequency of analysis exercise as the

conditions in a large and failure-prone system change rapidly and bottlenecks

may change during successive planning cycles. In this context, the multiagent

coordination mechanism proposed in this thesis has following key features:

• Autonomous control: In line with motivations of multiagent technol-

ogy, the execution of system takes place autonomously without need of

any intervention for planning or analysis.

• Distributed and dynamic bottleneck identification: The distributed

agents monitor performance of resources and dynamically identify the bot-

tlenecks during execution.

• Integrated planning and execution: The control in our system is

distributed across the agents. Agents autonomously monitor the changes

in system and decide on their actions by coordinating with other agents.

Through messages within the system, remote agents are informed about

location and requirements of emerging bottlenecks and agents change their

actions dynamically to avoid the starvation of bottlenecks.

Multiagent systems are characterized by distributed decision making enti-

ties which coordinate to achieve desired global behavior. Individual agents do

not have knowledge or capabilities to achieve the global system goal. Due to

lack of centralized control, the success of a multiagent system depends on ef-

fectively calibrating the sub-goals of individual agents such that the distributed

agents’ autonomous behavior of achieving their local goals results in the desired

global behavior. For a multiagent system to be able to respond to unexpected

disruptions and changes, the sub-goals of agents should also change accord-

ing to the modified circumstances. As the multiagent systems are required be
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autonomous, the system should autonomously monitor the changes within the

system and update the sub-goals of agents accordingly. Due to dependencies

between agents’ actions, the desired system behavior can be achieved by coor-

dinated actions of multiple agents and the coordination mechanism defines the

required protocol of interaction and information flow among different agents in

a multiagent system. The existing multiagent coordination mechanisms that

show coherent behavior have been shown to work only for small problems and

because of their complexity they do not scale to large problems.

Figure 3.1: Agent interactions in CABS

In this chapter we describe our coordination method: Coordination for

Avoiding Bottleneck Starvation (CABS) for improving a trade-off between lead-

time and throughput in a large-scale and uncertain network system. In CABS,

agents coordinate with other agents to maintain the adequate flow of jobs to

satisfy the various demands by preventing starvation of bottleneck agents. That

coordination is achieved by efficient passing of messages in the system. The mes-

sage includes information that enables agents to identify the bottleneck agents

and hence coordinate with other agents for maintaining the desired flow of jobs

to the bottleneck agents. In CABS, corresponding to each kind of job, there is

a corresponding flow of information (through messages) in reverse direction as

shown in Figure 3.1.
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3.1 Agent Actions in CABS

In CABS, the manufacturing problem is modeled by means of a network of

agents and the problem assumes a set of jobs J = {J1, ..., Jn} to be processed

by a set of agents A = {A1, ..., Am}.

Each job Jl consists of a set of steps Sl = {Sl
1, ..., S

l
sl
} to be processed

according to its process routing that specifies precedence constraints among

these steps. Every lot of the jobs consists of a specific number of works to be

processed and flows through agents according to its process route. Each agent

Aj processes its tj tasks T j = {T j
1 , ..., T j

tj
}. Each job Jl has a demand rate drl,

which is the number of lots to be completed per unit time. Furthermore, when

an agent Aj processes its task T j
i , it takes a fixed process time ptji .

A task of the agents corresponds to a step in the jobs. Hence, precedence

constraints among steps create a complicated directional network of agents.

Presume an agent Aj’s task T j
i is a step Sl

i. A preceding agent of the agent Aj

in terms of the task T j
i , Apre(j,i), is in charge of a step Sl

i−1 and a succeeding

agent, Asuc(j,i), processes a step Sl
i+1.

In addition to the agents that do the actual processing of jobs, source agents

also exist for each job. A source agent of a job is at the beginning of its process

route, and is responsible for releasing new lots of the job in the system by

transferring them to the agent processing the first step of that job.

Figure 3.2: Agent’s internal details in CABS

The internal details of individual agent in CABS are shown in Figure 3.2.
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An agent might be processing multiple type of jobs and it periodically receives

requirements (messages) for each kind of job from corresponding succeeding

agent in the process flow. The sample agent in Figure 3.2 is processing three type

of jobs (shown by three different colors). Agents maintain the latest incoming

requirements for each kind of job. The actions of different agents are coordinated

by means of requirement messages and each agent (Aj) in CABS performs two

actions:

• Dispatching: Based on the incoming requirements of its different kind of

jobs, T j, agent Aj selects the next lot to process from its locally buffered

jobs (WIP). After processing the selected job of task T j
i , the processed

job is sent to the corresponding succeeding agent Asuc(j,i) in the process

route.

• Generating Messages: Based on the incoming requirements from suc-

ceeding agents and the jobs that are already present (locally buffered

WIP), agent calculates the requirements for additional jobs. Agent gener-

ates requirements for additional jobs for each kind of job that it processes

i.e. T j, and sends these outgoing requirements (messages) to the cor-

responding preceding agent in the process route i.e. Apre(j,i) for task T j
i .

(The details of “own criticality”, which agent uses for calculating outgoing

requirements for additional jobs is provided later in the chapter).

In following sections, we describe the basic mechanism of an agent in CABS

and then introduce CABS’s coordination method developed for mitigating ef-

fects of failures and maintaining throughput of the network.

3.1.1 Lot Dispatching

Each agent Aj periodically receives requirements of processing its task T j
i from

the corresponding succeeding agent Asuc(j,i). The requirement consists of the

following four types of information (detailed definitions will be given later in

Section 3.1.2):

time limit: time at which agent Asuc(j,i) can process another lot for the next

step of the task T j
i .
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request rate: rate at which agent Asuc(j,i) can process the lots for the next

step of the task T j
i .

amount: the number of lots that Asuc(j,i) requires urgently at request rate

starting at time limit.

criticality: criticality of the requirement coming from agent Asuc(j,i).

In addition to the requirement information from succeeding agents, for each

task T j
i ∈ T j, an agent Aj is assumed to have local information such as the

demand rate, its current WIP with their due dates, and the total number of

lots it has already produced.

Algorithm 1 selectTask( message im[ ] ) of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: ET j ← {T j
i

∣

∣ (T j
i ∈ T j) ∧ (t wj

i > 0)}
3: sort ET j according to time limit (i.e., im[ ].tl) of tasks, or due date of

lots if tasks’ time limit is identical
4: set FET j as the first task in ET j

5: loop
6: set start time of FET j at current time
7: OFT j ← {ET j

i | (ET j
i ∈ ET j) ∧ (ET j

i overlaps FET j) ∧
(criticality(ET j

i ) > criticality(FETj))} // tasks overlap when an in-
tersection exists in their processing periods

8: if OFT j 6= ∅ then
9: remove FETj from ET j

10: set FETj as the first task in ET j

11: else
12: return FETj

13: end if
14: end loop

Agent Aj uses the requirement information from its succeeding agents for

choosing the next lot to process (i.e. dispatching) when it becomes free. Al-

gorithm 1 describes the dispatching algorithm for the agent Aj. It returns a

task with the earliest time limit whose dispatching will not delay a task of any

higher criticality beyond its time limit. In algorithms of the thesis, im[ ].tl,

im[ ].rr, im[ ].am and im[ ].cr respectively denote requirement information of
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time limit, request rate, amount and criticality for the corresponding

tasks in the incoming messages of the agent.

3.1.2 Message Passing

As described in Algorithm 1, dispatching of jobs is decided solely on require-

ments from succeeding agents. Hence, information in the requirement is a key

to coordination among agents.

An agent tries to meet the requirements of succeeding agents for all of its

tasks. Aside from meeting those requirements, the critical agents must also

minimize their workload deficit at all times for satisfying the demand rates of

jobs. For example, Aj’s workload of a single lot of task T j
i is the time required to

process it (i.e., ptji ). Each agent has aggregated workloads of all of its tasks based

on the demand rates of jobs. The difference between the planned workloads and

the total realized workloads due to tasks that have already been processed by

an agent denote the current workload deficit of that agent.

Algorithm 2 calcCriticality( ) of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: t ftj ← current time +
∑

∀i∈{1,··· ,tj}
(t wj

i pt
j
i ) // earliest time to finish cur-

rent WIP
3: ∀i ∈ {1, · · · , tj} set t dej

i as total demand of task T j
i until t ftj

4: ∀i ∈ {1, · · · , tj} set t prj
i as total production of task T j

i until current time
5: t wldj ←

∑

∀i∈{1,··· ,tj}
(t dej

i − (t prj
i + t wj

i ))pt
j
i // current workload deficit

of Aj

6: scj ← (1.0 −
∑

∀i∈{1,··· ,tj}
dr

job(T j
i )pt

j
i ) // surplus capacity of Aj

7: return t wldj/scj

An agent can recover its workload deficit by processing more lots of any task

than the corresponding demand rate. The time needed to recover the deficit

depends on the amount of deficit and surplus capacity available to the agent.

Algorithm 2 calculates an agent’s criticality as a ratio of its workload deficit and

available surplus capacity. In CABS, an agent with a large criticality is con-

sidered a bottleneck agent. Dynamic change of an agent’s criticality represents

wandering of bottlenecks.
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Algorithm 3 adjRequirements( task# i, message req ) of agent Aj

1: t wj
i ← amount of current WIP of task T j

i

2: t tl ← req.tl + t wj
i /req.rr − ptji // time to replenish T j

i based on request
from Asuc(j,i)

3: req′.tl ← max(t tl, (current time + t wj
i pt

j
i )) // time at which T j

i can pro-
cess new job for Asuc(j,i)

4: if ((req.am == 0) or (t wj
i >= req.am)) then // no pending urgent re-

quirement of Asuc(j,i)

5: t prj
i ← total production of task T j

i until current time by this agent (Aj)
6: req′.tl ← max(req′.tl, (t prj

i + t wj
i )/dr

job(T j
i )) // i.e. further jobs accord-

ing to demand
7: req′.am ← 0 // i.e. no urgent requirement of job
8: req′.cr ← 0.0
9: else // Asuc(j,i)’s remaining requirements are propagated to Aj’s preceding

agent after adjustment
10: req′.am ← req.am − t wj

i // i.e. remaining lots of urgent requirement
11: req′.cr ← req.cr
12: end if
13: req′.rr ← min(req.rr, 1/ptji )
14: return req′
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Algorithm 4 makeRequest( message im[ ] ) of agent Aj

1: ∀i ∈ {1, · · · , tj} set t wj
i as current WIP of task T j

i

2: for all i ∈ {1, · · · , tj} do
3: t ftj ← current time +

∑

∀i∈{1,··· ,tj}
(t wj

i pt
j
i ) // Aj’s earliest time to get

starved
4: t crj ← calcCriticality() // current criticality of Aj

5: t wldj ← current workload deficit of Aj // as calculated in algorithm
calcCriticality

6: im′[i] ← adjRequirements(i, im[i]) // adjust Asuc(j,i)’s requirements for
propagatation

7: if (t crj > im′[i].cr) and (im′[i].tl > t ftj) then // Aj is critical and
processing jobs according to Asuc(j,i)’s requirements will cause starvation
of Aj

8: om[i].tl ← t ftj // Aj’s requirement to avoid its starvation
9: om[i].rr ← 1/ptji // maximum possible processing (threshold) rate of

agent Aj

10: om[i].am ← t wldj/pt
j
i // amount urgently required by Aj to recover

its workload deficit
11: om[i].cr ← t crj // Aj’s criticality
12: else
13: om[i] ← im′[i] // propagate Asuc(j,i)’s (adjusted) requirements
14: end if
15: if (Aj is in failure) then // Aj cannot process any jobs
16: om[i].tl ← ∞
17: om[i].rr ← 0.0
18: om[i].am ← 0
19: om[i].cr ← 0.0
20: end if
21: end for
22: return om[ ]
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To maintain the flow of lots of a task T j
i to Asuc(j,i) at the requested rate

im[i].rr, Aj requires an incoming lot flow at the same rate from the correspond-

ing preceding agent Apre(j,i). However, the agent itself might be critical and

need some jobs earlier and at a higher rate in order to recover its workload

deficit. The agent requires a number of jobs immediately and at the maximum

rate at which it can process to recover its deficit as soon as possible. Based on

the requirement from succeeding agents and its own criticality, the agent gener-

ates a consolidated outgoing requirement for its preceding agent. Algorithm 4

describes the calculation of outgoing requirement messages by agent Aj. For

each T j
i ∈ T j, a requirement tuple om (om[i].tl, om[i].rr, om[i].am, om[i].cr) is

generated and sent to the preceding agent Apre(j,i). Algorithm 4 invokes Algo-

rithm 3 to adjust the incoming requirements from Asuc(j,i) for propagation to

Apre(j,i). Asuc(j,i)’s adjusted requirements are stored in intermediate im′ (Algo-

rithm 4:6), and Aj then uses them and its own current criticality to calculate

the final outgoing parameters (om) to be sent to Apre(j,i).

In Algorithm 3, in order to meet the incoming job requirements of Asuc(j,i),

Aj adjusts the requirements of Asuc(j,i) before propagating them to its preced-

ing agent Apre(j,i). The time limit and request rate from Asuc(j,i) indicate

the time and rate at which Asuc(j,i) can process the new arriving lots of T j
i .

Based on this capacity of Asuc(j,i) and its own available WIP, Aj calculates the

time at which is should request the next lot from Apre(j,i) (Algorithm 3:2-3).

Aj uses the amount parameter of Asuc(j,i)’s requirements and availability of its

local WIP to adjust Asuc(j,i)’s requirements. The amount value 0 from Asuc(j,i)

(Algorithm 3:4) indicates that Asuc(j,i) has no special requirement and it needs

the lots according to their normal demand. In such a case Aj requests the next

lot from Apre(j,i) according to its demand, subjected to its own and Asuc(j,i)’s

availability (Algorithm 3:6). The amount and criticality parameters are set

to zero to inform Apre(j,i) that lots are required according to their demand (Al-

gorithm 3:7-8). The amount value other than 0 from Asuc(j,i) indicates that

Asuc(j,i) has urgent requirement of amount number of jobs which should be sup-

plied to it at the corresponding request rate. If Aj has sufficient WIP to meet

the urgent requirement of Asuc(j,i) (Algorithm 3:4), Aj resets the propagated re-

quirements to Apre(j,i) in order to ask subsequent lots according to their demand

(Algorithm 3:5-8). When Aj does not have sufficient WIP to meet the urgent
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requirement of Asuc(j,i) by itself, Aj propagates the remaining requirement to

Apre(j,i) (Algorithm 3:10-11). In any case Aj cannot process the lots at rate

higher than its own capacity and it regulates the request rate accordingly

before propagation (Algorithm 3:13).

As Algorithm 4 shows, when the agent makes request messages for its pre-

ceding agents, the agent Aj uses criticality of incoming requirements to

identify the location of current bottlenecks in the system. If Aj’s own criticality

is higher than the incoming criticality from Asuc(j,i), it means that Aj is

more likely to be a bottleneck in the system (Algorithm 4:7). In such a case, if

the processing of jobs as per Asuc(j,i)’s requirements causes starvation of Aj, Aj

prioritizes recovering its own workload deficit over satisfying Asuc(j,i)’s require-

ment (Algorithm 4:8-11). In order to recover its own deficit at the earliest, Aj

sends the time when all its own WIP is used up as time limit (i.e., t ftj) and

its maximum production rate as request rate in requirements to its preceding

agent. By sending high request rate and short time limit to all the preced-

ing agents, the agent tries to expedite the production of all the available jobs

for recovering its workload deficit caused by delayed jobs. The agent passes its

own criticality (t crj) as the outgoing criticality. This enables the preceding

agents to identify the location of current bottlenecks in the system along the

process routes.

If criticality of Asuc(j,i) is higher than that of Aj, it means that Asuc(j,i),

or some other succeeding agent is a bottleneck. In this case, Aj acts to recover

the deficit of Asuc(j,i) and generates the outgoing requirements based on the

incoming requirements from Asuc(j,i) (Algorithm 4:13). As Aj propagates all the

requirement parameters of Asuc(j,i) to its preceding agent, the preceding agent

also gets the information about the location and requirements of critical agent

and can hence decide on its actions accordingly.

And, when an agent is in failure, it cannot process any job. Therefore, the

agent during the failure period stops requesting jobs from its preceding agents

by sending the requirements accordingly i.e., setting time limit as infinity,

amount as 0 and request rate and criticality as 0 (Algorithm 4:16-19).
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Figure 3.3: Example agent network

3.2 Coordinated Behaviors in CABS

In this section, we show how coordination is achieved in CABS by analyzing its

behaviors using a simple example. The example network is shown in Figure 3.3

and it processes 3 types of jobs (JobA, JobB and JobC ). The network consists

of 6 agents, of which 3 agents i.e. Agent0, Agent1 and Agent2 are processing

agents. Besides these 3 processing agents which do the actual processing on

the jobs, there also exist synthetic Source agents corresponding to each type

of the job. Process routes of the jobs are shown by directed arrows from their

corresponding Source agents. The demand of completed jobs is shown in terms

of lots/day at each process route. In the figure, label time[job type] with each

processing agent indicates the time of the labeled agent to process a lot of

thejob type. Agent2 is processing 2 steps of JobC, one of which is a loop step

shown as a cycle in the figure, and each step takes 3 mins. Based on the demand

rates and processing times of various jobs, the aggregate utilization of agents is

also shown with each agent (in percentage).

For the experiment we simulate a single failure on Agent2 from time 15000

to 28000 min. First we explain the behavior of a conventional simple manu-

facturing system during this failure. Then we explain the working of CABS’s

algorithms during an identical failure and compare its performance with the

conventional system.
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3.2.1 Behaviors of Conventional System

The conventional manufacturing system that we have chosen for comparison

has following properties:

• The jobs are released in the system at the demand rate i.e. the jobs

are pushed constantly in system without any consideration to the system

status.

• Among the different types of available jobs (WIP), the agents pick the

jobs to process in the order of their due dates, i.e. the agents dispatch

their jobs according to the earliest due date (EDD) policy.

The above releasing and dispatching policies are simple but widely used in

small manufacturing environments because behaviors of the system are pre-

dictable to human operators.
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Figure 3.4: Conventional System: Throughput

The behaviors of this system in terms of throughput and finished inventory of

different jobs are shown in Figure 3.4 and Figure 3.5 respectively. The duration

51



CHAPTER 3. PROPOSED MULTIAGENT CONTROL MECHANISM

-1000

-500

 0

 500

 10000  20000  30000  40000  50000  60000  70000  80000

JobB
JobA

JobC

Demand Level

Time

In
ve

nt
or

y

Figure 3.5: Conventional System: Finished Product Inventory

 0

 20

 40

 60

 80

 100

 10000  20000  30000  40000  50000  60000  70000  80000

Agent0
Agent1
Agent2

Time

U
til

iz
at

io
n 

(%
)

Figure 3.6: Conventional System: Utilization
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of failure is shown by shaded region. Figure 3.6 shows the capacity utilization

profile of agents. Figure 3.7 shows the amount of different WIP that is present

at various agents of network.

As the failure on Agent2 affects JobC, its throughput drops to zero with

the onset of failure and its finished inventory deficit starts to increase with the

progress of failure ( dropping lines of JobC in Figure 3.4 and 3.5 during the

failure). The utilization of Agent1 drops during failure as it stops receiving

JobC (Figure 3.6). Please note that system continues to produce the other two

jobs with their demanded throughput during failure (the unaltered lines of JobA

and JobB in Figure 3.4 and Figure 3.5 during the failure). Because the jobs are

constantly released in this conventional system at demand rate during failure

as well, WIP of JobC accumulates at Agent2 (Figure 3.7).

After resolution of failure at 28000 min., Agent2 starts to clear its accu-

mulated WIP of JobC using its full capacity (Agent2 in Figure 3.6 and 3.4).

Agent1 also starts receiving JobC after failure recovery and its utilization also

rises to 100% (Figure 3.6). As these backlogged lots of JobC have earlier due

dates, Agent1 gives preference to JobC over JobA in its dispatching. Agent1 has
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limited capacity and initially it utilizes all of its capacity to process JobC exclu-

sively. Agent1 ’s exclusive processing of JobC results in the stoppage of JobA’s

production (JobA in Figure 3.4). Agent1 continues to process JobC exclusively

till time 35000 min., during which the finished inventory deficit of JobA increases

(Figure 3.5). As Agent0 continues to process JobA at the demand rate, WIP

of JobA accumulates at Agent1 (Figure 3.7). By time 35000 min. the deficit

of JobA and JobC becomes equal in terms of delay from their due dates, after

which Agent1 processes both jobs in proportion of their demands. As Agent1

drops processing of JobC, its WIP starts to accumulate after 35000 min (Figure

3.7).

By time 50000 min. Agent2 has cleared all its accumulated WIP (Figure

3.7) and it restores its processing at demand rate (Figure 3.4). Agent1 however

continues to use it full capacity to clear its accumulated WIP of JobA and

JobC. Because of its less spare capacity Agent1 takes longer time to clear its

accumulated WIP and system simultaneously recovers its finished inventory

deficits by time 70000 min. (Figure 3.5). At 70000 min. the recovery is complete

and all agents restore their behavior to normal levels.

In this section we explained how the recovery after resolution of failure de-

pends on capacity of Agent1. The shortage of Agent1 ’s capacity delays recovery

and results in deficits of JobA, which is not directly affected by failure. Because

of high planned utilization of Agent1 (80%), the loss of its capacity due to star-

vation during failure is detrimental to performance of system. Please note that

there is no fluctuation in processing of JobB during entire scenario.

3.2.2 Behaviors of CABS

The system’s recovery can be expedited if Agent1 has more capacity available

during the recovery period. The fraction of its capacity which will be otherwise

wasted due to lack of JobC during the failure can be utilized to process surplus

i.e. more than the stipulated demand of JobA. Avoiding Agent1 ’s starvation

by processing surplus of JobA during the failure will ensure availability of extra

capacity and thus faster clearance of JobC ’s deficit after resolution of the failure.

As JobA is being processed by Agent0 before arriving at Agent1, Agent0

will have to process and supply JobA at a higher rate in order to sustain high
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utilization of Agent1. As Agent0 is already running near its capacity(83%) to

meet the regular demand of JobA and JobB, it cannot increase the rate of JobA

high enough to keep Agent1 ’s utilization without reducing its processing of

JobB. Although JobB is not directly affected by the failure, because of indirect

dependence between agents in the system, its throughput has to be reduced

during the failure in order to maintain utilization of the critical agent Agent1.

The system in which the agents are running the CABS algorithm achieves this

desired behavior.
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Figure 3.8: CABS: Throughput

Behavior of the system with agents using CABS algorithm is shown in Fig-

ures 3.8–3.11. Please note that in comparison to the accumulated WIP of con-

ventional system (Figure 3.7), the system using CABS accumulates very low

WIP (Figure 3.11) in this scenario and the scale in Figure 3.11 is different from

Figure 3.7 in order to explain the detailed working of CABS. In order to main-

tain high utilization of Agent1 during the failure, the CABS system decreases

the throughput of JobB to increase the throughput of JobA (15000 - 28000 min.

in Figure 3.8). The surplus of JobA produced during the failure allows Agent1
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Figure 3.9: CABS: Finished Product Inventory
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Figure 3.10: CABS: Utilization
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to have more spare capacity after resolution of the failure, which results in

speedy recovery. As a result, compared to the conventional system, the CABS

system recovers quickly and clears the deficit of all the jobs by 52000 min. We

now explain the detailed working to CABS by analyzing the behavior of agents

during different time periods of execution.

Agent0, Agent1, Agent2 are periodically sending the requirement messages to

the preceding agents in the process routes of their jobs according to Algorithm 4.

The flow of messages is thus in the opposite direction of the flow of jobs shown

in the Figure 3.3. After segregating the contents of requirement messages that

the agents are sending, we have plotted values of time limit, request rate,

amount and criticality individually in Figures 3.12 to 3.15 respectively. The

X-axis represents the execution time and the Y-axis represents the value of

respective requirement parameter that agents are sending at that point of time.

In the figures, line AgentP:JobQ represents the value of parameter that agent

AgentP is sending in the requirement message for JobQ to its previous agent

of JobQ. All the parameters except time limit are plotted as absolute values

as they are sent in the messages. As the time increases monotonously, instead
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Figure 3.12: CABS Message: time limit
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of the absolute time limit we have plotted its offset from the time when that

message was sent (Figure 3.12). At any given time Time, (time limit - Time)

indicates how much later in the future the agent wants the next lot of that job.

A smaller value of (time limit - Time) means that the agent needs the next

lot immediately, and on the contrary a higher value means that agent needs the

next lot at a later time in the future.

Besides the message parameters, Figure 3.16 shows the instantaneous crit-

icality of different agents of the network. Please note that according to Algo-

rithm 4, the criticality that an agent is sending in its messages might be

different from its own criticality.

Before Failure

In this section we explain the behavior of agents during the smooth running

period till 15000 min. During this period the jobs are being steadily produced

at the demand rate (Figure 3.8), and hence their finished inventory deficit is

maintained at 0 levels (Figure 3.9).
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• Agent1 : Steady production of jobs at the demand rate during this stable

condition results in steady utilization of all agents (Figure 3.10). In this

situation, the last agents of jobs assume a static incoming requirement of

lots according to their demand (incoming amount is 0). Hence, Agent1

calculates the requirements of JobC and JobA according to their demand

(Algorithm 3:5-8). Since there is no accumulated WIP (Figure 3.11) or

surplus production of jobs during this stable condition (Figure 3.9), the

time limit remains close to current Time (Algorithm 3:3,6). Agent1

sets its own processing capacity as the request rate (Algorithm 3:13).

Since all the agents are processing their jobs according to the demand and

do not have workload deficit, their criticality as defined by Algorithm 2

remains 0 (Figure 3.16). Because of its low criticality Agent1 passes the

demand requirements of JobC and JobA generated in Algorithm 3 to their

respective preceding agents i.e. Agent2 and Agent0 (Algorithm 4:13) as

shown in Figures 3.12-3.15.

• Agent0 : Being the last agent of JobB, Agent0 generates and sends the

requirements for JobB as Agent1 does for JobC and JobA (described

above). For JobA Agent0 adjusts the requirements it receives from Agent1

by Algorithm 3. As there is no accumulation of WIP or surplus production

during the steady state, the adjusted time limit at Agent0 also remains

close to current Time. As the processing time of JobA is longer at Agent0

i.e. 10 compared to 5 at Agent1 (Figure 3.3), Agent0 reduces the request

rate accordingly (Algorithm 3:13). As Agent0 ’s criticality is also low, it

propagates the adjusted requirements of JobA to its preceding agent i.e.

the Source Agent for JobA as shown in Figures 3.12-3.15.

• Agent2 : As Agent0 adjusts the requirements of JobA (described above),

Agent2 adjusts the incoming requirements from Agent1 for JobC. Agent2

is processing two consecutive steps of JobC and its sends the requirements

for the first step to its Source Agent. Since the requirements for processing

the second step of JobC is confined to Agent2 itself, they are not depicted

in Figures 3.12-3.15 for the sake of clarity. Although Agent2 can process

its steps of JobC at double the rate compared to Agent1 (see processing

times in Figure 3.3), it sends the lower rate of Agent1 to its preceding
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agent (Algorithm 3:13) during smooth operations (Figure 3.13). Since

Agent2 is also not critical during smooth operations, like other agents it

also propagates the adjusted requirements as shown in Figures 3.12-3.15.

During Failure

In this section we explain how the agents change their behavior when the flow

of JobC is blocked at Agent2 during its failure from 15000 to 28000 min.

• Agent1 : With the onset of the failure on Agent2, lots of JobC stop ar-

riving at Agent1 and its utilization drops (Figure 3.10). Because of this

deficit of JobC, Agent1 ’s workload deficit and criticality start to rise due

to Algorithm 2 (Figure 3.16). This rise of Agent1 ’s criticality makes it

higher than the criticality of the incoming static requirements, which

is always 0. Due to this raised criticality (Algorithm 4:7), Agent1 changes

its messaging behavior to override the incoming requirements (Algorithm

4:8-11). Now Agent1 stops propagating static incoming 0 criticality,

and starts sending its own urgent requirements for both of its jobs (Al-

gorithm 4:2). In order to recover its deficit as soon as possible, Agent1

continues to request both JobC and JobA at the earliest timing to avoid

its starvation (Algorithm 4:8 and Figure 3.12) and at the maximum rate

at which it can process them (Algorithm 4:9 and Figure 3.13). As its

workload deficit gradually increases during the failure, the amount that

Agent1 needs urgently to recover that deficit also increases with time (Al-

gorithm 4:10 and Figure 3.14). Compared to JobC, Agent1 sends larger

amount values for JobA because the required amount depends on the pro-

cessing time of the job (Algorithm 4:10), which is shorter for JobA than for

JobC (Figure 3.3). Agent1 now sends its own criticality in the messages

(Algorithm 4:11).

The key point to note here is the change in Agent1 ’s messaging behavior.

When Agent1 was not critical before the failure, it was propagating the

static incoming requirements. As it became critical due to its starvation

of JobC during the failure, irrespective of the production status of its

jobs, it overrides their incoming requirements and starts sending its own

requirements with higher criticality, and it does so for all of its jobs.
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• Agent0 : Agent0 receives the JobA’s higher criticality requirement

of Agent1. As 83% of its capacity is already utilized before the failure, it

cannot meet the higher rate requirement of JobA without reducing its pro-

cessing of JobB. Because of higher incoming criticality from Agent1,

Agent0 starts giving preference to processing JobA at a higher rate, ac-

cording to its dispatching policy selectTask described in Algorithm 1. Al-

though Agent0 has some WIP of JobB also during this period (Figure

3.11), due to contineous dispatching of JobA instead of JobB, the time

limit that Agent0 sends for JobB has a higher offset from current time.

Because of its limited capacity, processing more JobA results in the re-

duction of its throughput of JobB (Figure 3.8). And due to this increased

processing of JobA, Agent0 ’s utilization rises to 100% (Figure 3.10).

As the criticality of Agent0 itself remains low (Figure 3.16), it propagates

its incoming requirements to its previous agents i.e. the Source agents

after adjusting them appropriately.

• Agent2 : Although Agent2 continues to receive requirements from Agent1,

it stops requesting further jobs during the failure (Algorithm 4:16-19).

Meanwhile, its utilization remains 0 (Figure 3.10) and the criticality grad-

ually rises to a high value (Figure 3.16).

After Resolution of Failure

In this section we explain the behavior of agents after the failure get resolved

at time 28000 min.

• Agent2 : After the resolution of its failure, during which it had accumu-

lated workload deficit and became the most critical agent in the system,

Agent2 starts to request JobC immediately and at its threshold rate (Fig-

ure 3.12 and 3.13). Although the incoming request rate from Agent1 is

lower, because Agent2 ’s criticality is higher it sends its own higher rate

at which it can process its process steps (Algorithm 4:9 and Figure 3.13).

Agent2 uses its full capacity to recover its workload deficit as soon as

possible (Figure 3.10). By processing the jobs at a higher rate, Agent2

gradually reduces its workload deficit and criticality (Figure 3.16). The

63



CHAPTER 3. PROPOSED MULTIAGENT CONTROL MECHANISM

amount that it is requesting also decreases gradually due to the same rea-

son (Figure 3.14). It sends its own criticality with the request (Figure

3.15). It continues this behavior till its criticality drops to 0 by time

50000 min, after which it restores its behavior to normal.

• Agent1 : Since the delayed jobs of JobC have earlier due dates, Agent1

gives preference to them over JobA in its processing according to Algo-

rithm 1. Agent1 exclusively processes JobC, and it results in increase of

JobC ’s throughput and stoppage of JobA’s production (Figure 3.8). This

behavior of Agent1 simultaneously decreases the finished inventory deficit

of JobC and surplus of JobA simultaneously (Figure 3.9). As Agent1

steadily receives jobs from Agent2, it is able to utilize its full capacity

to process them (Figure 3.10). During the failure, the increased flow of

JobA could not compensate for the stopped flow of JobC and Agent1 also

accumulated some workload deficit and increased its criticality as a re-

sult (Figure 3.16). Because of its high utilization due to availability of

JobC after the failure resolution, Agent1 ’s workload deficit and criticality

decreases gradually (Figure 3.16). Till its criticality drops to 0 at time

47000 min., Agent1 continues to send small time limit and appropriate

amount for both JobC and JobA that is required to recover its workload

deficit. Although Agent1 is sending a small time limit value for both

JobC and JobA (Algorithm 4:2) and it as available WIP of both the jobs

(Figure 3.11), it continuously defers the processing of incoming JobA in

favor of JobC due to its dispatching policy (Algorithm 1). As a result of

this dispatching behavior of Agent1, the time limit values that Agent1

sends for JobA during the recovery period have persistent higher offset

from the current time (Figure 3.12). When Agent1 ’s criticality drops to

0 at time 47000 min., it starts sending requirements of JobA according to

its demand (Algorithm 4:12). Since JobA still has a surplus production at

47000 min. (Figure 3.9), the time limit parameter for JobA has a posi-

tive offset from the current Time till the production of JobA is restored to

the demand level (Algorithm 3:6 and time 47000 to 52000 min. in Figure

3.12).
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• Agent0 : At Agent0, although the incoming requirement of JobA has

higher criticality compared to the static 0 incoming criticality of JobB,

JobA’s time limit has a consistent higher positive offset from the cur-

rent time as described above (Figure 3.12). Because of this time offset,

processing JobB does not disturb the requirement of JobA and Agent0 is

able to dispatch JobB (Algorithm 1). Because of its ability to process

JobB, Agent0 requests JobB more frequently to recover its finished inven-

tory deficit by sending lower time limit values of jobB to Source agent

during this period (Figure 3.12). As Agent1 has altogether stopped the

processing of JobA during this recovery period which results in a persis-

tent offset in JobA’s time limit, Agent0 exclusively processes JobB at a

higher rate (Figure 3.8). This production of JobB at a higher rate results

in recovery of its finished inventory deficit, which is complete by 40000

min. Since Agent0 ’s criticality remains 0, it propagates the requirements

of Agent1 at all the time. Hence, during the time 47000 to 52000 min.

Agent0 also sends the higher time limit value according to the surplus

production of JobA.

The system recovers the deficit of all the jobs by time 52000 min., after

which the all the agents restore their requirements and behaviors to the normal

level, as they were before the occurrence of the failure. In essence, because the

capacity of Agent1 was utilized during the failure by producing JobA in excess,

it could afford to reduce the processing of JobA and utilize more of its capacity

to recover the deficit of JobC after the failure resolution.

3.3 Conclusion

In this chapter we explained our proposed multiagent coordination mechanism,

CABS. In CABS, each workstation is modelled as an agent. The agents co-

ordinate their actions by the requirement message defined in the system. The

flow of messages is in reverse direction of the flow of jobs and agents make use

of messages’ contents to decide their actions. We explained the dispatching

algorithm which agents use to sequence their buffered jobs by analyzing the in-

coming requirement messages from their succeeding agents. Agents make use of
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incoming requirement messages and their own criticality to identify bottlenecks

in the system. The agents use their own performance w.r.t. to the demand

to identify their dynamic workload, which is then used to calculate their crit-

icality. We explained the algorithm that agents use to generate requirement

messages for preceding agents according to the location and requirements of

dynamic bottlenecks in conjunction with its own WIP. The working of CABS

algorithms using a small manufacturing system and single failure was explained

in detail, as to how the proposed coordination mechanism avoids the starvation

of critical resources in order to achieve better performance than a conventional

system. In the following chapter we evaluate CABS with more realistic scenarios

of semiconductor fabrication process with repeated random failures.
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Chapter 4

Empirical Validation

In this chapter we describe our experimental setup and present the results which

empirically shows that CABS outperforms a conventional system in dealing with

complex network systems.

4.1 Experimental Setup

In our research, we use a manufacturing problem, especially a semiconductor

fabrication process, as a benchmark for controlling large-scale network systems.

Semiconductor fabrication is among the most complex manufacturing processes.

For example, the manufacturing steps for semiconductor manufacturing usually

number a few hundred, with numerous repetitive re-entrant loops. Its leadtime

extends over a couple of months (Atherton & Atherton 1995, Pfund et al. 2006).

Furthermore, fierce competition of global market place and short technology

life cycles require the semiconductor industry to always deploy state-of-the-

art manufacturing technologies. It causes their manufacturing processes to be

unstable and unpredictable because they most of the time operate in early part

of experience curves of manufacturing.

For experiments a simulation system is developed to model the manufactur-

ing process with agents to test proposed algorithms in CABS. The system is

built using SPADES (Riley & Riley 2003) middleware1, which is an agent-based

discrete event simulation environment. It provides libraries and APIs to build

1Available online at: http://spades-sim.sourceforge.net.
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agents that interact with world by sending and receiving time-based events. The

details of event mechanism of CABS are provided in Appendix B.

4.1.1 Experimental Agent Network

For empirical validation, we used a dataset from the Measurement and Im-

provement of Manufacturing Capacity (MIMAC) testbed datasets of the wafer

fabrication processes (Fowler & Robinson 1995) from Arizona State university2.

The dataset specifies the production steps of semiconductor manufacturing. We

have used the same dataset for all our experiments.

Type of product Non-volatile memory
Number of Products 2 (Product1 & Product2)
Number of Workstations 83

Product1 Product2
Number of Steps 210 245
Total processing time (hour) 313.4 358.6
Demand rate (wafers/day) 336.0 168.0

Table 4.1: Details of test problem

Table 4.1.1 shows the properties of test problem we chose from MIMAC

datasets. It has basic characteristics of a semiconductor manufacturing process

such as lengthy process flows with many repetitive re-entrant loops and a couple

of critical workstations. There are 2 products in the test problem and Figure 4.1

depicts their process flows. Each node in network represents a workstation and

average planned utilization of three workstations (i.e, No.67, 76 and 78) is higher

than 80%.

Notwithstanding the high planned utilization of some workstations, many

other workstations can also become temporary bottlenecks when they suffer

large capacity losses due to unexpected failures in system. Figure 4.1, which

depicts the process flows of products through the workstations in the experiment

problem, can be viewed as a complex network. It is noteworthy that, although

the number of nodes in the network is moderate (less than one hundred), because

2Available online at: http://www.was.asu.edu/˜masmlab/home.htm.
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Figure 4.1: Process flows of test problem

they are connected with directional, weighed and multiple links, analysis of the

network’s behavior is far more intractable than that of networks, which is a

current research subject of “complex networks” (Barabási 2002).

In the experiments, we made the following assumptions to focus our inves-

tigative attentions to the basic properties of CABS: (1) there is no variability

in processing times of operations, (2) batches are not considered, (3) no setup

time is considered, (4) operators are not considered in the model, (5) there is

neither product rework nor scrap, and (6) stochastic machine failure is modeled

using exponential distribution.

4.1.2 Criteria of Performance Evaluation

According to Kumar & Kumar (2001) Performance Metrics are the indexes that

are utilized to measure production performance through simulation case studies.

The following are some commonly used metrics in semiconductor manufactur-
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ing processes: costs, cycle time, machine utilization, yield, and Work-In-Process

(WIP) inventory. From the various proposed performance metrics, it is appar-

ent that the performance of a system is gauged not only by the throughput

it achieves, but also the quality of service that it is able to provide. Lean

manufacturing, that combines high throughput with low WIP has become a

minimum requirement for competitiveness in manufacturing industry (Womack

et al. 1991), although it is hard to achieve in unreliable and dynamic systems. As

a criteria to evaluate performance of CABS, we exploit leadtime that achieves

the same level of throughput. Little’s Law (Little 1961) in queueing theory

states that in order to reduce leadtime by maintaining the same throughput

requires WIP to be reduced (Equation 1.1). However, in a variable and unpre-

dictable environment, reducing WIP tends to decrease throughput by cutting

back the safety buffer of jobs with the agents. During failures, the reduction

of safety buffers increases the probability of forcing idle time of agents due to

lack of jobs to process. The system should strike a suitable balance between

leadtime (or WIP) and throughput in the face of failures. Hence, the system

that requires less leadtime to achieve the same throughput is considered more

efficient and robust against failures.

To integrate system’s performance on multiple types of products with differ-

ent manufacturing processes, we calculate the aggregated processing time of all

the products (ProductSet) for representing overall throughput of the system:

Aggregated Processing T ime =
∑

∀i∈{ProductSet}

Process T imeiThroughputi

For representing overall leadtime of the system, we calculate the aggregated

leadtime as:

Aggregated Lead T ime =
∑

∀i∈{ProductSet}

LeadtimeiThroughputi

Because Leadtime = Process T ime + Wait T ime, a system with a smaller

aggregated leadtime corresponding to the same aggregated processing time is

more efficient and robust against failures.
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4.1.3 Details of Experiments

All the agents in the network fail repeatedly according to exponential distri-

bution. The mean-time-to-recovery (MTTR) and mean-time-between-failures

(MTBF) of the distribution is different for each agent. Each agent is initialized

with a different random seed and failure pattern of agents is thus independent

of each other.

We have collected the results after executing the simulation of specified semi-

conductor system for a duration of 2 months. In the high demand experiments,

the total number of jobs that got processed through the system were around

760. The total number of failures that occurred in the system during the simu-

lation period was 1400. All agents failed randomly according to their individual

MTBF and MTTR parameters of exponential distribution.

For both CABS and CONWIP, we conducted eight independent runs of the

system with different random failures. The average of those results is shown

as a single datapoint. The results of experiments were taken after the system’s

initial stabilization at its startup.

4.2 Experimental results of CABS

We conducted a series of simulation experiments with CABS system. For

evaluation, different CABS experiments were done by changing the demand

levels of products. Figure 4.2 shows the performance of CABS in terms of

Aggregated Processing T ime and Aggregated Lead T ime for each demand

level. Each point in the figure corresponds to a demand level and more than 10

demand levels were used. According to the range of demand levels, the resource

utilization for the most heavily loaded agent in the steady state ranges from

50.8% to 86.5%.

The large number of random failures cause starvation of various agents for

different durations resulting in a very dynamic system. Due to the resulting

dynamic workload deficits of agents, their criticality (as defined in CABS) also

changes dynamically. Figure 4.3 shows how the criticality of various agents

changes during the course of execution in one of the experiments. As the crit-

icality represents the bottleneck factor of an agent, numerous intersections of
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Figure 4.2: Experimental results of CABS

72



CHAPTER 4. EMPIRICAL VALIDATION

Figure 4.3: CABS: Agents’ instantaneous criticalities
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agents’ criticalities in the figure shows that various dynamic bottlenecks are

created and they change over time.

4.3 CONWIP

In order to achieve desired performance from manufacturing system various

techniques have been developed. Many systems control the flow of material

into and within the system, and a lot of research has been done on them.

Broadly these mechanisms can be categorized into push and pull systems. The

Material Requirement Planning (MRP) systems which release jobs into the sys-

tem according to schedule based on customer orders are an example of push

system. Push systems do not accept feedback from the system. They release

jobs in the manufacturing process according to predetermined schedule. Due

to absence of a tight feedback mechanism in push systems, undesirable WIP

piles up in system as release of jobs and dispatching at workstations continues

according to the schedule even when a following workstation is blocked due to

failure or some other disruption. Due to the disadvantages in term of reac-

tivity and robustness to disturbances, push systems are considered inferior to

the alternative, pull systems. In contrast with a push system, in a pull sys-

tem a job advances only when the following entitiy in the system authorizes

the move. Push and Pull represent extremes of WIP management, which is a

crucial control for manufacturing systems. In conjunction with MRP or some

equivalent demand prediction method, based on demand the push systems de-

velop schedule of amount of jobs to be released (i.e., pushed) into system. In

the pull approach, production is authorized (i.e., released or dispatched) only

as inventory is actually (or virtually) consumed. For enforcing the designated

WIP levels, use of kanban cards (Ohno 1988) has been popular. In this system,

a kanban card is used as an authorization signal and the predetermined number

of cards limit the amount of WIP in the system.

CONWIP (Spearman, Woodruff & Hopp 1990) stands for Constant Work-

In-Process, and designates a pull based control strategy that always maintains

a fixed number of jobs in the complete system. Once a job leaves the system

after completing its processing at the last agent of its process route, the system

releases another job by sending it to the first agent in its process route. The
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steady WIP in the system acts as safety buffer and avoids the starvation of re-

sources during failures. In various comparative studies, CONWIP is considered

better than the push systems (Ovalle & Marquez 2003). According to (Hopp &

Spearman 2000), following are the advantages of CONWIP system over a pure

push approach:

• The WIP level (which serves as the trigger for the introduction of products

into a Pull production line) is directly observable, while the release date

in a Push system must be set with respect to (an unobservable) capacity.

• It requires less WIP on average to attain the same throughput.

• It is more robust to errors in the control parameters.

• It facilitates working ahead of schedule when circumstances permit.

Compared to other pull systems, CONWIP is considered superior and toler-

ant against instability of systems and is widely used in practice (Bonvik, Couch

& Gershwin 1997, Stevenson, Hendry & Kingsman 2005).

Since pull CONWIP system controls WIP and observe throughput, their per-

formance is critically dependent on the choice of WIP level. In systems that use

cards (kanbans) to govern WIP, setting WIP is done by choosing card counts. To

meet customer requirements, WIP levels (or card counts) must be large enough

to achieve the desired throughput. They must also be small enough to prevent

excessive WIP. Therefore, a basic problem facing pull systems is determining the

minimum WIP level to attain desired throughput rate (Hopp & Roof 1998). In

practice the levels of WIP to be maintained during execution is decided through

simulations by using the information of forecasted demand and system perfor-

mance. Since the optimal WIP level for CONWIP can be decided only through

trials and errors, we have conducted a series of simulations with different levels

of WIP. As the semiconductor fabrication process of our experiments produces

two products, we have conducted experiments with different combinations of

WIP levels for both products. The Aggregated Processing T ime (throughput)

achieved by CONWIP with different combinations of WIP for one set of exper-

iments is shown in Figure 4.4. The total number of WIP combinations (data

points) in for each set of CONWIP experiments is close to 1000.
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Figure 4.4: CONWIP: Different WIP levels

4.4 Comparison with CONWIP

In this section we compare the performance of CABS with CONWIP. We com-

pared the performances of CABS with two variations of CONWIP, (a) CONWIP

using the earliest due date first (EDD) dispatching rule and (b) CONWIP using

the Least Slack rule. Details of various dispatching rules are provided in Black-

stone et al. (1982). For each experiment of CABS we conducted a series of dif-

ferent CONWIP simulations with different WIP levels. From the series of CON-

WIP experiments we have selected the best CONWIP levels that achieve the

same aggregated throughput with that of CABS. Then we compare the best re-

sult of CONWIP with the result of CABS. The comparison of CABS and CON-

WIP in terms of Aggregated Processing T ime and Aggregated Lead T ime is

shown in Figure 4.5.

Unlike to a single failure scenario in Section 3.2.2, in these experiments, since

failures occur randomly and at all agents based on exponential distribution,

CABS may not be able to fully exploit its flexibility of controlling flows of tasks
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Figure 4.5: Comparison of CABS and CONWIP

to increase production of the appropriate products during failures and after

their resolutions. However, the presented results show that the CABS is better

than CONWIP from two perspectives:

• Better Performance: Figure 4.5 shows that compared to CONWIP,

CABS achieves same Aggregated Processing T ime with a smaller Aggregated

Lead T ime, specially in the high demand region. As Aggregated Lead

T ime corresponds to amount of WIP (Little 1961) and Aggregated Processing

T ime refers to the system throughput, the results also means that CABS

achieves a better tradeoff between throughput and leaditme and requires

lesser amount of WIP to achieve a given throughput, thus improving the

responsiveness and running cost of the system.

• Better Control: To be noted is that best WIP levels of CONWIP that

are used for comparison had to be determined in advance by using a
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series of simulations whereas CABS determines its dynamic WIP level

autonomously without any input from users. This signifies that CABS

can handle more dynamism in the system and autonomously adapt to a

range of conditions. In practice, it is difficult to anticipate all the possible

scenarios in dynamic systems in which workstations can fail unexpectedly

for random durations. Due to the size and dynamism of system, it is

not possible to evaluate the performance of selected WIP level in huge

number of possible failure scenarios. The WIP levels selected by simu-

lations done in advance can only provide a average performance over a

limited set of scenarios. The failures that occur during real execution can

be very different from the simulated scenarios, thus undermining the util-

ity of predetermined WIP levels in CONWIP. CABS on the other hand

dynamically reacts to the occurring disturbances, and its coordination

mechanism regulates flow of jobs and WIP levels autonomously.

4.5 Conclusion

In this chapter we presented the details of our experimental setup and the re-

sults of experiments used to compare the performance of CABS with a popular

conventional control mechanism, CONWIP. A simulation platform was devel-

oped to model the semiconductor fabrication process as multiagent system in

which agents utilize algorithm of CABS to coordinate their actions. Random

failures were simulated on all the workstations of system and by using different

demand rates, a series of experiments were conducted to record the performance

of CABS in terms of achieved throughput and leadtime. Under identical failures,

a series of experiments were conducted with different WIP levels of conventional

CONWIP system. After selecting the best CONWIP levels, the performance

of was CABS was compared with CONWIP. Using the comparative results, we

showed that CABS autonomously achieves a better throughput and leadtime

tradeoff than the CONWIP. Using its coordination mechanism, CABS dynami-

cally manipulates the flows of various jobs to avoid the starvation of bottlenecks

in the system. The flow of jobs in the system also depends on the availability

of buffers, and in the following chapter, we evaluate the applicability of CABS

in the situations when the flow of jobs cannot be increased either due to re-
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strictions on the release of jobs or due to restrictions on buffer capacity in the

system.
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Chapter 5

Applicability of CABS

The results in the previous chapter highlight the fact that CABS derives its

advantage from its flexibility to increase the flows of various jobs at appropriate

times. In those experiments we assumed that CABS has the liberty of freely

increasing the processing rate of jobs with the only constraint being the capacity

of agents. In order for CABS to realize its full potential, the target network

system should have desired flexibility. To evaluate the applicability of CABS,

in this chapter we show behavior of CABS by putting constraints on favorable

properties of network system.

The rate at which an agent can process jobs is limited by its capacity, and it

drops to zero during failure of agent. If an agent is not processing its incoming

jobs at the rate at which they are arriving, those jobs accumulate as WIP with

the agent. Hence for an agent to be able to process new jobs, its succeeding agent

should have available buffers to hold those newly processed jobs. As the buffers

in real-life are tangible resources, they are finite in number. The buffer capacity

of an agent thus puts a constraint on its previous agents’ processing of jobs and

restricts when they can process more jobs. As the jobs flow through a sequence

of agents, the saturation of buffers leads to a cascading effect and more and more

preceding agents have to restrict their processing. In the previous experiments

of previous chapter we have assumed that system has infinite buffers. In this

chapter we will show the performance of CABS by limiting the buffer sizes in

the system.

In the previous chapter we have also assumed that the jobs can be released
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in the system freely, i.e. any number of jobs can be released in the system at

any time, without any consideration to their original demand. This flexibility

of Source agents to release the jobs at any time adds to the advantage of CABS

and enables it to pull and process jobs before their stipulated time. As shown

in the example in Section 3.2.2, the early releasing (and processing) of JobA

during the failure helps in avoiding starvation of the critical agent (Agent1 ). As

this advance of job release is a deviation from the planned behavior, it may not

be feasible and/or not desirable in many real-life systems. For example, due

to the short product life cycles in semiconductor industry, it is undesirable to

commit surplus material for products because of their uncertain future demand.

Similarly in the road traffic network, the release time is supposedly fixed as the

entry of commuters or vehicles cannot be advanced from their stipulated time.

Later in this chapter we will also show how performance of CABS changes by

limiting advance of job release to the system.

5.1 Effect of Limitation on Buffer Capacity

To highlight the utility of buffers in system, we first show a simplified scenario

using the semiconductor fabrication network of Figure 4.1. In this simplified

scenario, a single failure occurs at time 50,000 and recovers at time 90,000 on an

agent (Workstation No. 19 in Figure 4.1) that is processing only the 105th step

of Product2. To emphasize the effect of buffers we compared results of CABS on

same network but having different buffer capacities, and also with a conventional

system. In experiments we have restricted the maximum number of jobs that

can be present in system at any time. The restriction is imposed by system-wide

capacity of buffers for each product type. The behavior of CABS on a system

having system-wide capacity of 100 buffers for both products is shown in Figure

5.1, 5.3 and 5.5 (in terms of system-wide WIP levels, throughput and finished

inventory respectively). The graph of system-wide WIP shows the total number

of jobs present in system at a given point in time. During an identical failure,

behavior of CABS on a system having a system-wide capacity of 38 buffers for

both products is shown in Figure 5.2, 5.4 and 5.6 (in terms of system-wide WIP

levels, throughput and finished inventory respectively). The failure duration is

shown by the shaded zone in the graphs.
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Figure 5.1: CABS(Buffers=100): WIP
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Figure 5.2: CABS(Buffers=38): WIP
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Figure 5.3: CABS(Buffers=100): Throughput
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Figure 5.4: CABS(Buffers=38): Throughput
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Figure 5.5: CABS(Buffers=100): Finished Product Inventory
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Figure 5.6: CABS(Buffers=38): Finished Product Inventory
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Figure 5.7: Conventional System(Buffers=100): WIP
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Figure 5.8: Conventional System(Buffers=100): Throughput
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Figure 5.9: Conventional System(Buffers=100): Finished Product Inven-
tory

As the failed workstation (Workstation No.19) processes only Product2,

Product2’s throughput drops to zero during failure period of 50,000 to 90,000

min. (Figure 5.3 and 5.4). The criticality of agents which are following Worksta-

tion No.19 in Product2’s process route starts to rise during failure. As some of

those agents are processing both products, they start requesting both Product1

and Product2 at a higher rate by changing their behavior according to CABS

algorithm. This behavior increases the throughput of Product1 during failure

and these following agents are able to compensate their loss of workload of

Product2 by processing Product1 in excess. Among the agents that are pro-

cessing only Product2, the agents preceding Workstation No.19 can maintain

their utilization only by maintaining their processing of Product2. As Product2

cannot advance beyond failed workstation and must be accumulated in network

as WIP, processing by these preceding agents is limited by capacity of available

buffers.

In the system having 100 WIP buffers, CABS’s agents utilize them to pull

and process Product2 during failure (Figure 5.1). After resolution of failure,
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agents process and clear this accumulated WIP to raise throughput of Product2

to high level (Figure 5.1 and 5.3). By time 140000 min., finished inventory deficit

of Product2 and system performance returns to normal (Figure 5.5).

In the system having only 38 buffers, buffer limit of Product2 is reached

during failure period itself, by time 70000 min. (Figure 5.2). After saturation

of buffers, agents have to stop further processing of Product2, which restricts

their ability to maintain their utilization. Because of the lack of accumulated

WIP during failure, system can increase Product2’s throughput only to a limited

level after its resolution (Figure 5.4). Because of the capacity loss caused by

limitation of buffers, system is slow to recover its finished inventory deficit and

returns to a normal state by time 160000 min. (Figure 5.6).

Using an identical failure scenario, behavior of a conventional constant-

release system (described in Section 3.2.1) using a constant releasing rule and

an EDD dispatching rule is shown in Figure 5.7, 5.8 and 5.9 (in terms of system-

wide WIP levels, throughput and finished inventory respectively). The buffer

capacity of this system is also limited as 100. This benchmark system does not

handle failures with a special care and continues production of Product1 at the

same demand rate during the failure (Figure 5.8). Thus, due to suspension of

flow of Product2, critical agents suffer a capacity loss and system takes long

time to recover the production shortage incurred during failure (Figure 5.9).

The failure adversely affects production of Product1 as well. Since EDD dis-

patching rule tries to balance the deficit of both products, finished inventory of

Product1 also drops after resolution of failure. Comparison of Figure 5.5 and

Figure 5.9 shows that recovery in this conventional system is much slower (about

at time 220,000) than CABS. Also to be noted is that CABS with limited WIP

also recovers earlier (Figure 5.6) than conventional system and utilizes only half

the amount of buffers (Figure 5.2).

This simple example of a failure highlights the significance of buffers in a

dynamic system. We also explained how the behavior of CABS is affected by

capacity of buffers in system. We now show the performance of CABS in a more

realistic scenario when there are continual failures on all agents. Based on the

scope of buffer capacity, we show two results. The first result is generated by

regulating buffer capacities at the system level. Although, in reality the buffers

are associated with each individual agent/workstation, system level buffer ca-
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pacity metric does not consider capacity of each individual agent. Nevertheless,

the system wide WIP regulation approach is widely used in practice and studied

in research e.g. CONWIP (Bonvik et al. 1997, Stevenson et al. 2005). In the

second result we show behavior of CABS by regulating buffer capacity at agent

level. The same network (Figure 4.1) is used in experiments and failures occur

randomly on all agents with exponential distributions (as specified in Section

4.1.3).

5.1.1 Maximum System Wide Buffer Capacity

Figure 5.10 shows the result of CABS with different number of available buffers

at system level. The performance metrics are same as in Section 4.1.2. A

line in the graph shows the performance of CABS with same buffer capacity

and different production demands. The target demands are represented by

different points in line. Similar to the preceding example of a single failure, these

results also show that availability of buffers assists in maintaining utilization of

critical agents during failures. For the higher demand levels, CABS is able to

achieve better throughput if more buffers are available in system. For the lower

demands, performance is not affected much by the buffer capacity. As agents

have lower workload requirements in case of lower demands, even if they stop

processing due to shortage of buffers, their resulting workload deficit remains

low. In the lower demand region, agents have more spare capacity due to their

lower utilization levels and hence they can quickly recover their workload deficits

incurred during a failure.

For comparison, we have also generated the results of CONWIP (described

in Section 4.4) with identical buffer capacities. The behavior of CONWIP is

independent of demand rates, and the WIP level it maintains is equal to system’s

buffer capacity. For a given buffer capacity, please note that CONWIP achieves

marginally less throughput than corresponding CABS (with highest demand).

This is despite the fact that CONWIP maintains the maximum level of WIP

(equal to the capacity) throughout its execution. CABS on the other hand

autonomously manipulates its WIP level during execution, and its lower lead

times from corresponding CONWIP means that CABS’s management of WIP

is better.
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Figure 5.10: CABS with different system-wide buffer capacities

5.1.2 Issue of Deadlocks

Unlike many other network systems, semiconductor fabrication processes are

characterized by existence of large number of re-entrant cycles in their process

routes (Figure 4.1). Although deadlocks can occur in other systems also due

to limitation of buffers, semiconductor fabrication processes are more prone to

them due to large number of cycles. Deadlocks can be of two types, perma-

nent and transient deadlock. A permanent deadlock cannot be resolved with-

out external intervention, whereas a transient deadlock resolves itself over time

(Venkatesh & Smith 2005). The probability of having deadlocks increases when

capacity of buffers in system is reduced. As permanent bottlenecks bring the

system to standstill, issue of bottlenecks has to be addressed in order to have

an autonomous system that can work with low buffer capacities. Because of

the complexity of system, avoidance, identification and resolution of deadlocks

in semiconductor manufacturing processes is a difficult problem and various so-

phisticated techniques are being investigated under current research (Venkatesh

& Smith 2005).
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As the techniques for managing deadlocks in semiconductor fabrication pro-

cesses are still under investigation, in order to focus our attention on behavior of

CABS, we have introduced a simple mechanism of reserved buffers to avoid per-

manent deadlocks in system. We explain our proposed mechanism of reserved

buffers by using an example. Figure 5.11 describes a permanent deadlock that

occurs in the part of system that has a small cycle involving two agents. PRO-

CESS ROUTE describes a cycle in process flow of job through AGENT1 and

AGENT2, where AGENT1 is processing two steps of process. As succeeding

agent should have a free buffer to park incoming job, agents in system wait

for authorization from their succeeding agent before they can start processing

a new job. We have used the Kanban mechanism (Ohno 1988) for realizing

such authorization. Agents in this example have a shared buffer of size three,

which can hold any type of incoming job. The details of implemented kanban

mechanism are provided in Appendix A.

In Figure 5.11 we first show the occurrence of permanent deadlock in a sys-

tem that is not using specific buffers, i.e. only has shared buffers. STAGE0

in Figure 5.11 shows that AGENT1 is processing stepP as it is authorized by

a free buffer of AGENT2 (shown by directed solid line). Because all buffers

of AGENT1 are full, AGENT2 cannot process its jobs and is awaiting its au-

thorization from a free buffer of AGENT1 (shown by directed dashed line).

STAGE1 shows the permanent deadlock that occurs when buffers of AGENT2

also get full after receiving the additional job from AGENT1. As both agents

now wait for authorization from each other indefinitely, this deadlock is perma-

nent and cannot be resolved without external intervention.

We now explain our mechanism of specific buffers and how it avoids the

occurrence of permanent deadlock during the same scenario. In CABS, each

agent has two types of input (WIP) buffers: one is a single-sized buffer specific

to the WIP of each product step and the other is a buffer shared by any WIP

incoming to the agent. Hence, each agent in CABS has (1) multiple single-sized

specific buffers whose number is equal to that of the product steps that are

processed by the agent, and (2) a shared buffer whose size is not fixed.

Figure 5.12 shows the behavior of CABS (having specific buffers) during the

same scenario. As AGENT1 is processing two product steps (stepP and stepR),

it has a specific buffer for each of them and we assume both of them are also
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Figure 5.11: Deadlock: without specific buffers

Figure 5.12: Deadlock: with specific buffers
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occupied as shown in STAGE0 of Figure 5.12. A deadlock occurs in this scenario

also when the buffers of both agents become full in STAGE1. The provision of

exclusive buffers guarantees that for each type of job that an agent processes,

it will either have a job of that type or will be able to authorize the preceding

agent to receive a job of that type. In our example AGENT1 is already having a

job of stepR in its specific buffer when the deadlock occurs (STAGE1 of Figure

5.12). Due to availability of both jobs (stepP and stepR), AGENT1 has the

choice of processing either of them and hence waits for authorization from two

agents, from AGENT2 for stepP and from the corresponding succeeding agent

for stepR. As all agents of system have such specific buffers, the agent at the

end of process route will also have a specific buffer reserved for last process

step of the product and hence will eventually free its buffer when it finishes a

job. As the intermediate agents also process their jobs similarly and authorize

their preceding agents for further processing, AGENT1 in our example will also

eventually get authorized to process its job of stepR. The specific buffer for

stepR becomes free as AGENT1 it picks stepR for processing after receiving

authorization (authorization(1)) for it (STAGE2 of Figure 5.12). The newly

freed specific buffer authorizes (authorization(2)) AGENT2 to process another

job, which will eventually authorize (authorization(3)) AGENT1 for processing

its accumulated job of stepP, hence resolving the deadlock. As explained, the

approach of using specific buffers avoids the occurrence of permanent deadlocks

and hence alleviating the need of external intervention which is undesirable in

autonomous systems. Agents decide on their dispatching according to the buffer

status of succeeding agents and the implementation details of mechanism are

provided in Appendix C.

5.1.3 Individual Agents’ Buffer Capacity

By maintaining the specific buffers as described above, we investigate how the

size of shared buffers has effects on performance of CABS in our semiconductor

manufacturing problem. Figure 5.13 shows performances of CABS in semicon-

ductor manufacturing problem of Section 4.1 with different shared buffer sizes.

Each line shows the performance of CABS with a certain shared buffer size for

various demand rates. In experiment, each agent of CABS has the same size
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of shared buffer as depicted in a graph. Similar to system-wide buffer limita-

tions of previous results, from the graph it is clear that performance of CABS

degrades with reduction of buffer size. In the hypothetical system-wide buffers

used in previous result, there is no restriction on each agent’s buffer capacity

and any single agent can use all the available system buffers. On the contrary,

buffer capacity limitation of each agent is more restrictive as buffers of many

agents remain under-utilized due to their immobility.
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Figure 5.13: CABS with different buffer capacities of agents

5.2 Effect of Limitation on Early Release

In this section we evaluate the performance of CABS by restricting its flexibility

of releasing jobs in system. In a leveled, under-loaded and stable system, there

is no need for accumulated WIP and hence the jobs do not have to wait for

processing at the agents. In order to meet the due-date or deadline (tdue) of a

job in such condition, the job should be released in system at latest in the timing

of (tdue−processtime), where processtime is the sum of processing time of all its
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Figure 5.14: CABS with limitations on release flexibility

steps. During failures, when flows of some jobs are reduced below their demand

levels, CABS pulls alternative jobs before the timing of their tdue−processtime

to maintain agents’ utilization. When Source agent releases more and more

jobs before their stipulated release time of tdue − processtime to expedite their

processing, the offset between stipulated and actual release time trelease increases

for subsequent jobs. This offset, ((tdue−processtime)−trelease) thus indicates the

degree of flexibility of job release. We have conducted experiments by putting

limits on this flexibility offset. The limit is enforced by each Source agent,

which releases a new job only when its offset is less than the specified limit.

Figure 5.14 shows the result of CABS with different limits on flexibility

offset. The experimental setup is same as in Section 4.1. Each line represents

the results of CABS for different demand levels with corresponding Limit (in

mins.) of flexibility offset. The graph shows that throughput of CABS decreases

with reduction in flexibility offset (Limit). As the number of jobs that CABS

can pull before their stipulated release time is restricted, the possible capacity

loss of critical agents increases during failures. This increased capacity loss

results in reduced system throughput, and the effect is severer in case of high
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demands.

5.3 Conclusion

In this chapter we presented the results of experiments when there are restric-

tions on buffer capacity and entry of jobs in system. The buffers help in main-

taining throughput of resources during disruptions in system. However the

number of buffers in any system is limited and results presented in this chapter

show how the performance of CABS is affected by buffer capacity. Due to the

limit of buffers, such flow based systems are prone to bottlenecks that can stall

the operations of system. Resolving permanent deadlock may require external

intervention which is undesired in an autonomous system. In this chapter we

explained the mechanism of deadlock avoidance which utilizes reserved buffers

and in is integrated with CABS. CABS maintains the utilization of bottleneck

workstations by increasing flow of alternative jobs when flow of some jobs is

delayed due to disruptions. The flow of jobs is limited by the entry of jobs

in system and unlike manufacturing systems, jobs cannot be released freely in

other systems. We showed how the performance of CABS is affected when

release (entry) of jobs in system is restricted. The coordination of CABS is

achieved by requirement messages and agents utilize the contents of messages

to decide their behavior. In next chapter we analyze the importance of each

message parameter in detail.
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Chapter 6

Significance of Message

Parameters

In the previous chapter we showed influences of several features of network sys-

tem on performance of CABS. Requirement messages are backbone of CABS

coordination mechanism and in this chapter we investigate significance of dif-

ferent message components. In following sections we analyze the significance

of each individual message parameter, i.e. time limit, request rate, amount

and criticality by restricting its strength and scope in system.

6.1 Significance of time limit parameter

The time limit parameter of a CABS’s requirement message specifies the time

by which the requesting agent needs another lot of that type of job. When the

system is running smoothly, time limit parameter remains in accordance with

the demand of jobs. When the workload deficit and criticality of an agent

rises due to reduced flows of some jobs, agent starts to request its other jobs

more urgently. In order to receive more alternative jobs, the agent it changes its

behavior and increases the request rate parameter and reduces time limit in

its requirement messages (Algorithm 4:8). As affected agent starts sending lower

time limit in its messages, offset between stipulated arrival time and time

limit of the requested job increases with subsequent jobs. As this flexibility

of agents to reduce time limit in their messages enables them to receive jobs
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Figure 6.1: CABS with limitations on time limit

earlier and recover their deficit, we have conducted experiments by limiting this

flexibility.

Figure 6.1 shows performance of CABS with different limits on the time by

which an agent can advance time limit from the original stipulated arrival

time of requested job. The Range in the graph shows the amount of time (in

mins.) by which the time limit for a requested job can be advanced from

its original arrival time. The graph shows that in the higher demand region,

the throughput achieved by CABS decreases with reduction in flexibility of

time limit parameter. As time limit is the primary parameter that informs

preceding agents about urgent requirement of an agent, restriction on Range

delays the desired flow of jobs at a higher rate. As job of a higher demand

is delayed from agent’s desired time, agent suffers capacity loss during that

delay. Since agents have smaller spare capacities when demands are high, loss

of capacity due to restriction on time limit thus affects more severely in the

region of higher demands.
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6.2 Significance of request rate parameter
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Figure 6.2: CABS with limitations on request rate

The time limit parameter of a requirement message specifies the time by

which requesting agent can process another job of that type. Starting at time

time limit, the rate at which succeeding agent can process subsequent jobs of

that type is specified by request rate parameter. During smooth operation

of system, request rate which is propagated after adjustment by all agents

because of their low criticality (Algorithm 4:13). When an agent becomes crit-

ical, it changes its behavior and starts requesting jobs at the maximum rate at

which it can process them (Algorithm 4:9). This maximum threshold rate at

which an agent can process jobs depends on the processing time of job. We

have conducted experiments by limiting the flexibility of agents to raise their

request rate.

Figure 6.2 shows the performance of CABS with different limits on agents’

flexibility to increase request rate parameter of their messages. The Limit

in graph specifies the fraction of agent’s threshold rate to which an agent can

increase request rate from corresponding demand rate of jobs. The line with

98



CHAPTER 6. SIGNIFICANCE OF MESSAGE PARAMETERS

Limit=100% thus shows the behavior of CABS when agents have complete

freedom i.e. when they become critical, they can send their threshold rate as

request rate. The graph shows that in high demand region, CABS achieves

lower throughput when request rate is restricted. The rate requirement of

critical agents is propagated unaltered by their preceding agents (Algorithm

3:13 and 4:13), subjected only to the capacity of preceding agents. The preced-

ing agents use their incoming request rate to maintain an appropriate flow to

critical agent, till the critical agent’s workload deficit is recovered completely.

The restriction enforced by Limit in experiments reduces strength of flow to-

wards the critical agent, which increases its capacity loss and slows the rate at

which its workload deficit is recovered. Since agents have smaller spare capaci-

ties when demands are high, restriction on request rate affects more severely

in region of higher demands.

6.3 Significance of amount parameter
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Figure 6.3: CABS with limitations on amount
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Starting at time limit, the number of lots that are required urgently at

request rate by an agent is specified by amount parameter in requirement

message. As agents have no urgency of jobs during system’s smooth operation,

the amount that they send in their requirement messages is 0. As preceding

agents are also not critical during smooth operations, they propagate this 0

amount requirement (Algorithm 3:7). The amount parameter is coupled with

request rate parameter and agent changes both of them simultaneously when

it becomes critical (Algorithm 4:9,10). In order to recover their workload deficit

during critical phase, agents request some number of jobs at their threshold rate

(Algorithm 4:9). The amount an agent requests at its maximum rate is limited

and depends on agent’s workload deficit (Algorithm 4:10). We have conducted

experiments by scaling down the amount that agents request at higher rate

during their critical phase.

Figure 6.3 shows the performance of CABS with different reduction factors

on the amount parameter of requirement messages. While requesting the jobs

at higher rate during criticality, the agents scale down their actual amount

requirement by a factor of Scale before sending it as the amount in requirement

messages. The line Scale=100% thus shows the behavior of CABS where agents

are sending their real amount requirements in the amount parameter. In line

Scale=5% the critical agents send only 5% of their actual amount requirements

in amount parameter of their requirement messages. The graph shows that

throughput achieved by CABS decreases as amount parameter is reduced from

the original amount requirement. As the number of lots that preceding agents

expedite to critical agents is limited by amount parameter, its reduction from

original amount requirement results in increased capacity loss of critical agents.

The preceding agents propagate amount requirement of critical agents after

successively reducing it according to their local WIP (Algorithm 3:10). After

amount number of lots are made available for critical agent, remaining preced-

ing agents revert to normal behavior of requesting jobs according to demand

(Algorithm 3:5-8). A large amount requirement of critical agent means that

its requirements are propagated to more upstream agents, and this transition

to normal requirements takes place farther from the critical agent. Due to

successive and lengthy failures in our experiments, the workload deficit and

amount requirements of critical agents always remains high. The high amount
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requirement of critical agents is not met by preceding agents within the system

and requirements are thus propagated till Source agents. By reducing actual

amount requirement of critical agents by a small Scale does not cause the re-

duced amount to be met by preceding agents within system, and thus behavior

of all agents remains same. The Scale has to be reduced to a very low level (1%-

5%) so that the reduced amount can be met by preceding agents within system

and the effect of change in agents’ behavior can be visualized by changing Scale

parameter.

6.4 Significance of criticality parameter
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Figure 6.4: CABS with limitations on criticality

The criticality parameter of requirement message specifies the criticality

of agent from which requirement has originated. In a smooth running system,

criticality of all agents remains zero and all agents are sending zero criticality

in their requirement messages. When an agent becomes critical due to reduced

flows, it starts sending higher requirements for all its jobs with an appropriate
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higher criticality (Algorithm 4:11). We have conducted experiments by trun-

cating agent’s criticality, i.e. value of criticality that agents send in their

requirement messages.

Figure 6.4 shows the performance of CABS with different limits on criticality

parameter of requirement messages. Irrespective of actual criticality of an agent,

Cap specifies maximum value that it can send as criticality in its messages.

Cap is same for all the agents in system. The graph shows that throughput

achieved by CABS decreases as Cap is reduced. Agents use this criticality

parameter to identify the location of current bottleneck (Algorithm 4:7), and ac-

cordingly perform their dispatching and messaging to ensure desired flow of jobs

to that most critical agent (Algorithm 1 and Algorithm 4:13). By truncating

the criticality of agents, preceding agents fail to identify the correct bottleneck

among agents that have criticality higher than Cap. As preceding agents fail to

identify and ensure desired flow to real bottleneck, the bottleneck suffers capac-

ity loss. By reducing Cap further, many other less-critical agents are treated at

par with the real bottleneck, causing further degradation of CABS performance.

6.5 Conclusion

Agents in a CABS system coordinate their actions through requirement mes-

sages which contain four parameters: time limit, request rate, amount and

criticality. Agents periodically send and receive requirement messages and

use messages’ information to adapt to changes in system. Agents use incom-

ing requirement messages parameters to identify the dynamic bottlenecks and

their requirements. Based on the incoming requirement messages and their own

status, agent calculate parameters of requirement messages to other agents. In

this chapter we analyzed the significance of each individual message parameter

by restricting its value. By restricting the values of parameters, accuracy and

scope of information in system is reduced. The results show that all parameters

of messages play significant role in the coordination of CABS and restricting

their values adversely affects the performance of CABS which degrades with the

level of restriction on parameters.
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Conclusions

Because of the ever increasing competition and changing market scenarios, man-

ufacturing systems are under increased pressure to improve their performance

while simultaneously decreasing the operational costs. Semiconductor fabri-

cation is carried on highly capital intensive infrastructure and manufacturing

takes place in a highly dynamic environment. Besides catering to the dynamic

demand from customers, the semiconductor fabrication is required to consis-

tently perform with high efficiency in the face of frequent disruptions within

the system. In order to remain competitive, the manufacturing control system

is required to maintain high utilization of costly equipment besides achieving

smaller leadtimes at the same time. To achieve high throughput with smaller

leadtimes is a challenging task in large failure-prone networks, and it is an open

ended goal to improve the tradeoff between throughput and leadtime in not only

manufacturing systems but other similar systems as well. It is a challenge to

develop flexible and adaptive manufacturing control systems that can achieve

the desired system performance in the face of dynamic goals and frequent dis-

ruptions.

The multiagent coordination mechanism described in this thesis is proposed

to provide an autonomous manufacturing control system that can improve sys-

tem performance by adapting to unexpected random failures in system.

In the proposed system, CABS, the manufacturing system is modeled as

network of agents where each workstation is considered as an agent. In CABS,

the actions of agents are coordinated through a message-passing mechanism.
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Agents pull jobs from their preceding agents by sending requirements of jobs in

messages. Along with the priority of requirement, messages contain time, rate

and number of jobs required. In normal conditions, agents send requirements

to pull jobs according to the demand. Agents monitor starvation of resources

and change requirements to pull alternative jobs at a higher rate to avoid their

starvation. Agents process (dispatch) their buffered jobs according to incom-

ing requirements that they receive from their succeeding agents. Depending

on resource’s capacity and magnitude of starvation, agent’s job requirements

are assigned a criticality which is utilized to prioritize the possibly conflicting

requests. In order to maintain the flow of jobs according to incoming require-

ments, agents propagate requirements to their preceding agent by relaxing them

according to their WIP. The proposed architecture highlights the first contribu-

tion of our research:

Decentralized Manufacturing Control Architecture: The agents in

CABS are autonomous and there are no hierarchies involved in the structure.

As a result, the resulting architecture is modular, scalable and flexible. In

CABS, agents send messages to only the neighboring agents from which they

receive jobs due to which communication and interaction requirements of pro-

posed coordination mechanism are strictly limited by the underlying manufac-

turing process. Irrespective of the complexity, topolgy and size of manufacturing

system, agents have knowledge of only their neighboring agents. As a result,

the architecture is highly flexible as manufacturing system can be easily mod-

ified by adding, removing or reconfiguring workstations (agents) just updating

information of only the directly connected agents.

By passing and utilizing the information of criticalities and job require-

ments of downstream agents, CABS can sustain high throughput by preventing

starvation of wandering bottleneck agents and, simultaneously, achieve short

leadtime by reducing the amount of WIP in system. In experiments using data

of a semiconductor fabrication process, we have shown that CABS can com-

pensate for capacity loss caused by a machine failure efficiently and validated

that CABS achieves a better trade-off between throughput and leadtime than a

conventional manufacturing control method CONWIP. These results highlight

another contribution of our research:

Global Optimization in Decentralized Control: Compared to tradi-
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tional centralized control architectures, distributed control through multiagent

architecture although provides the desired adaptability and robustness to dis-

ruptions, achieving coherent global behavior of from a large team of autonomous

decision making entities is still an open issue. Success of a multiagent system

depends on effectively calibrating the sub-goals of individual agents such that

distributed agents’ autonomous behavior of achieving their local goals results in

desired global behavior. The local goals in CABS are autonomously calculated

in a distributed manner and agents coordinate their actions of dispatching and

message passing to achieve their local goals. By using coordination mechanism

of CABS, the autonomous decisions made by distributed agents according their

locally identified goals are coherent and resulting emergent behavior achieves

desired global goals. Agents make their decisions based on local goals which are

in line with the global goal of (a) achieving desired throughput and simultane-

ously (b) minimizing the leadtime:

• Maximizing Throughput : Achieving the goal of desired throughput is di-

rectly related to the goal of avoiding bottleneck’s starvation. Each agent in

CABS independently monitors its own starvation and calculates criticality

that depends on the magnitude of starvation. Starving agent parametrize

their locally identified goal of avoiding starvation in terms of job require-

ments and send them to preceding agents. Other agents identify dynamic

bottlenecks of system by comparing the criticalities of different agents

which are propagated to them through requirement messages. Agents

take actions to meet the goal of avoiding starvation of bottlenecks by (a)

dispatching jobs to meet requirements of identified bottlenecks and (b)

propagating requirements of identified bottlenecks to other agents so that

required flow of jobs towards bottleneck can be sustained. Due to the

constant monitoring and efficient message passing, agents can promptly

identify dynamically emerging bottlenecks. Relevant agents coordinate

their dispatching actions to meet requirements of identified bottlenecks,

which results in minimizing bottleneck’s starvation and achieving higher

system throughput.

• Minimizing Leadtime : Leadtime is directly proportional to the WIP

in system and goal of minimizing leadtime can be achieved by avoiding
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unnecessary WIP in system. In CABS, WIP is regulated at each agent

through its mechanism of calculating job requirements. Before propagat-

ing the job requirements, agents in CABS adjust them according to avail-

able WIP and request subsequent job at a time when their current WIP

will be consumed. In CABS, accumulation of WIP happens only when

it cannot be avoided in the situations where agents have to pull surplus

jobs to meet the requirements of bottleneck for avoiding its starvation. By

regulating WIP at each agent and by limiting WIP accumulation only to

avoid the starvation of bottlenecks, the amount and duration of surplus

WIP is reduced which results in lower leadtimes.

In many traditional manufacturing control mechanisms, the performance of

system is analyzed discretely, either periodically or in response to some event.

Based on system status, the corrective measures are planned and evaluated of-

fline and applied to system during subsequent execution. Such analysis and

evaluation typically requires a human operator to interpret the data and simu-

lation results. This highlights another contribution of our research:

Autonomous Control: In our results we have shown that for semicon-

ductor fabrication process, CABS outperforms CONWIP which is a popular

control mechanism and is widely used in practice. In practice, the optimal

WIP levels of CONWIP are decided in advance by simulations and are up-

dated continually according to changing status of system. CABS on the other

hand works autonomously without external intervention and performs better

than CONWIP. Besides performance, another achievement of CABS is an inte-

grated deadlock avoidance mechanism. Networks, such as production systems

are prone to deadlocks and permanent deadlocks can bring the system to a halt.

Permanent deadlocks cannot be resolved without external intervention which is

against the principles of autonomous control. CABS has an integrated mecha-

nism of deadlock avoidance which is achieved in a distributed manner through

an additional parameter of requirement messages. The review of past research

in multiagent domain shows that effective autonomous control for large systems

such as semiconductor fabrication is difficult to achieve. Nevertheless, results

of our research emphasize the advantage of using autonomous multiagent archi-

tecture in which distributed agents can improve the overall system performance

by promptly reacting to locally identified disturbances and changes.
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We have experimented and presented results of CABS with variations of

different parameters, which highlights another contribution of our research:

Practical Feasibility: We have showed that CABS gracefully handles re-

strictions on availability of resources and flexibility of target system. Buffers

in a real system are limited and generally coupled with resources. The perfor-

mance of CABS degrades logically as the number of available buffers is reduced.

In some situations, it might be required to quickly pull jobs within the system

to avoid starvation of critical resources. To maintain adequate flow of jobs to

bottlenecks, CABS utilizes pull mechanism to release new jobs into system.

However, releasing jobs in system before their stipulated time may not be de-

sirable or feasible due to various practical reasons such as dependency on other

system or procurement of raw material. We have evaluated the performance of

CABS by restricting flexibility of job release, and performance of CABS log-

ically degrades with available flexibility. These two sets of experiments show

that CABS can gracefully handle different practical considerations.

Discussion About Applicability to Other Systems: In this paper we

have focused on manufacturing process control and conducted experiments using

the semiconductor manufacturing problem, which is the most complex problem

in its domain. Although we have empirically evaluated CABS by using only

the semiconductor fabrication datasets, we believe that coordination mecha-

nism of CABS is also suitable for other complex and unstable network systems

such as road transportation and communication networks. Like semiconduc-

tor manufacturing, other network systems also have the primary requirement of

achieving high throughput in order to maximize the return on investment (RoI).

Like manufacturing problem, they also have a similar constraint of simultane-

ously maintaining a high quality of service (QoS), which is related to service or

waiting time in system. The semiconductor fabrication processes, like the one

used in this paper, have fewer nodes (agents) compared to the large scale com-

munication or transportation networks (e.g. Internet or state highways). Even

though the size of semiconductor fabrication processes is smaller, the complexity

of problem is high because of complex process routes of products which overlap

and have numerous cycles in them.

Although agents inside a network system can freely control the processing

and movement of jobs after they have entered in network, control over the
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time when a job enters in system may depend on type of network/job under

consideration. For example, unlike the passive jobs of manufacturing domain,

commuters of road network or data packets of live media cannot be pushed in

system before their scheduled time. For completeness, in this thesis we have

presented additional results of CABS by limiting release flexibility in semicon-

ductor fabrication process.
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Future Work

As coordination in distributed systems is achieved via the exchange of messages,

analysis of messaging requirements is significant for evaluation of coordination

algorithms. Messaging requirements of underlying coordination protocol signif-

icantly affect the scalability of a mechanism. Frequent messaging not only re-

quires high communication bandwidth, it also puts a demand on the processing

capacity of agents which is required to process incoming messages. Neverthe-

less, exchange of information messages between agents is the key for successful

coordination. Although we have shown the significance of individual message

contents in this paper, we have not formally reported the complexity of algo-

rithm in terms of number of messages. As a future work we want to evaluate the

message complexity of CABS. In data networks, coordination messages share

the same communication channel used for data transfer and it is desired that

communication overheads of coordination algorithm are minimum. Depending

to the size of networks, communication bandwidth required for coordination

can become a bottleneck in networks of other domains as well. In the current

implementation of CABS, communication bandwidth is assumed unlimited and

agents send new messages as and when there is a change in their requirements.

The bandwidth that CABS’s coordination mechanism utilizes can be reduced by

regulating the number and frequency of requirement messages. Restrictions on

messaging will reduce the accuracy of information and responsiveness of agents,

and as another future work we want to analyze how system behavior is affected

by availability of communication bandwidth.
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Analysis of past research in coordination algorithms shows that algorithms

which involve all agents in coordination cannot scale up to handle large networks

due to prohibitive processing and/or messaging requirements. The algorithms

that coordinate only with neighboring agents can be inefficient due to myopic

vision of their agents i.e. lack of remote but significant information. In order

to have a scalable coordination mechanism that is efficient and can still handle

large agent networks, it is important that local coordination in a large system

involves only the necessary and sufficient agents. The agents that are relevant

for local coordination many also change over time due to unexpected events

and dynamism in system. As the job requirement of a critical agent has to

be met by its preceding agents, propagation of criticality in CABS messages

involves the necessary agents in coordination to change their behavior. As crit-

ical requirements are reverted to demand level after their successive reduction

through sufficient agents, the number of agents that receive critical requirements

and change their behavior is limited by the current criticality of dynamic bot-

tlenecks. This property of dynamically controlling the scope of coordination is

very relevant to develop efficient and scalable coordination algorithms, and in

future we want to formalize and study this feature in greater detail.

CABS derives its advantage by expediting the flow of alternative jobs to bot-

tleneck when some jobs are delayed due to disruption at preceding agents. In

semiconductor fabrication processes, most agents are processing multiple kind

of jobs. The different kind of jobs can be of different products, and/or numerous

cycles of same product. Because of complex and dense process routes, agents,

especially the critical agents are connected to a large number of other agents

from which they receives jobs. As high demand and long leadtimes of products

necessitates high WIP, a large number of variety of jobs are always present in

the system. Due to high degree of connectivity and regular availability of jobs

at neighboring agents, CABS is successfully able to avoid starvation of an agent

by expediting jobs to it from alternative neighboring agents when flow from

some neighboring agents is delayed due to disruption. The behavior of CABS is

purely reactive, and alternative jobs are expedited towards the starving agent

only when the starvation starts to occur. However, the purely reactive mech-

anism may not be effective when starving agent receives its jobs from a single

or very few other agents. Due to lack of alternative neighbors from which jobs
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can be pulled, CABS’s reactive behavior of expediting alternative jobs only af-

ter occurance of starvation cannot avoid starvation of poorly connected agents.

Starvation of such poorly connected agents can be avoided only by proactively

maintaining a safety buffer of surplus WIP before them, notwithstanding the

fact that surplus WIP will increase leadtime. In order to maintain its utiliza-

tion, the surplus WIP will be processed by starving agent when incoming flow

of jobs is disrupted and alternative jobs are unavailable either due to (a) lack of

neighbors or (b) neighboring agents cannot supply ample jobs in time. We have

shown in our research that centralized methods of identifying adequate safety

WIP levels, such as CONWIP are inefficient. The agents in CABS monitor star-

vation in a distributed manner, and as another future work we would like to add

proactivity to CABS through which individual agents can assess and minimize

the risk of starvation by dynamically maintaining adequate WIP levels.

In current version of CABS, the flow of messages is in a single direction, i.e.

opposite to the flow of jobs. As a result, to meet the incoming requirements of

bottleneck, agents can utilize information of only their local WIP to decide on

their dispatching actions. However, when an agent doesn’t have any job that is

required by bottleneck, it dispatches whatever other WIP is available to it. This

behavior of preceding agent might starve the bottleneck. At times, a job which is

required by bottleneck might be arriving soon at a preceding agent but because

the preceding agent has committed its resource to some other job, processing of

the important job at preceding agent and its subsequent arrival at bottleneck

will be delayed. By having an additional flow of information along the flow of

jobs, agents can know about forthcoming jobs in advance and hence plan their

dispatching actions more effectively. As another future work, we would like to

incorporate this additional messaging and evaluate its effectiveness.

During starvation, in order to compensate for delay of some kind of jobs,

agent increases the requirement of all its jobs. Consequently, preceding agents

of all kind of jobs simultaneously increase their dispatching rate and intake of

jobs to meet the new, higher requirements. To avoid its starvation, bottleneck

agent increases the requirements of each individual flow to utilize its full capac-

ity. If increased to the required level, starvation of bottleneck can be avoided by

increasing flow of a single alternative job. As bottleneck cannot process incom-

ing jobs at the rate which it has requested them from its preceding agents, this
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results in unproductive increase of WIP at preceding agents. The unproductive

WIP can be avoided if different preceding agents of various fows coordinate

their actions to expedite different jobs only enough to ensure that the cumu-

lative flow of jobs utilizes bottlenecks capacity and avoids its starvation. This

optimization requires coordination and information exchange between remote

agents of different independent flows, and as another future work we will like to

explore this feature.

In the research and experiments of semiconductor fabrication that we have

presented in this thesis, routing, batches and variation of demand is not consid-

ered. In order to enhance the applicability of proposed research, we would like

to incorporate these parameters in our experiments in future.
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Appendix A

Mechanism of Kanbans

In CABS, the lots are parked in input buffers at each agent (workstation).

When a new lot arrives at agent, it is parked in one of the input buffer where it

waits for its processing. Agent has a limited number of input buffers and agent

maintains a kanban (card) corresponding to each of its buffer. Each kanban

contains following information:

• Owner Agent: The owner agent of kanban, i.e. the agent identification to

which the kanban and corresponding buffer belongs.

• Identifier: An index which uniquely identifies the kanban at its owner

agent.

During execution, a kanban shuffles between the owner and its preceding agents

and flow of kanbans is controlled through passing of messages between the pair

of agents. Although there are other messages also in system (described in Ap-

pendix A), the messages relevant for management of kanbans are:

• REQUEST KANBAN MESG: Agent receives this message from a preced-

ing agent, notifying the preceding agent’s request for a kanban.

• GRANTED KANBAN: In reply to a kanban request from preceding agent,

agent sends a kanban to preceding agent by this message.

• LOT ARRIVAL: This indicates the arrival of a new lot agent along with

a kanban, from preceding agent.
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• UNUSED KANBAN: An unused kanban returns to agent from preceding

agent, the kanban is free to be used immediately.

Figure A.1: States of an agent’s Kanban

Figure A.1 shows the various states of an agent’s kanban. The state of kan-

ban changes according to events shown in boxes on the transition arcs. Before

processing of a lot, agent requests a kanban from the succeeding agent to which

the processed lot will be sent. In reply to kanban request from a preceding agent,

owner agent sends a kanban corresponding to one of its free buffer. By sending

kanban, owner agent reserves one of its free input buffer for the forthcoming job.

After the requested kanban arrives at requesting agent, it stays with requesting

agent till processing of job is finished, after which it is returned to the (succeed-

ing) owner agent along with processed lot. The kanban returns to owner agent

with a lot which is parked in a free incoming buffer. The buffer and kanban
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remains occupied till the lot is picked for processing by owner agent. The kan-

ban becomes free for reuse and owner agent can again send it to a requesting

preceding agent.

The agents in CABS execute autonomously and messaging between agents is

asynchronous. The agents may change their dispatching after requesting kanban

for a different lot, which results in arrival of unsolicited kanbans from some

succeeding agents. Agents return such undesired kanbans to their respective

owners with UNUSED KANBAN message.
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Events in CABS

For experimentation, the agent based semiconductor fabrication process is mod-

eled as a parallel agent discrete event based system. The system is built using

SPADES (Riley & Riley 2003) middleware1, which is an agent-based discrete

event simulation environment. It provides libraries and APIs to build agents

that interact with the world by sending and receiving time-based events. In

CABS, each workstation is modeled as an agent which executes independently.

The semiconductor fabrication system might be processing different kind of

products, and each product has a specific process route which specifies the se-

quence of agents on which a job has to be processed along with processing time

required for each operation. The information that an CABS’s agent maintains

is as follows:

• Process Steps: Based on the process routes of various products an agent

might be processing multiple process steps. Agents maintains a list of

process steps that they process. Each entry of the list has following infor-

mation:

– Product Identifier: Identification of product to which the pro-

cessing step belongs.

– Step Index: The step identifier in process route of product. Prod-

ucts may have cycles involving an agent; step index uniquely identi-

fies each processing step.

1Available online at: http://spades-sim.sourceforge.net
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– Processing Time: Time required to process the job for correspond-

ing processing step.

– Succeeding Agent: The agent which processes next processing step

after this processing step. After processing a job of this step, the job

has to be sent to the corresponding Succeeding Agent.

– Preceding Agent: The agent which processes the preceding process-

ing step before this processing step. The jobs of this processing step

come from the corresponding Preceding Agent.

– Processed: This is the total number of jobs of this step that have

already been processed by agent.

– Incoming Requirements: Agent periodically receives requirement

messages for the processing step from its corresponding succeeding

agent. Agent maintains the latest incoming requirements of process-

ing step i.e. time limit, request rate, amount and criticality.

– Reserved Kanban: Section 5.1.2 describes the use of reserved buffers

that are used for avoiding deadlocks in system. A single buffer is re-

served for each process step, and information of kanban correspond-

ing to that reserved buffer is maintained with each process step. The

details of general kanban mechanism are provided in Appendix A and

details of using reserved kanbans are provided in Appendix C.

• Demand Information: Agents maintains information about the demand

of each product that it processes.

• WIP: The information about each lot, that is buffered with the agent.

Each lot in the system contains following information:

– Lot Identifier: an unique number for a particular lot.

– Product Identifier: product to which the lot belongs.

– Step Index: processing step index in the process route of product,

this is incremented as lot finishes processing of steps and advances

in its process route.
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• Kanbans: In order to regulate the amount of its individual WIP, agent

maintains a card corresponding to each of its free buffer. The details of

kanban mechanism are provided in Appendix A.

• Resource Information: The information about state of agent’s pro-

cessing resource i.e free, failed or busy with information of job getting

processed currently etc.

As the prototype is developed as a discrete event based system, various

manufacturing and coordination related events are generated in system dur-

ing execution. Besides time, events carry additional information regarding the

event. Agents of system know about other agents and can send directed events

to specific agents. The processing at an agent is triggered by various events that

it receives. During its processing, agent may generate further events. Accord-

ing to its destination, the events may be categorized into two types, local and

remote. Local events are the events that an agent generates for itself. Remote

events are sent to other agents in system. The local events are:

• PROCESS FINISH: When agent (workstation) starts processing a lot,

it schedules this event at appropriate time in future (according to the time

required for processing step) to indicate completion of processing.

• RESOURCE FAILURE: Based on the random number generated ac-

cording to random distribution (MTBF), agent generates this event to

indicate failure of its resource.

• RESOURCE UP: When an agents fails, based on the random number

generated according to random distribution (MTTR), agent generates this

event to indicate resolution of failure.

• CHECK REMINDER: This is a heartbeat event, which is utilized to

avoid inactivity of agent for long duration. Agent schedules this event

regularly at a fixed predetermined interval. In absence of any other events,

agent does its health check and necessary actions in response to this event.

• LOT RELEASE REMINDER: This event is used only by the source

agent, the first (hypothetical) agent in the process route of a product. The
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source agent schedules this event to trigger the release of a new job which

it does by sending it to the first workstation in process route.

The remote events that agents send to other agents in the system are:

• LOT ARRIVAL: After finishing processing of a lot, agent send the lot

to corresponding succeeding agent of process step with this event. Along

with the lot, the associated kanban is also returned to agent.

• NEED BY MESSAGE: According to CABS algorithm described in

thesis, agent periodically sends requirements for each of its process step to

corresponding preceding agent. The messages are sent as this event which

contains Product Identifier and Step Index with requirement parameters

i.e. time limit, request rate, amount and criticality.

• REQUEST KANBAN MESG: Before starting processing of a lot,

agent requests a kanban from the corresponding succeeding agent by send-

ing this event to the succeeding agent.

• GRANTED KANBAN: An agent grants an kanban to requesting pre-

ceding agent by sending this event which includes the identifier of kanban.

• UNUSED KANBAN: Agent returns an unwanted kanban to its owner

agent by this event.

In case their is a cycle in process route involving a single agent, i.e. the

next process step is also processed on same agent, the agent sends remote mes-

sages mentioned above to itself. In such special case, remote events can also

be considered as local events. The agent is oblivious to the target of events

as delivery of events is transparently managed by simulation middleware plat-

form. Figure B.1 shows relationship between various events in terms of triggers.

An arc from event A to event B means that on receiving event A, there is

possibility that agent may generate event B. Arcs represent possible triggers

and actual generation of event will depend on the situation. For example,

a local event PROCESS FINISH indicates that processing of current lot has

completed. Due to PROCESS FINISH event, agent will necessarily generate a

remote LOT ARRIVAL event for its succeeding agent. However, the agent will
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Figure B.1: Triggers for event generation
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# Description of the action(s) performed by agent
1 Send the processed lot to its corresponding succeeding agent
2 If WIP is available, request kanban for the lot to be dispatched next
3 If the resource is free, request kanban for dispatching arrived lot
4 If the resource is free and WIP is available, request kanban for dispatching
5 If some lot was being processed during failure, continue its processing
6 If a kanban is free, send it to requesting agent
7 If the kanban is not required, return it to its owner
8 Start processing a lot with the arrived kanban
9 If there is a pending kanban request, send the kanban to requesting agent
10 If there is a pending kanban request, send the kanban to requesting agent
11 Send new out-requirements after updating them by accounting new lot
12 Send new out-requirements according to received in-requirements
13 Send new out-requirements according to changed capabilities
14 Send new out-requirements according to current status (criticality etc.)
15 Schedule a self status check after fixed predetermined time interval
16 Schedule a self status check after fixed predetermined time interval
17 Schedule next failure at a random time according to distribution param-

eter (MTBF)
18 Schedule resolution of failure at a random time according to distribution

parameter (MTTR)
19 Only @ Source Agent: Schedule a lot release according to the time

limit parameter of incoming requirement
20 Only @ Source Agent: Release a new lot by sending it to the first

agent in process route

Table B.1: Description of agent’s actions during event triggers
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generate another remote REQUEST KANBAN MESG event to request a kan-

ban only if it has some other WIP to dispatch. Table B describes the conditions

and actions that agent performs while generating an event. The number in the

first column identify the trigger as labeled in Figure B.1.
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Deadlock Avoidance

In Section 5.1.2, the basic mechanism of avoiding deadlocks by utilizing the re-

served buffers is described. Here we describe the implementation details of that

mechanism. Besides the shared buffers, which can hold any kind of lots, CABS

maintains single reserved buffer for each type of jobs it processes. Buffers are

managed through kanbans and there is a reserved kanban corresponding to each

reserved buffer (details of kanban mechanism are provided in Appendix A. If all

shared buffers are full, in response to a kanban request from preceding agent,

reserved kanban corresponding to requested process step is granted. Besides re-

served kanbans, CABS utilizes an additional message parameter, ETA, to avoid

deadlocks. Along with time limit, request rate, amount and criticality,

ETA is also send in all the requirement messages of a process step. ETA defines

the time (in future) at which agent will be able to accumulate a new coming

lot of corresponding process step. If a shared buffer or the reserved buffer of

a process step is free, agent sends a value 0 for ETA in requirement message to

preceding agent. If all shared buffers of agent including the reserved buffer of

a process step are occupied, agent calculates the time (ETA) at which a buffer
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will become free according to its dispatching plan.

ETA =



















































0, if a shared buffer or reserved

buffer of process is free

when a buffer will become if all shared buffers including

free according to plan based reserved buffer of process step

on dispatching are occupied

In order to calculate ETA, agent uses the CABS dispatching algorithm (Al-

gorithm 1) to make dispatching plan of its buffered WIP. A new lot can be

accommodated when any shared buffer or the reserved buffer of process step

becomes free. When all the buffers are occupied, ETA will be a positive time in

future and preceding agents should not send lot before that time. In order to

honour the ETA of their succeeding agents, agents defer dispatching of their lots

accordingly. The dispatching mechanism of CABS is modified to incorporate

ETA by addition of the following rule:

RULE: The lot picked for dispatching should have minimum ETA

This additional rules implies that irrespective of other requirements (time limit

and criticality), the lots are dispatched in order of their ETA. Alternatively,

rather than sitting idle to honour the (late) ETA of a high criticality lot,

agent will dispatch a lower criticality job which has earlier ETA. To realize

the desired working of ETA mechanism in CABS, Algorithm 5 is called before

CABS dispatching algorithm (Algorithm 1).

Algorithm 5 pruneTasksETA( message im[ ] ) of agent Aj

1: tmin ← among ∀i ∈ {1, · · · , tj} find i with minimum im[i].ETA // i.e.
among all tasks, task tmin has the earliest ETA

2: for all i ∈ {1, · · · , tj} do
3: if (im[i].ETA > im[tmin].ETA) then
4: delete im[i] from im[ ]
5: end if
6: end for
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Algorithm 5 removes tasks with higher ETAs, and dispatching algorithm (Al-

gorithm 1) then chooses a lot to dispatch from the remaining tasks. In case there

are multiple tasks with minimum ETA, dispatching works as usual by consider-

ing their other requirement parameters. Most of the times, when free buffers

are available at agents, ETAs of tasks remain 0 and Algorithm 5 has no effect.

In such normal cases, all tasks are considered for dispatching and execution of

CABS takes place according to their requirement parameters. However, when

buffers become full, agents in CABS prioritize processing of lots with lower ETAs.

The last agent of process route assumes a static incoming ETA of 0. The agents

towards the end of process generally will have lower ETAs and reserved buffers

ensure availability of jobs of all process steps at agents. Hence, by prioritizing

lots that will complete earlier, the flow of lots is perpetually maintained which

autonomously avoids the occurrence of permanent bottlenecks.
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