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We consider the wave propagating in the Einstein and de Sitter space-time. The
covariant d’Alembert’s operator in the Einstein and de Sitter space-time belongs to
the family of the non-Fuchsian partial differential operators. We introduce the ini-
tial value problem for this equation and give the explicit representation formulas for
the solutions. We also show the Lp−Lq estimates for solutions. © 2010 American
Institute of Physics. �doi:10.1063/1.3387249�

I. INTRODUCTION

The current note is concerned with the wave propagating in the universe modeled by the
cosmological models with expansion. We are motivated by the significant importance of the
solutions of the partial differential equations arising in the cosmological problems for our under-
standing of the universe. While there exists extensive literature on the hyperbolic equations, the
question of initial value problems for the wave equation in the curved spaces with singularities,
and, in particular, in the Einstein and de Sitter space-time, which are well posed and preserve
many features of the classical waves, remains unresolved.

The homogeneous and isotropic cosmological models possess highest symmetry, which makes
them more amenable to rigorous study. Among them, Friedmann–Lemaître–Robertson–Walker
models are mentioned. The simplest class of cosmological models can be obtained if we assume
that the metric of the slices of constant time is flat and that the space-time metric can be written
in the form

ds2 = − dt2 + a2�t��dx2 + dy2 + dz2� ,

with an appropriate scale factor a�t�. �See, e.g. Ref. 22.� The assumption that the universe is
expanding leads to the positivity of the time derivative �d /dt�a�t�. The time dependence of the
function a�t� is determined by the Einstein field equations for gravity,

R�� − 1
2g��R = − 8�GT��.

The metric of the Einstein and de Sitter universe �EdeS universe� is a particular member of the
Friedmann–Robertson–Walker metrics,

ds2 = − dt2 + a2�t�� dr2

1 − Kr2 + r2d�2� ,

where K=−1, 0, or +1, for a hyperbolic, flat, or spherical spatial geometry, respectively. The
Einstein equations are simply
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where � is the proper energy density and p is pressure. For pressureless matter distributions �p
=0� and vanishing spatial curvature �K=0� in the EdeS universe the solution to the Eqs. �1.1� is

a�t� = a0t2/3,

where a0 is an integration constant.19 This model describes an open geometry �the K=0 and spatial
sections are diffeomorphic to R3� in the presence of a constant nonzero energy density distribution.
Even though the EdeS space-time is conformally flat, its causal structure is quite different from
asymptotically flat geometries. In particular, and unlike Minkowski or Schwarzschild, the past
particle horizons exist. The EdeS space-time is a good approximation to the large scale structure
of the universe during a matter dominated phase, when the averaged �over space and time� energy
density evolves adiabatically and pressures are vanishingly small, as, e.g., immediately after
inflation.35 This justifies why such a metric is adopted to model the collapse of overdensity
perturbations in the early matter dominated phase that followed inflation.

The Einstein and de Sitter model of the universe is the simplest nonempty expanding model
with the line element,

ds2 = − dt2 + a0
2t4/3�dx2 + dy2 + dz2� ,

in comoving coordinates.11 It was first proposed jointly by Einstein and de Sitter �the EdeS
model�.10 The observations of the microwave radiation fit in with this model.9 The result of this
case also correctly describes the early epoch, even in a universe with curvature different from zero
�Ref. 5, Sec. 8.2�. Recently it was used in Ref. 29 to study cosmological black holes. The key
observation for that approach is that the line element can also be written in the conformally flat
form,

ds2 = �4�− d�2 + dr2 + r2�d�2 + sin2 �d�2�� ,

where the timelike coordinates are related by d� /dt= �3t�−2/3. The last form is an asymptotic for
the Schwarzschild metric whose line element may be written in the form

ds2 = �4�− �1 −
2m

r
�dt2 +

4m

r
dtdr + �1 +

2m

r
�dr2 + r2�d�2 + sin2 �d�2�� ,

where t and r are timelike and spacelike coordinates related to the standard Schwarzschild coor-
dinates t̄ and r̄ by

t = t̄ + 2m ln	 r̄

2m
− 1	, r = r̄ .

The fact that the resulting metric is asymptotically Einstein and de Sitter with the source reducing
to a comoving pure dust at null infinity is used in Ref. 29. In this sense the solution could be
interpreted as a black hole in the asymptotic background of the Einstein and de Sitter universe.

The covariant d’Alambert’s operator in the Einstein and de Sitter space-time is

�g	 = − � �

�t
�2

	 + t−4/3 

i=1,2,3

� �

�xi�2

	 −
2

t

�

�t
	 .

Consequently, the covariant wave equation with the source term f written in the coordinates is
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� �

�t
�2

	 − t−4/3 

i=1,2,3

� �

�xi�2

	 +
2

t

�

�t
	 = f . �1.2�

The last equation belongs to the family of the non-Fuchsian partial differential equations. There is
very advanced theory of such equations �see, e.g., Ref. 18 and references therein�. In this note we
investigate the initial value problem for this equation and give the representation formulas for the
solutions with any dimension n�N of the spatial variable x�Rn.

Equation �1.2� is strictly hyperbolic in the domain with t
0. On the hypersurface t=0 its
coefficients have singularities that make the study of the initial value problem difficult. Then, the
speed of propagation is equal to t−2/3 for every t�R \ �0�. Equation �1.2� is not Lorentz invariant,
which brings additional difficulties.

The classical works on the Tricomi and Gellerstedt equations �see, e.g., Refs. 4, 6, 8, and 31�
appeal to the singular Cauchy problem for the Euler–Poisson–Darboux equation,

�u = utt +
c

t
ut, c � C , �1.3�

and to the Asgeirsson mean value theorem when handling a high-dimensional case. Here � is the
Laplace operator on the flat metric, �ª
i=1

n ��2 /�xi
2�.

We use the approach suggested in Ref. 32 and reduce the problem for Eq. �1.2� to the Cauchy
problem for the free wave equation in Minkowski space-time: vtt−�v=0. To us, this approach
seems to be more immediate than the one that uses the Euler–Poisson–Darboux equation. More
precisely, in the present note we utilize the solution v=v�x , t ;b� to the Cauchy problem,

vtt − �v = 0, t 
 0, x � Rn

v�x,0� = ��x,b� , vt�x,0� = 0, x � Rn,
� �1.4�

with the parameter b�B�R. We denote that solution by v�=v��x , t ;b�. In the case of function �
independent of parameter, we skip b and simply write v�=v��x , t�. There are well-known explicit
representation formulas for the solution of the last problem. We write those formulas to make the
present note self-contained. If n=1, and ��x , t�= f�x , t��C�R�R�, B=R, then

v f�x,t;b� = 1
2 �f�x + t,b� + f�x − t,b��, t � R, x � R . �1.5�

For f �C�Rn�R� and for odd n=2m+1, m�N,

v f�x,t;b� =
�

�t
�1

t

�

�t
��n−3�/2 tn−2

�n−1c0
�n��

Sn−1
f�x + ty,b�dSy, t � R, x � Rn, �1.6�

where, c0
�n�=1·3 ·5 · . . . · �n−2�, while for x�Rn with even n=2m, m�N,

v f�x,t;b� =
�

�t
�1

t

�

�t
��n−2�/2 2tn−1

�n−1c0
�n��

B1
n�0�

1
�1 − �y�2

f�x + ty,b�dVy, t � R, x � Rn, �1.7�

where c0
�n�=1·3 ·5 · . . . · �n−1�. �See, e.g., Theorems 4.1,4.2.24� In particular, if f is independent of

t, then v f�x , t ;b� does not depend on b and we briefly write v f�x , t�.
The straightforward application of the formulas obtained in Ref. 32 to the Cauchy problem for

Eq. �1.2� decidedly does not work, but it reveals a surprising link to the Einstein and de Sitter
space-time. To demonstrate that link we note that the “principal part” of Eq. �1.2� belongs to the
family of the Tricomi-type equations �in the case of odd l it is Gellerstedt equation�,

utt − tl�u = 0,

where l�N. According to Ref. 32 the solution to the Cauchy problem,
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utt − tl�u = f�x,t�, u�x,0� = �0�x�, ut�x,0� = �1�x� ,

with the smooth functions f , �0, and �1 can be represented as follows:

u�x,t� = 22−2���2��
�2��� �0

1

�1 − s2��−1v�0
�x,��t�s�ds

+ t22���2 − 2��
�2�1 − �� �0

1

�1 − s2�−�v�1
�x,��t�s�ds

+ 2ck�
0

t

db�
0

��t�−��b�

drE�r,t;0,b�v f�x,r;b�, x � Rn, t 
 0, �1.8�

with the kernel

E�r,t;0,b� ª ����b� + ��t��2 − r2�−�F��,�;1;
���t� − ��b��2 − r2

���t� + ��b��2 − r2� . �1.9�

Here F�� ,� ;1 ;�� is the hypergeometric function �see, e.g., Ref. 1�, while kª l /2, ��t�
ª t�k+1� / �k+1�, �ªk / �2k+2�, and ck= �k+1�−k/�k+1�2−1/�k+1�. The equation with l�N, x�R, and
f =0 is studied in Ref. 30 by means of the partial Fourier transform and the confluent hypergeo-
metric function. That approach gives parametrix of the Cauchy problem, and as a consequence, a
complete description of the propagation of the C-singularities.

Suppose now that we are looking for the simplest possible kernel E�r , t ;0 ,b� �1.9� of the last
integral transform. In the hierarchy of the hypergeometric functions the simplest one, that is
different from the constant, is a linear function. That simplest function F�a ,b ;1 ;�� has the pa-
rameters a=b=−1 and coincides with 1+�. The parameter l leading to such function F�−1,
−1;1 ;��=1+� is exactly the exponent l=−4 /3 of the wave equation �and of the metric tensor� in
the Einstein and de Sitter space-time.

It is evident that the first term of the representation �1.8�, as it is written, is meaningless if
�=−1. This indicates the fact that the Cauchy problem is not well posed anymore for the equation
with l=−4 /3. The next theorem also shows how the “lower order term” of Eq. �1.2� affects the
Cauchy problem. The main result of this paper is the following theorem.

Theorem 1.1: Assume that �i�C�n/2�+3−i�Rn�, i=0,1, f�x , t��C�n/2�+2�Rn� �0,��, and that
with some �
0 one has

��x
�f�x,t�� + �t�t�x

�f�x,t�� � C�t�−2 for all x � Rn, and for all small t 
 0,

and for every �, �, ���� �n /2�+2 , ���� �n /2�+1. Then the solution 	=	�x , t� to the problem,

	tt − t−4/3�	 + 2t−1	t = f�x,t�, t 
 0, x � Rn

lim
t→0

t	�x,t� = �0�x�, lim
t→0

�t	t�x,t� + 	�x,t� + 3t−1/3��0�x�� = �1�x�, x � Rn,�
�1.10�

is given by

	�x,t� =
3

2
t2�

0

1

db�
0

1−b1/3

dsbv f�x,3t1/3s;tb��1 + b2/3 − s2�

+ t−1v�0
�x,3t1/3� − 3t−2/3��tv�0

��x,3t1/3� +
3

2
�

0

1

v�1
�x,3t1/3s��1 − s2�ds . �1.11�

The theorem shows that one cannot anticipate the well posedness in the Cauchy problem for the
wave equation in the Einstein and de Sitter space-time. In fact, it gives a structure of singularity of
the solution at the point t=0, which hints at the proper initial conditions which have to be
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prescribed for the solution. The initial conditions prescribed in the previous theorem are the
Cauchy conditions modified to the so-called weighted initial conditions in order to adjust them to
the equation. For the Euler–Poisson–Darboux equation �1.3� one can find such weighted initial
conditions, for instance, in Refs. 4 and 25 as well as in the references therein. The existence and
uniqueness of the solutions for the initial value problem with the weighted initial conditions for
the Euler–Poisson–Darboux equation and for Eq. �1.3� with the time-dependent c are proven in
Ref. 7 by application of the Fourier transform in x-variable, as well as some transformations which
reduce the equation to the confluent hypergeometric equation.

Theorem 1.1 can be used to obtain some important properties for the solutions of the wave
equation in Einstein and de Sitter space-time, which are inherited from the solutions of the wave
equation in Minkowski space-time. In particular, as a consequence of the previous theorem, in
Sec. III, for the initial value problem �1.10� with n�2, f =0, and �0=0, we obtain the following
Lp−Lq estimate:

��− ��−s	�· ,t��Lq�Rn� � Ct�1/3��2s−n�1/p−1/q����1�Lp�Rn�, t 
 0,

provided that s�0, 1� p�2, 1 / p+1 /q=1, �1 /2��n+1��1 / p−1 /q��2s�n�1 / p−1 /q�, and
n�1 / p−1 /q�−1�2s. Similar estimates hold for the problem with general �0 and f . Thus, in the
present paper we prepare all necessary tools that will allow us to study in the forthcoming paper
the solvability of semilinear wave equation in the Einstein and de Sitter space-time. Having in
mind the scale invariance of the equation and also the applications �see, e.g., Refs. 16 and 28�,
special attention will be given to the self-similar solutions. Results analogous to those presented in
this note have already proven to be a good tool in the study of self-similar solutions.35

This note is organized as follows. In Sec. II we prove the main theorem and give some of its
extensions �Theorems 2.1 and 2.2� that allow stronger singularity in the source term. Section III is
devoted to the application of the main theorem, namely, to the derivation of the Lp−Lq estimates.

The EdeS model recently became a focus of interest for an increasing number of authors. �See,
e.g., Refs. 2, 11–15, 22, 23, and 29 and references therein.� We believe that the initial value
problem and the explicit representation formulas obtained in the present paper fill the gap in the
existing literature on the wave equation in the EdeS space-time.

II. PROOF OF THE MAIN THEOREM

If we denote

L ª �t
2 − t−4/3� + 2t−1�t, S ª �t

2 − t−4/3� ,

then we can easily check for t�0 the following operator identity:

t−1 � S � t = L . �2.1�

The last equation suggests a change of the unknown function 	 with u such that 	= t−1u. Then the
problem for u is as follows:

�
utt − t−4/3�u = g�x,t�, t 
 0, x � Rn

lim
t→0

u�x,t� = �0�x�, x � Rn

lim
t→0

�ut�x,t� + 3t−1/3��0�x�� = �1�x�, x � Rn,� �2.2�

where g�x , t�= tf�x , t�. Therefore it is enough to find a representation of the solution of the last
problem. We discuss it in three separate cases of: �f� with �0=�1=0; ��0� with f =0 and �1=0;
��1� with f =0 and �0=0.
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We will use the following property of the resolving operator of the problem �1.4�: if P
= P�Dx� is a pseudodifferential operator and �=��t� is a smooth function of time, then the operator
��t�P�Dx� “commutes” with the resolving operator of the problem �1.4�. More precisely, the
following identity can easily be verified:

v�P�Dx�f�x,t;b� = ��b�P�Dx�v f�x,t;b� for all f � C�Rn � �0,�� . �2.3�

The operator S belongs to the family of the Tricomi-type operators,

T ª �t
2 − tl� ,

where l�R. The Cauchy problem for such operators with positive l, that is, for the case of
multiple characteristics, is well developed �see, e.g., Ref. 33 and references therein�. The funda-
mental solutions of the operator and the representation formulas for the solutions of the Cauchy
problem are given in Ref. 32. The results of Ref. 32 allow us to write an ansatz for the solutions
of the equation of �2.2�. This ansatz has been used in Ref. 17 to extend the range of admissible
values of l to negative numbers for the problem with data on the hyperplane t�0. Here we use
this ansatz to consider the weighted initial value problem �2.2� with data on the plane t=0, where
coefficients and source term are singular. As we already emphasized, it is interesting that the case
of l=−4 /3, that is the case of Einstein and de Sitter space-time, is an exceptional case in the sense
that it simplifies the Gauss’ hypergeometric function F�� ,� ;1 ;z� appearing in the fundamental
solutions constructed in Ref. 32, to the linear function F�−1,−1;1 ;z�=1+z.

The case of �f�. Assume that f �C�n/2�+2�Rn� �0,�� and for every given multi-indexes �, �,
���� �n /2�+2, ���� �n /2�+1, the following inequality holds:

��x
�f�x,t�� + �t�t�x

�f�x,t�� � Ct�−2 for all x � Rn, t � �0,T� ,

for small positive T. We have to prove that the solution to the problem,

L	 = f , t 
 0, x � Rn

lim
t→0

	�x,t� = 0, lim
t→0

	t�x,t� = 0, x � Rn,�
is given by

	�x,t� =
3

2
t2�

0

1

db�
0

1−b1/3

dsbv f�x,3t1/3s;tb��1 + b2/3 − s2� . �2.4�

Here the function v f�x ,r ; t� is given by �1.5�–�1.7�, if n=1, n is odd, and n is even, respectively.
It is sufficient to check the properties of the function u=u�x , t�= t	�x , t�, which solves the

equation Su=g with g�x , t�= tf�x , t�. Hence, we can restrict ourselves to the representation,

u�x,t� =
3

2
t2�

0

1

db�
0

1−b1/3

dsvg�x,��t�s;tb��1 + b2/3 − s2�

=
1

18
�

0

t

dl�
0

��t�−��l�

drvg�x,r;l���2�t� + �2�l� − r2� , �2.5�

and take into account the identity vg�x ,r ;b�=bv f�x ,r ;b�. Here ��t�ª3t1/3. First we prove that the
integral is convergent and that it represents a C2�Rn� �0,��-function. We will skip the subindex
g in the remainder of the proof. It is evident that v�x ,r ;b��C2�Rn� �0,�� and that

��x
�v�x,r;b�� + ��rv�x,r;b�� + ��r

2v�x,r;b�� + �b�bv�x,r;b�� � Cb−1+�

if ����2. It follows
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�v�x,��t�s;tb�� � Ct−1+�b−1+�.

Then we use the last inequality and the first formula of �2.5� in the following inequalities:

�u�x,t�� � Ct1+��
0

1

b−1+�db�
0

1−b1/3

ds�1 + b2/3 − s2� � C�t1+�. �2.6�

The first formula of �2.5� leads to the estimate for the derivative,

	 �

�t
u�x,t�	 � 	3t�

0

1

db�
0

1−b1/3

dsv�x,��t�s;tb��1 + b2/3 − s2�	
+ 	 3

2
t4/3�

0

1

db�
0

1−b1/3

dss��rv��x,��t�s;tb��1 + b2/3 − s2�	
+ 	 3

2
t2�

0

1

db�
0

1−b1/3

dsb��bv��x,��t�s;tb��1 + b2/3 − s2�	 ,

that implies

	 �

�t
u�x,t�	 � C�t��

0

1

b−1+�db�
0

1−b1/3

ds�1 + b2/3 − s2�

+ C�t1/3+��
0

1

b−1+�db�
0

1−b1/3

dss�1 + b2/3 − s2�

+ C�t��
0

1

b−1+�db�
0

1−b1/3

ds�1 + b2/3 − s2� . �2.7�

Thus, the estimates �2.6� and �2.7� lead to the initial conditions

lim
t→0

u�x,t� = 0, lim
t→0

ut�x,t� = 0. �2.8�

It remains to verify the equation. For the derivative �� /�t�u�x , t� we use the second formula of
�2.5� and obtain

�

�t
u�x,t� = ���t�

1

18
�

0

t

v�x,��t� − ��l�;l���2�t� + �2�l� − ���t� − ��l��2�dl

+ 2���t���t�
1

18
�

0

t

dl�
0

��t�−��l�

drv�x,r;l�

=
1

18
��2�t����

0

t

v�x,��t� − ��l�;l���l�dl

+
1

18
��2�t����

0

t

dl�
0

��t�−��l�

drv�x,r;l� .

For the second order derivative ��2 /�t2�u�x , t�, since 1
18��2�t���v�x ,0 ; t���t�=g�x , t� we derive

from the last equation
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�2

�t2u�x,t� = g�x,t� +
1

18
��2�t����

0

t

v�x,��t� − ��l�;l���l�dl

+
1

18
��2�t������t��

0

t

vr�x,��t� − ��l�;l���l�dl +
1

18
��2�t����

0

t

dl�
0

��t�−��l�

drv�x,r;l�

+
1

18
��2�t������t��

0

t

v�x,��t� − ��l�;l�dl . �2.9�

By means of the second formula of �2.5� and equation of �1.4� for the function �u we derive

�u�x,t� =
1

18
�

0

t

dl�
0

��t�−��l�

dr�r
2v�x,r;l���2�t� + �2�l� − r2� .

It follows

�u�x,t� =
1

9
��t��

0

t

�rv�x,��t� − ��l�;l���l�dl −
1

18
�

0

t

�rv�x,0;l���2�t� + �2�l��dl

+
1

9
�

0

t

dl�
0

��t�−��l�

drr�rv�x,r;l� .

Since �rv�x ,0 ; l�=0, one more integration by parts yields

�u�x,t� =
1

9
��t��

0

t

�rv�x,��t� − ��l�;l���l�dl +
1

9
�

0

t

v�x,��t� − ��l�;l����t� − ��l��dl

−
1

9
�

0

t

dl�
0

��t�−��l�

drv�x,r;l� . �2.10�

Hence according to �2.9� and �2.10� the application of the operator �t
2− t−4/3� to the function u

=u�x , t� gives

utt�x,t� − t−4/3�u�x,t� = g�x,t� +
1

18
��2�t����

0

t

v�x,��t� − ��l�;l���l�dl

+
1

18
��2�t������t��

0

t

vr�x,��t� − ��l�;l���l�dl

+
1

18
��2�t������t��

0

t

v�x,��t� − ��l�;l�dl

− t−4/3 1

9
��t��

0

t

vr�x,��t� − ��l�;l���l�dl

+
1

9
�

0

t

v�x,��t� − ��l�;l����t� − ��l��dl�
= g�x,t� +

1

18
��2�t����

0

t

v�x,��t� − ��l�;l���l�dl

+
1

18
��2�t������t��

0

t

v�x,��t� − ��l�;l�dl
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− t−4/31

9
�

0

t

v�x,��t� − ��l�;l����t� − ��l��dl

= g�x,t� +
1

18
��2�t������t��

0

t

v�x,��t� − ��l�;l�dl

− t−4/31

9
��t��

0

t

v�x,��t� − ��l�;l�dl

= g�x,t� .

Thus, for this case the theorem is proven.
One can allow more strong singularity of the source function f at t=0. More precisely, one can

reduce the case with such singularity to the one of Theorem 1.1 if the initial condition is modified.
That is done in the next theorem.

Theorem 2.1: Assume that f�x , t��C�n/2�+4�Rn� �0,��, t2f�x , t��C�Rn� �0,�� and that

��x
�f�x,t�� + �t�t�x

�f�x,t�� � C�t−2 for all t � �0,T�, x � Rn,

and for every �, �, ���� �n /2�+4, ���� �n /2�+3. Denote f0�x�ª limt→0 t2f�x , t� and suppose that
with some �
0 for the functions f�x , t� and f0�x��C�n/2�+4�Rn� the following inequality is ful-
filled:

��x
��tf�x,t� − t−1f0�x��� + �t�t�x

��tf�x,t� − t−1f0�x��� � C�t�−1 for all t � �0,T�, x � Rn,

and for every �, �, ���� �n /2�+2, ���� �n /2�+1.
Then the solution 	=	�x , t� of the problem,

	tt − t−4/3�	 + 2t−1	t = f�x,t�, t 
 0, x � Rn

lim
t→0

�t	�x,t�� = 0, lim
t→0

�t	t�x,t� + 	�x,t� − f0�x�ln t� = 0, x � Rn,� �2.11�

is given by

	�x,t� =
1

t
f0�x���t� +

1

18t
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2�

� �lv f�x,r;l� − l−1v f0
�x,r� + l−4/3��l��v f0

�x,r�� , �2.12�

where ��t�ª�0
t ln sds .

Proof: Consider the new unknown function w�x , t�ªu− f0�x���t�. Then

Sw�x,t� = tf�x,t� − S�f0�x���t�� = tf�x,t� − �t−1f0�x� − t−4/3��t��f0�x�� = h�x,t� ,

where we have denoted

h�x,t� ª t�f�x,t� − t−2f0�x�� + t−4/3��t��f0�x� .

According to the condition of the theorem with some �
0 we have

��x
�h�x,t�� + �t�t�x

�h�x,t�� � C�t�−1 for all t � �0,T�, x � Rn,

�, �, ���� �n /2�+2, ���� �n /2�+1, that allows us to write representation �2.5� for the solution
w=w�x , t�,
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w�x,t� =
1

18
�

0

t

dl�
0

��t�−��l�

drvh�x,r;l���2�t� + �2�l� − r2� . �2.13�

On the other hand, according to Theorem 1.1, the function w=w�x , t� satisfies initial conditions

lim
t→0

w�x,t� = 0, lim
t→0

wt�x,t� = 0. �2.14�

Consequently,

lim
t→0

u�x,t� = lim
t→0

�w�x,t� + f0�x���t�� = 0,

lim
t→0

�ut�x,t� − f0�x�ln t� = lim
t→0

wt�x,t� = 0.

For the function 	=	�x , t�= t−1u�x , t� this implies the initial conditions of �2.11�. To prove repre-
sentation formula �2.12�, we note that

vh�x,r;b� = vt�f�x,t�−t−2f0�x��+t−4/3��t��f0�x��x,r;b�

= vtf�x,t��x,r;b� − vt−1f0�x��x,r;b� + vt−4/3��t��f0�x��x,r;b�

= bv f�x,r;b� − b−1v f0
�x,r;b� + b−4/3��b��v f0

�x,r;b�

= bv f�x,r;b� − b−1v f0
�x,r� + b−4/3��b��v f0

�x,r� .

Then we use �2.13� to write

w�x,t� =
1

18
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2��lv f�x,r;l� − l−1v f0
�x,r� + l−4/3��l��v f0

�x,r�� .

Thus, the representation

u�x,t� = f0�x���t� +
1

18
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2�

� �lv f�x,r;l� − l−1v f0
�x,r� + l−4/3��l��v f0

�x,r��

implies �2.12�. Theorem is proven. �

The last theorem does not exhaust the possible singularities of the source terms. The next
theorem gives behavior of the solution as t→0 if the source term is more singular.

Theorem 2.2: Assume that f�x , t��C�n/2�+4�Rn� �0,�� and that with number a� �2,8 /3� one
has taf�x , t��C�Rn� �0,�� and

��x
�f�x,t�� + �t�t�x

�f�x,t�� � C�t−a for all t � �0,T�, x � Rn,

and for every �, �, ���� �n /2�+4, ���� �n /2�+1. Denote f0�x�ª limt→0 taf�x , t� and suppose that
with some �
0 for the functions f = f�x , t� and f0= f0�x��C�n/2�+4�Rn� the following inequality is
fulfilled:

��x
��tf�x,t� − t1−af0�x��� + �t�t�x

��tf�x,t� − t1−af0�x��� � C�t�−1 for all t � �0,T�, x � Rn,

and for every �, �, ���� �n /2�+2, ���� �n /2�+1. Denote ��t�ª �3−a�−1�2−a�−1t3−a.
Then the solution 	=	�x , t� of the problem,
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�
	tt − t−4/3�	 + 2t−1	t = f�x,t�, t 
 0, x � Rn

lim
t→0

�t	�x,t� −
1

�3 − a��2 − a�
t3−af0�x�� = 0, x � Rn

lim
t→0

�t	t�x,t� + 	�x,t� −
1

2 − a
t2−af0�x�� = 0, x � Rn,� �2.15�

is given by

	�x,t� =
1

t
f0�x���t� +

1

18t
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2�

� �lv f�x,r;l� − l1−av f0
�x,r� + l−4/3��l��v f0

�x,r�� . �2.16�

Proof: Consider the new unknown function w�x , t�ªu− f0�x���t�. Then

Sw�x,t� = tf�x,t� − S�f0�x���t�� = tf�x,t� − �t1−af0�x� − t−4/3��t��f0�x�� = h�x,t� ,

where we have denoted

h�x,t� ª t�f�x,t� − t−af0�x�� + t−4/3��t��f0�x� .

According to the condition of the theorem with some �
0 we have

��x
�h�x,t�� + �t�x

�ht�x,t�� � C�t�−1 for all t � �0,T�, x � Rn,

�, �, ���� �n /2�+2, ���� �n /2�+1, that allows us to write representation �2.13�. On the other
hand, according to Theorem 1.1, the function w=w�x , t� satisfies initial conditions �2.14�. Conse-
quently,

lim
t→0

�u�x,t� − f0�x���t�� = lim
t→0

w�x,t� = 0,

lim
t→0

�ut�x,t� − f0�x����t�� = lim
t→0

wt�x,t� = 0.

For the function 	=	�x , t�= t−1u�x , t� this implies the initial conditions,

lim
t→0

�t	�x,t� − f0�x���t�� = 0, lim
t→0

�t	t�x,t� + 	�x,t� − f0�x����t�� = 0,

which coincide with ones of �2.15�. To prove representation formula �2.16�, we note that

vh�x,r;b� = vt�f�x,t�−t−af0�x��+t−4/3��t��f0�x��x,r;b�

= vtf�x,t��x,r;b� − vt1−af0�x��x,r;b� + vt−4/3��t��f0�x��x,r;b�

= bv f�x,r;b� − b1−av f0
�x,r� + b−4/3��b��v f0

�x,r� .

Then

w�x,t� =
1

18
�

0

t

dl�
0

��t�−��l�

drvh�x,r;l���2�t� + �2�l� − r2�

=
1

18
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2�

� �lv f�x,r;l� − l1−av f0
�x,r� + l−4/3��l��v f0

�x,r�� .

Thus, the following representation
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u�x,t� = f0�x���t� +
1

18
�

0

t

dl�
0

��t�−��l�

dr��2�t� + �2�l� − r2�

� �lv f�x,r;l� − l1−av f0
�x,r� + l−4/3��l��v f0

�x,r��

for the function u=u�x , t� implies �2.16�. Theorem is proven. �

The case of ��0�. In this case f =0 and �1=0. One can find in the literature different ap-
proaches for the construction of the solutions of the Fuchsian and non-Fuchsian partial differential
equations. �See, e.g., Refs. 18 and 20.� The next two lemmas give for f =0 behavior of the
solutions of the equation of �1.10� near the point of singularity t=0 of the coefficients.

Lemma 2.3: For �0�C0
�n/2�+3�Rn� the function

u�x,t� = v�0
�x,3t1/3� − 3t1/3��rv�0

��x,3t1/3� �2.17�

solves the problem

Su = 0, x � Rn, t 
 0

lim
t→0

u�x,t� = �0�x�, lim
t→0

�ut�x,t� + 3t−1/3��0�x�� = 0, x � Rn.�
Here v��x ,3t1/3� is the value of the solution v�x ,r� to the Cauchy problem for the wave equation,
vrr−�v=0, v�x ,0�=��x�, vt�x ,0�=0, taken at the point �x ,r�= �x ,3t1/3� .

Proof: We verify it by straightforward calculations. It is evident that

�u�x,t� = �v�0
�x,3t1/3� − 3t1/3��r�v�0

�x,r��r=3t1/3. �2.18�

Denote

v0�x,t� = v�0
�x,3t1/3�, v1�x,t� = − 3t1/3��rv�0

�x,r��r=3t1/3.

Then, for the derivatives �tv0�x , t� and �t
2v0�x , t� we have

�tv0�x,t� = t−2/3��rv�0
�x,r��r=3t1/3,

�t
2v0�x,t� = −

2

3
t−5/3��rv�0

�x,r��r=3t1/3 + t−4/3��r
2v�0

�x,r��r=3t1/3.

At the mean time for the derivatives �tv1�x , t� and �t
2v1�x , t� we have

�tv1�x,t� = − t−2/3��rv�0
�x,r��r=3t1/3 − 3t−1/3��r

2v�0
�x,r��r=3t1/3,

�t
2v1�x,t� =

2

3
t−5/3��rv�0

�x,r��r=3t1/3 − 3t−1��r
3v�0

�x,r��r=3t1/3.

Hence, for the first order derivative �tu�x , t� and for the second order derivative �t
2u�x , t� we have

�tu�x,t� = − 3t−1/3��r
2v�0

�x,r��r=3t1/3,

�t
2u�x,t� = t−4/3��r

2v�0
�x,r��r=3t1/3 − 3t−1��r

3v�0
�x,r��r=3t1/3, �2.19�

respectively. Consequently, using �2.18� and �2.19�, and the definition of v� we obtain
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�t
2u�x,t� − t−4/3�u�x,t� = t−4/3��r

2v�0
�x,r��r=3t1/3 − 3t−1��r

3v�0
�x,r��r=3t1/3 − t−4/3��v�0

�x,r��r=3t1/3

+ 3t−1��r�v�0
�x,r��r=3t1/3

= t−4/3��r
2v�0

�x,r� − �v�0
�x,r��r=3t1/3 − 3t−1��r��r

2v�0
�x,r� − �v�0

�x,r���r=3t1/3

= 0.

Thus, the function u=u�x , t� solves the equation utt�x , t�− t−4/3�u�x , t�=0. Lemma is proven. �

Corollary 2.4: The function 	= t−1u�x , t� solves the problem (1.10) with �1=0 and with f =0,
that is,

	tt�x,t� − t−4/3�	�x,t� + 2t−1	t�x,t� = 0

lim
t→0

t	�x,t� = �0, lim
t→0

�t	t�x,t� + 	�x,t� + 3t−1/3��0�x�� = 0, x � Rn.�
In particular, the corollary shows that for the given dimension n�N Huygens’ principle is valid
for some particular waves propagating in the Einstein and de Sitter model of the universe if and
only if it is valid for the waves propagating in Minkowski space-time �cf. with Refs. 26, 32, and
36�.

The case of ��1�. In this case f =0 and �0=0.
Lemma 2.5: For �1�C0

�n/2�+2�Rn� the function

u�x,t� = t
3

2
�

0

1

v�1
�x,��t�s��1 − s2�ds, x � Rn, t 
 0, �2.20�

solves the problem

Su = 0, x � Rn, t 
 0

lim
t→0

u�x,t� = 0, lim
t→0

ut�x,t� = �1�x�, x � Rn.�
Here v��x ,��t�s� is the value of the solution v�x ,r� to the Cauchy problem for the wave equation,
vrr−�v=0, v�x ,0�=��x�, vt�x ,0�=0, taken at the point �x ,r�= �x ,��t�s�, while ��t�=3t1/3.

Proof: We prove the lemma by straightforward calculations. We have

u�x,t� = t
3

2
�

0

1

v�1
�x,��t�s��1 − s2�ds =

1

18
�

0

��t�

v�1
�x,r���2�t� − r2�dr .

For the first order derivative we derive

�tu�x,t� = �t
1

18
�

0

��t�

v�1
�x,r���2�t� − r2�dr =

1

3
t−1/3�

0

��t�

v�1
�x,r�dr ,

while for the second order derivative using the last equation and integration by parts, we obtain

�t
2u�x,t� = −

1

9
t−4/3�

0

��t�

v�1
�x,r�dr +

1

3
t−1v�1

�x,��t��

= −
1

9
t−4/3�v�1

�x,r�r�0
��t� − �

0

��t�

r��rv�1
��x,r�dr� +

1

3
t−1v�1

�x,��t��

= −
1

9
t−4/3�v�1

�x,��t����t� − �
0

��t�

r��rv�1
��x,r�dr� +

1

3
t−1v�1

�x,��t�� .

Consequently,
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�t
2u�x,t� =

1

9
t−4/3�

0

��t�

r��rv�1
��x,r�dr . �2.21�

At the same time, we have

�u�x,t� =
1

18
�

0

��t�

�v�1
�x,r���2�t� − r2�dr . �2.22�

Then Eqs. �2.21� and �2.22� imply

utt�x,t� − t−4/3�u�x,t� =
1

9
t−4/3� r2

2
��rv�1

��x,r��0
��t� − �

0

��t� r2

2
��r

2v�1
��x,r�dr�

− t−4/3 1

18
�

0

��t�

�v�1
�x,r���2�t� − r2�dr

=
1

9
t−4/3��2�t�

2
��rv�1

��x,��t�� − �
0

��t� r2

2
��r

2v�1
��x,r�dr�

− t−4/3 1

18
�

0

��t�

�v�1
�x,r���2�t� − r2�dr

=
1

18
t−4/3�2�t���rv�1

��x,��t�� −
1

18
t−4/3�

0

��t�

r2��r
2v�1

��x,r�dr

− t−4/3 1

18
�

0

��t�

�v�1
�x,r���2�t� − r2�dr

=
1

2
t−2/3��rv�1

��x,��t�� −
1

2
t−2/3�

0

��t�

�v�1
�x,r�dr .

The definition of the function v�1
suggests that the function u=u�x , t� solves the equation

utt�x,t� − t−4/3�u�x,t� =
1

2
t−2/3��rv�1

��x,��t�� − �
0

��t�

��r
2v�1

��x,r�dr� = 0.

Finally, we verify the second initial condition by means of the l’Hospital’s rule,

lim
t→0

ut�x,t� = lim
t→0

1

3
t−1/3�

0

��t�

v�1
�x,r�dr = lim

t→0
v�1

�x,��t�� = v�1
�x,0� = �1�x� .

Lemma is proven. �

Corollary 2.6: The function 	= t−1u�x , t� solves the problem (1.10) with �0=0 and without
source term f, that is,

	tt − t−4/3�	 + 2t−1	t = 0, t 
 0, x � Rn

lim
t→0

t	�x,t� = 0, lim
t→0

�t	t�x,t� + 	�x,t�� = �1�x�, x � Rn.�
The last corollary completes the proof of Theorem 1.1. �

In particular, Corollary 2.4 and Corollary 2.6 show that, because of the integration in the
formula �2.20�, for all n�N Huygens’ principle is not valid for waves propagating in the Einstein
and de Sitter model of the universe, unless �1=0 and f =0.
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III. Lp−Lq ESTIMATES

The representation formula �1.11� of Theorem 1.1 can be used to reproduce for the solutions
of the wave equation in Einstein and de Sitter space-time some important properties which possess
the solutions of the wave equation in Minkowski space-time. Among them there are estimates of
the norm of solution in various functional spaces, such as Lp, Sobolev spaces, Besov spaces, and
others. These estimates provide a useful tool to prove local and global in time existence
theorems.24,27,34,35

In this short note we derive such estimates in the Lebesgue spaces only. First we remind these
estimates. If n�2, then for the solution v=v�x , t� of the Cauchy problem for the wave equation in
Minkowski space-time

vtt − �v = 0, v�x,0� = ��x�, vt�x,0� = 0, �3.1�

with ��x��C0
�Rn� one has �see, e.g., Refs. 3 and 21� the following so-called Lp−Lq decay

estimate:

��− ��−sv�· ,t��Lq�Rn� � Ct2s−n�1/p−1/q����Lp�Rn� for all t 
 0, �3.2�

provided that s�0, 1� p�2, 1 / p+1 /q=1, and �1 /2��n+1��1 / p−1 /q��2s�n�1 / p−1 /q�.
Then, for the solution v=v�x , t� of the Cauchy problem for the wave equation,

vtt − �v = 0, v�x,0� = 0, vt�x,0� = ��x� , �3.3�

there is the Lp−Lq estimate

��− ��−sv�· ,t��Lq�Rn� � Ct2s+1−n�1/p−1/q����Lp�Rn� for all t 
 0, �3.4�

under the conditions s�0, 1� p�2, 1 / p+1 /q=1, and �1 /2��n+1��1 / p−1 /q�−1�2s�n�1 / p
−1 /q�.

The case of ��0�. According to Theorem 1.1, for the problem with �1=0 and f =0 the function
	=	�x , t� can be represented as follows:

	�x,t� = t−1v�0
�x,3t1/3� − 3t−2/3��tv�0

��x,3t1/3� . �3.5�

Here for �0�C0
�Rn� the function v�0

�x ,3t1/3� coincides with the value v�x ,3t1/3� of the solution
v�x , t� of the Cauchy problem �3.1�. Hence for s�0 by means of application of �3.2� we obtain

��− ��−sv�0
�· ,3t1/3��Lq�Rn� � Ct�1/3��2s−n�1/p−1/q����0�Lp�Rn�, t 
 0.

To estimate the second term of �3.5� we apply �3.4� with s�0,

��− ��−s��rv�0
��· ,3t1/3��Lq�Rn� � Ct�1/3��2s+1−n�1/p−1/q�����0�Lp�Rn�, t 
 0,

provided that �1 /2��n+1��1 / p−1 /q�−1�2s�n�1 / p−1 /q�. Consequently, if s�0, 1� p�2,
1 / p+1 /q=1, and �1 /2��n+1��1 / p−1 /q��2s�n�1 / p−1 /q�, then for the problem with �1=0 and
f =0 we obtain

��− ��−s	�· ,t��Lq�Rn� � Ct−1+�1/3��2s−n�1/p−1/q����0�Lp�Rn� + Ct−2/3t�1/3��2s+1−n�1/p−1/q�����0�Lp�Rn�

� Ct�1/3��2s−n�1/p−1/q���t−1��0�Lp�Rn� + t−1/3���0�Lp�Rn��, t 
 0.

Thus, we have proven the following proposition.
Proposition 3.1: Suppose that s�0, 1� p�2, 1 / p+1 /q=1, and �1 /2��n+1��1 / p−1 /q�

�2s�n�1 / p−1 /q�. Then the solution 	=	�x , t� to the problem

	tt − t−4/3�	 + 2t−1	t = 0, t 
 0, x � Rn

lim
t→0

t	�x,t� = �0�x�, lim
t→0

�t	t�x,t� + 	�x,t� + 3t−1/3��0�x�� = 0, x � Rn,�
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with �0�C0
�Rn� satisfies the following estimate:

��− ��−s	�· ,t��Lq�Rn� � Ct�1/3��2s−1−n�1/p−1/q���t−2/3��0�Lp�Rn� + ���0�Lp�Rn��, t 
 0, �3.6�

with the constant C independent of �0.
The case of ��1�. For the problem with �0=0 and f =0 the function 	=	�x , t� due to Theorem

1.1 can be represented as follows:

	�x,t� =
3

2
�

0

1

v�1
�x,��t�s��1 − s2�ds, x � Rn, t 
 0.

Then we obtain for s, n, p, and q such that 2s−n�1 / p−1 /q�
−1, the following estimate:

��− ��−s	�· ,t��Lq�Rn� �
3

2
�

0

1

��− ��−sv�1
�· ,��t�s��Lq�Rn��1 − s2�ds

� C�
0

1

t�1/3��2s−n�1/p−1/q��s�2s−n�1/p−1/q����1�Lp�Rn��1 − s2�ds

� Ct�1/3��2s−n�1/p−1/q����1�Lp�Rn��
0

1

s2s−n�1/p−1/q��1 − s2�ds .

Thus, in this case we have proven the following proposition.
Proposition 3.2: Suppose that s�0, 1� p�2, 1 / p+1 /q=1, 2s−n�1 / p−1 /q�
−1, and

�1 /2��n+1��1 / p−1 /q��2s�n�1 / p−1 /q�. Then the solution 	=	�x , t� to the problem

	tt − t−4/3�	 + 2t−1	t = 0, t 
 0, x � Rn

lim
t→0

t	�x,t� = 0, lim
t→0

�t	t�x,t� + 	�x,t�� = �1�x�, x � Rn,�
with �1�C0

�Rn� satisfies the following estimate:

��− ��−s	�· ,t��Lq�Rn� � Ct�1/3��2s−n�1/p−1/q����1�Lp�Rn�, t 
 0, �3.7�

with the constant C independent of �1.
The case of �f�. According to Theorem 1.1, for the problem with �0=0 and �1=0 the function

	=	�x , t� can be represented as follows:

	�x,t� =
3

2
t2�

0

1

db�
0

1−b1/3

d�bv f�x,3t1/3�;tb��1 + b2/3 − �2� .

Consequently, for the problem with �0=0, �1=0, and the function f satisfying conditions of the
theorem, by application of �3.2� we obtain

��− ��−s	�· ,t��Lq�Rn� �
3

2
t2�

0

1

db�
0

1−b1/3

d�b��− ��−sv f�· ,3t1/3�;tb��Lq�Rn��1 + b2/3 − �2�

� Ct2�
0

1

db�
0

1−b1/3

d�bt�1/3��2s−n�1/p−1/q���2s−n�1/p−1/q��f�· ,tb��Lp�Rn��1 + b2/3 − �2� .

For a=2s−n�1 / p−1 /q�
−1 one has

�
0

1−b1/3

�a�1 + b2/3 − �2�d� =
2

�a + 1��a + 3�
�1 − b1/3�a+1�1 + �a + 1�b1/3 + b2/3� .

Hence,
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��− ��−s	�· ,t��Lq�Rn�

� Ct2+�1/3��2s−n�1/p−1/q���
0

1

b�f�· ,tb��Lp�Rn�db�
0

1−b1/3

�2s−n�1/p−1/q��1 + b2/3 − �2�d�

� Cn,p,q,st
2+�1/3��2s−n�1/p−1/q���

0

1

b�f�· ,tb��Lp�Rn��1 − b1/3�a+1�1 + �a + 1�b1/3 + b2/3�db

� Cn,p,q,st
2+�1/3��2s−n�1/p−1/q���

0

1

b�f�· ,tb��Lp�Rn��1 − b1/3�2s−n�1/p−1/q�+1db .

Thus, in this case we have proven the following proposition.
Proposition 3.3: Suppose that s�0, 1� p�2, 1 / p+1 /q=1, 2s−n�1 / p−1 /q�
−1, and

�1 /2��n+1��1 / p−1 /q��2s�n�1 / p−1 /q�, and that the function f satisfies conditions of Theorem
1.1. Then for the solution 	=	�x , t� to the problem,

	tt − t−4/3�	 + 2t−1	t = f�x,t�, t 
 0, x � Rn

lim
t→0

t	�x,t� = 0, lim
t→0

�t	t�x,t� + 	�x,t�� = 0, x � Rn,�
the following estimate:

��− ��−s	�· ,t��Lq�Rn� � Cn,p,q,st
�1/3��2s−n�1/p−1/q���

0

t

��f�· ,���Lp�Rn�d�

holds with the constant Cn,p,q,s independent of f.
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