
Electric and magnetic screening masses at finite temperature from generalized Polyakov-line
correlations in two-flavor lattice QCD

Y. Maezawa,1 S. Aoki,2 S. Ejiri,3 T. Hatsuda,4 N. Ishii,4 K. Kanaya,2 N. Ukita,5 and T. Umeda6

(WHOT-QCD Collaboration)

1En’yo Radiation Laboratory, Nishina Accelerator Research Center, RIKEN, Wako, Saitama 351-0198, Japan
2Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

3Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
4Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

5Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
6Graduate School of Education, Hiroshima University, Hiroshima 739-8524, Japan

(Received 9 March 2010; published 13 May 2010)

Screenings of the quark-gluon plasma in electric and magnetic sectors are studied on the basis of

generalized Polyakov-line correlation functions in lattice QCD simulations with two flavors of improved

Wilson quarks. Using the Euclidean-time reflection (R) and the charge conjugation (C), electric and

magnetic screening masses are extracted in a gauge-invariant manner. Long distance behavior of the

standard Polyakov-line correlation in the quark-gluon plasma is found to be dictated by the magnetic

screening. Also, the ratio of the two screening masses agrees with that obtained from the dimensionally-

reduced effective field theory and the N ¼ 4 supersymmetric Yang-Mills theory.
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I. INTRODUCTION

Screenings inside the quark-gluon plasma at high tem-
perature are dictated by thermal fluctuations of quarks and
gluons, and are characterized by the electric and magnetic
screening masses [1]. From the phenomenological point of
view, screening of color charge affects the force between
heavy-quarks and determines the fate of heavy-quark
bound states such as J=c and � inside hot QCD matter
produced in relativistic heavy-ion collisions at RHIC and
LHC [2,3].

Nonperturbative determinations of the screening masses
have been attempted from various approaches in the past:
use of Polyakov-line correlations with appropriate projec-
tion in color space [4–7], use of correlations of spatially
local operators classified in terms of Euclidean-time re-
flection [8], use of dimensionally-reduced effective field
theory [9,10], and a direct lattice evaluation of the gluon
propagator under gauge fixing [11]. The screening masses
of theN ¼ 4 supersymmetric Yang-Mills theory for large
’t Hooft coupling have been also analyzed on the basis of
the AdS/CFT correspondence [12].

In this paper, we extract electric and magnetic screening
masses from gauge-invariant Polyakov-line correlations in
two-flavor lattice QCD simulations (a preliminary account
has been reported in [13]). According to the symmetry
properties under the Euclidean-time reflection R and the
charge conjugation C [8], we decompose the standard
Polyakov-line operator � into four independent types,
�M� and �E�. Here, M and E stand for the R-even
magnetic sector and the R-odd electric sector, respec-
tively, while � stands for the even or odd under C. Then,

the magnetic (electric) screening mass is extracted from
the correlation of Tr�Mþ (Tr�E�). In our simulations on a
163 � 4 lattice, we employ two-flavor lattice QCD with
improved Wilson quarks coupled to an renormalization
group improved glue (Iwasaki gauge action) for the tem-
peratures T=Tpc ’ 1–4 with Tpc being the pseudocritical

temperature. We take the quark masses corresponding to
mPS=mV ¼ 0:65 and 0.80, where mPS (mV) is pseudoscalar
(PS) (vector) meson mass at T ¼ 0.
This paper is organized as follows: In Sec. II, we discuss

the properties of the Polyakov-line operators under R and
C. Numerical simulations and the results of the screening
masses are shown in Sec. III. Comparison of our results
with those obtained from the dimensionally-reduced effec-
tive field theory and the N ¼ 4 supersymmetric Yang-
Mills theory are also given. Section IV is devoted to
summary and concluding remarks.

II. GENERALIZED POLYAKOV-LINE
CORRELATIONS

We start with the standard Polyakov-line operator

�ðxÞ ¼ P exp

�
ig

Z 1=T

0
d�A4ð�;xÞ

�
: (1)

Its gauge-invariant correlation function reads

C�ðr; TÞ � hTr�yðxÞTr�ðyÞi � jhTr�ij2; (2)

where r � jx� yj and we define Tr� � 1
Nc

PNc

�¼1 �
��

with � being color indices. The screening mass is defined
from the exponential falloff of this gauge-invariant corre-
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lation,

C�ðr; TÞ !
r!1��ðTÞ e

�m�ðTÞr

rT
: (3)

Since the magnetic gluon is less screened at finite T, the
dominant contribution to m�ðTÞ would come from non-
perturbative magnetic sector of QCD as pointed out in [8].

In order to extract the electric and magnetic screening
masses separately, we classify the Polyakov-line operator
into different classes on the basis of the symmetries under
R and C which are good symmetries of QCD at zero
chemical potential [8]. Under R and C, the gluon fields
transform as

Aið�;xÞ!RAið��;xÞ; A4ð�;xÞ!R � A4ð��;xÞ; (4)

A�ð�;xÞ!C � A�
�ð�;xÞ: (5)

We call an operator magnetic (electric) if it is even (odd)
under R. Under these transformations, the standard
Polyakov-line operator transforms as

�!R�y; �!C ��: (6)

Then, we can define magnetic (electric) operator which is
R even (R odd) as

�M � 1
2ð�þ�yÞ; �E � 1

2ð���yÞ: (7)

Furthermore, they can be decomposed into C-even and
C-odd operators as

�M� ¼ 1
2ð�M ���

MÞ; �E� ¼ 1
2ð�E ���

EÞ: (8)

Using these operators and noting the fact that Tr�M� ¼
Tr�Eþ ¼ 0, we can define two generalized gauge-
invariant Polyakov-line correlation functions,

CMþðr; TÞ � hTr�MþðxÞTr�MþðyÞi � jhTr�ij2; (9)

CE�ðr; TÞ � hTr�E�ðxÞTr�E�ðyÞi: (10)

Note that Tr�Mþ (Tr�E�) is nothing but the real (imagi-
nary) part of Tr�, and that hTr�i is real due to the C
symmetry.

The electric and magnetic screening masses can be
defined from the above gauge-invariant correlation func-
tions through their long distance behavior:

CMþðr; TÞ !
r!1�MþðTÞ e

�mMþðTÞr

rT
; (11)

CE�ðr; TÞ !
r!1�E�ðTÞ e

�mE�ðTÞr

rT
: (12)

Notice that the standard Polyakov-line correlation func-
tion and the above generalized correlation functions are
simply related as

C�ðr; TÞ ¼ CMþðr; TÞ � CE�ðr; TÞ: (13)

Thus the separate determination of CMþðr; TÞ and

CE�ðr; TÞ on the lattice enables us to study the relative
importance of the magnetic and electric sector in a non-
perturbative manner.

III. LATTICE SIMULATIONS

A. Lattice setup

We employ a renormalization group improved gauge
action Sg and a clover-improved Wilson quark action

with two flavors Sq:

Sg¼��
X
x

�
c0

X4
�<�;�;�¼1

W1�1
�� ðxÞþc1

X4
���;�;�¼1

W1�2
�� ðxÞ

�
;

(14)

Sq ¼
X

f¼1;2

X
x;y

�qfxDx;yq
f
y; (15)

where � ¼ 6=g2, c1 ¼ �0:331, c0 ¼ 1� 8c1, and Wn�m
��

is a n�m rectangular shaped Wilson loop and

Dx;y ¼ �xy � K
X
�

fð1� ��ÞUx;��xþ�̂;y

þ ð1þ ��ÞUy
x;��x;yþ�̂g � �xycSWK

X
�<�

���F��:

(16)

Here, K is the hopping parameter and F�� is the lattice

field strength, F�� ¼ 1=8iðf�� � fy��Þ, with f�� being the

standard clover-shaped combination of gauge links. For the
clover coefficient cSW , we adopt the mean field value using
W1�1 which was calculated in the one-loop perturbation
theory,

cSW ¼ ðW1�1Þ�3=4 ¼ ð1� 0:8412��1Þ�3=4: (17)

Our simulations are performed on a lattice with a size of
N3

s � Nt ¼ 163 � 4 along the lines of constant physics, i.e.
the lines of constantmPS=mV (the ratio of pseudoscalar and
vector meson masses) at T ¼ 0 in the space of simulation
parameters. Details on the lines of constant physics and the
phase diagram for Nt ¼ 4 with the same actions as above
are given in Refs. [7,14]. We take two values, mPS=mV ¼
0:65 and 0.80, with the temperature range of T=Tpc �
1:0–4:0 (10 points) and 1.0–3.0 (7 points), respectively,
where Tpc is the pseudocritical temperature along the line

of constant physics [7,14]. The number of trajectories for
each run after thermalization is 5000–6000, and we mea-
sure physical quantities at every 10 trajectories. The sta-
tistical errors are estimated by a jackknife method with a
bin size of 100 trajectories.

B. Screening masses

Results of the generalized Polyakov-line correlations
CMþðE�Þðr; TÞ are shown in Fig. 1 for mPS=mV ¼ 0:65
(upper panel) and 0.80 (lower panel). These figures show
that (i) the magnetic correlation and the electric correlation
have opposite signs, and (ii) the magnetic correlation has
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larger magnitude and longer range than the electric corre-
lation at long distances. The latter implies that the standard
Polyakov-line correlation is dominated by the magnetic
sector. In Fig. 2, we show CMþðr; TÞ (upper panel) and
�CE�ðr; TÞ (lower panel) in a logarithmic scale as a func-
tion of rT for mPS=mV ¼ 0:80. These correlators behave
linearly and are scaled well by rT at high temperature, so
that the screening masses can be extracted by fitting the
correlators using the Yukawa form defined in Eqs. (11) and
(12).

We fit these correlators by Eqs. (11) and (12) in the same
interval of 0:5 � rT � 1:0 by minimizing 	2=Ndof .

1

Upper (lower) panel of Fig. 3 shows results of screening
masses in the magnetic and electric sector at mPS=mV ¼
0:65 (0.80) as a function of temperature. Numerical results
are summarized in Tables I and II for mPS=mV ¼ 0:65 and
0.80, respectively. The screening mass obtained from the
standard Polyakov-line correlation function m�ðTÞ using
Eq. (3) is also shown. As expected, the magnetic sector has

longer range than the electric sector [mMþðTÞ is smaller
than mE�ðTÞ] and also the standard screening mass is
dominated by the magnetic mass [m�ðTÞ ’ mMþðTÞ].

C. Comparison to other approaches

Let us compare our results with the predictions by the
dimensionally-reduced effective field theory [three-
dimenstional (3D)-effective field theory(EFT)] and the
N ¼ 4 supersymmetric Yang-Mills theory (SYM).
In the 3D-EFT approach [9], the screening masses in

various channels with the quantum numbers JPC
R are calcu-

lated: Here, P is a parity in a two-dimensional plane
perpendicular to x-y, and J is an angular momentum in
the two-dimensional plane. Since the lowest masses for
ðR; CÞ ¼ ðþ;þÞ and ðR; CÞ ¼ ð�;�Þ are in ðJ;P Þ ¼
ð0;þÞ channels, we extract mMþ from the 0þþþ channel
and mE� from the 0þ�� channel. Tables 6 and 8 of Ref. [9]
for the lattice coupling � ¼ 21, lattice size L ¼ 30, Nf ¼
2 and T ’ 2�MS lead to

3D-EFTðNf ¼ 2Þ:
mMþ=T ¼ 3:96ð5Þ; mE�=T ¼ 7:01ð10Þ;
mE�=mMþ ’ 1:77: (18)
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FIG. 1 (color online). Results of CMþðr; TÞ and CE�ðr; TÞ for
several temperatures as a function of rTpc at mPS=mV ¼ 0:65

(upper panel) and 0.80 (lower panel).
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FIG. 2 (color online). Results of CMþðr; TÞ (upper panel) and
�CE�ðr; TÞ (lower panel) in a logarithmic scale as a function of
rT at mPS=mV ¼ 0:80.

1We study the fit range dependence of the results, and find that
the magnitude of systematic error due to the fit range is smaller
than or comparable to the statistical errors at T * 1:2Tpc.
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The screening masses of the Polyakov-line correlation
functions inN ¼ 4 supersymmetric Yang-Mills theory in
the limit of large Nc and large ’t Hooft coupling (
 ¼
g2Nc) were calculated by AdS/CFT correspondence [12].
Under the same identification in the ðJ;P Þ ¼ ð0;þÞ chan-
nel as discussed above, Table 1 of Ref. [12] leads to

N ¼ 4 SYM:

mMþ=T ¼ 7:34; mE�=T ¼ 16:05;

mE�=mMþ ¼ 2:19: (19)

Results of our screening masses and their ratio for
1:67< T=Tpc < 3:22 with mPS=mV ¼ 0:65 in Table I in-

dicate that

four-dimensional latticeQCDðNf ¼ 2Þ:
mMþ=T ¼ 5:8ð2Þ; mE�=T ¼ 13:0ð11Þ;
mE�=mMþ ¼ 2:3ð3Þ: (20)

In all three cases above, we have an inequality mMþ <
mE� so that the magnetic sector dominates at large dis-
tances. Since we cannot compare the absolute magnitude
of the screening masses in QCD and that in N ¼ 4 SYM
due to different number of degrees of freedom, we take a
ratio, mE�=mMþ (Table III), and make a comparison for
the three cases in Fig. 4. We find that the ratio agrees well
with each other for the temperature range of 1:5<

T=Tpc < 3.

TABLE I. Results of screening masses at mPS=mV ¼ 0:65.
First parentheses show statistical errors, while the second paren-
theses show systematic errors calculated from difference be-
tween screening masses in the range of 0:5< rT < 1:0 andffiffiffi
6

p
=4< rT < 1:0.

T=Tpc mMþ=T mE�=T

1.00 3.5(2)(1) 8.5(6)(17)

1.07 3.2(1)(3) 9.9(10)(0)

1.18 4.4(3)(1) 8.6(11)(0)

1.32 5.4(3)(4) 6.9(12)(23)

1.48 5.8(3)(2) 11.8(17)(14)

1.67 6.1(3)(13) 10.0(14)(7)

2.09 6.1(3)(5) 13.9(20)(1)

2.59 5.8(3)(0) 12.9(19)(45)

3.22 5.3(3)(2) 15.3(36)(25)

4.02 4.5(2)(2) 12.3(17)(9)

TABLE II. Results of screening masses at mPS=mV ¼ 0:80
with the errors calculated by the same procedure as Table I.

T=Tpc mMþ=T mE�=T

1.08 3.4(1)(0) 10.4(9)(0)

1.20 4.3(1)(1) 9.9(9)(0)

1.35 5.8(4)(3) 9.5(16)(42)

1.69 5.3(3)(2) 10.3(14)(2)

2.07 5.3(2)(1) 8.6(9)(3)

2.51 6.0(3)(1) 8.7(10)(10)

3.01 5.5(2)(0) 9.4(10)(5)

 0

 2

 4

 6

 8

10

12

14

16

 1  1.5  2  2.5  3  3.5  4

T / Tpc

mM+/T

mE−/T

mΩ/T

 0

 2

 4

 6

 8

10

12

14

16

 1  1.5  2  2.5  3  3.5  4

T / Tpc

mM+/T

mE−/T

mΩ/T

FIG. 3 (color online). Results of magnetic and electric screen-
ing mass mMþ=T and mE�=T together with the screening mass
obtained from the standard Polyakov-line correlation m�=T as a
function of temperature at mPS=mV ¼ 0:65 (upper panel) and
0.80 (lower panel).

TABLE III. Results of the screening ratio mE�=mMþ in Nf ¼
2 lattice QCD simulations.

mPS=mV ¼ 0:65 0.80

T=Tpc mE�=mMþ T=Tpc mE�=mMþ
1.00 2.4(2) 1.08 3.1(2)

1.07 3.1(3) 1.20 2.3(2)

1.18 2.0(3) 1.35 1.7(3)

1.32 1.3(2) 1.69 2.0(3)

1.48 2.0(3) 2.07 1.6(1)

1.67 1.6(2) 2.51 1.4(1)

2.09 2.3(3) 3.01 1.7(2)

2.59 2.2(3)

3.22 2.9(6)

4.02 2.7(4)
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IV. SUMMARY

We investigated the screening properties of the quark-
gluon plasma from the Polyakov-line correlation functions
classified under the Euclidean-time reflection (R) symme-
try and the charge conjugation (C) symmetry. The
Polyakov-line correlators with the quantum numbers of
ðR; CÞ ¼ ðeven;þÞ and ðodd;�Þ are defined in gauge-
invariant form.

From the lattice simulations of Nf ¼ 2 QCD above Tpc

with the renormalization group improved gluon action and
the clover-improved Wilson quark action, we extracted the
magnetic screening mass mMþ and the electric screening
mass mE�, and found that mE�=mMþ ¼ 2:1ð2Þ for 1<

Tpc < 3. Therefore, the standard Polyakov-line correlation

functions at long distance is dictated by the magnetic
screening. Our electric-magnetic ratio is consistent with
those obtained from the dimensionally-reduced effective
field theory (3D-EFT) and the N ¼ 4 supersymmetric
Yang-Mills theory (SYM).
In the present work, we have not attempted to make

projections of the Polyakov-line operator � to the opera-
tors with definite J (two-dimensional angular momentum)
and P (two-dimensional parity). It would be a future task
to make such projections, so that we can compare the four-
dimensional lattice results with 3D-EFT and SYM in more
details. In Ref. [13], we extracted four screening masses
~mX (X ¼ Mþ , M� , Eþ , E� ) from gauge-fixed cor-

relation functions ~CXðr; TÞ ¼ hTr½�XðxÞ�XðyÞ�i; we
found that the long distance behavior of the color-singlet
Polyakov-line correlation functions is dictated by ~mE�
which is smaller than mMþ and mE� for T > 1:5Tpc.

Further studies are needed to have physical interpretation
of this result.
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