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Introduction

In 1950’s, homological algebra was introduced to commutative ring theory and
new aspects of the theory were developed. One of the major topics of them is
the theory of Gorenstein rings which was begun to study by Grothendieck in the
theory of commutative noetherian rings. Gorenstein rings have many interest-
ing homological properties, which are sometimes called “Gorenstein properties”,
and play important roles in algebraic geometry. The properties of Gorenstein
rings are deeply studied by Bass (1963). A commutative noetherian ring R is
said to be Gorenstein if inj dim R, R, <0 for all prime ideals p € Spec(R),
where Ry denotes the localization of R at p and inj dim R, R, denotes the in-
jective dimension of R, as an Rp-module. If R is Gorenstein with dim R =n
then inj dim Rr = n and if R is Gorenstein with dim R = 0 then R is selfinjec-
tive. Recently, several people have tried to generalize Gorenstein properties to
Noether algebras. Let R be a commutative noetherian ring and A an R-algebra,
ie., Ais aring endowed with a ring homomorphism R — A whose image is con-
tained in the center of A. Then A is said to be a Noether R-algebra if A is
finitely generated as an R-module. Generally speaking, Noether algebras with
Gorenstein properties are called “ Gorenstein algebras”. There are several differ-
ent ways to define Gorenstein algebras. For instance, Goto and Nishida (2002)
proposed to call a Noether R-algebra A Gorenstein provided that the Cousin
complex of A yields a minimal injective resolution of A4, which is equivalent
to that A is Cohen-Macaulay as an R-module and inj dim A, Ay = dim A, R,
for all p € Supp(A) = {p € Spec(R) | A, # 0}. Also, in case R is artinian,
Auslander and Reiten (1991) proposed to call an Artin R-algebra A Gorenstein
provided that inj dim 44 = inj dim A4 < oo. In this thesis, we deal with both
Gorenstein algebras A in the sense of Goto and Nishida and Noether algebras
A with inj dim 4A = inj dim A4 < co.

Bernstein, Gel'fand and Ponomarev (1973) introduced the classical tilting
theory to the representation theory of finite dimensional algebras over a field
by translating the notion of reflections in root systems into the representation
theory of oriented graphs. The classical tilting theory was developed by Brenner
and Butler (1980) and completed by Happel and Ringel (1982) as the theory of
classical tilting modules. A few years later Happel (1986) and Cline, Parshall
and Scott (1986) showed that there is an equivalence of triangulated categories
between DP(mod-A), the derived category of bounded complexes of finitely



generated right A-modules over a finite dimensional algebra A over a field, and
DP(mod-B) with B = End4(T) for any classical tilting right A-module T. Af-
ter the generalization by Miyashita (1985), the notion of tilting modules was
extended to that of tilting complexes by Rickard (1989) and he established the
theory of derived equivalences. For a ring 4, a cochain complex P* € K>(P4)
is said to be a tilting complex if Homg(moa-4)(P*®, P*[i]) = O for ¢ # 0 and
add(P*) generates K°(P4) as a triangulated category, where P4 denotes the
category of finitely generated projective right A-modules, XP(P,4) denotes the
homotopy category of bounded complexes over P4, Mod-A denotes the cate-
gory of right A-modules, KX(Mod-A) denotes the homotopy category of bounded
complexes over Mod-A, (—)[¢] denotes the shift functor and add(P*) denotes
the full additive subcategory of K(Mod-A) whose objects are direct summands
of finite direct sums of copies of P*. Then A and B = Endg(moq-4)(P*) are
derived equivalent. In this thesis, we study the Gorenstein properties of Noether
algebras by using the theory of derived equivalences.

In Chapter 1, we introduce a notion of Gorenstein algebras as a generaliza-
tion of selfinjective Artin algebras. Let R be a commutative Gorenstein ring and
A a Noether R-algebra. We call A Gorenstein provided that A has Gorenstein
dimension zero as an R-module and that DA is a projective generator in the cat-
egory of right A-modules, where D = Hompg(—, R). Assume A is a Gorenstein
R-algebra. We see that A satisfies the Auslander condition and has selfinjective
dimension at most dim R on both sides. It follows that A is a Gorenstein alge-
bra in the sense of Auslander and Reiten if sup{dim R, | p € Supp(4)} < oo.
In case A is commutative, 4 is a Gorenstein ring. Also, in case dim R =0, A
is a selfinjective Artin algebra. Furthermore, for any prime ideal p of R with
Ap # 0 we will see that Ay is maximal Cohen-Macaulay as an Rp-module and
has selfinjective dimension equal to dim R, on both sides. It follows that A
is a Gorenstein algebra in the sense of Goto and Nishida {Proposition 1.3.7).
Next we study derived equivalences for Gorenstein algebras. Let P* be a tilting
complex over A and B = Endg(rog-4)(P*). We show that B is a Gorenstein
R-algebra if and only if add(P*) = add(vP*), where v = DoHoms(—, A) (The-
orem 1.4.5). Furthermore, we provide an example of A and P* such that B does
not have Gorenstein dimension zero as an R-module (Example 1.4.7).

In Chapter 2, we deal with Noether algebras A which are Gorenstein in the
sense of Auslander and Reiten, i.e., Noether algebras A such that inj dim 44 =
inj dim A4 < o0. Note that A itself is a dualizing complex for A if and only
if inj dim 44 = inj dim A4 < oco. Let R be a commutative noetherian ring
and A a Noether R-algebra. We set A° = A°P @ A, where A°P denotes the
opposite ring of A. Take a minimal injective resolution R — I* in Mod-R
and set V* = Homp (A, I*) € KT (Mod-4°). In this chapter, we are mainly
concerned with the case where V* is a dualizing complex for A. We see that
V* is a dualizing complex for A if and only if R, is a Gorenstein ring for
all p € Supp(4) and sup{dim R, | p € Supp(4)} < oo (Propositions 2.3.7
and 2.3.8). Assume V* is a dualizing complex for A. Then we show that the
following statements are equivalent: (1) inj dim 44 = injdim A4 < oo; (2)



there exists a quasi-isomorphism P* — V*® in (Mod-A) with P* € XP(P,4)
a tilting complex such that 4 & Endgx(mod-4)(P*); (3) there exists a quasi-
isomorphism Q* — V* in X(Mod-A°P) with Q°* € K"(Paer) a tilting complex
such that A = Endy(mod.40r)(@°)°P; and (4) there exist quasi-isomorphisms
P* — V* in K(Mod-A) with P* € X®(P4) and Q* — V* in K(Mod-A°P) with
Q* € KP(P4or) (Theorem 2.3.9). Namely, A itself is a dualizing complex for A
if and only if V* is quasi-isomorphic to tilting complexes in both sides. Assume
further that A itself is a dualizing complex for A. Then we show that the functor
— ®L V* induces a self-equivalence of D°(mod-A) (Theorem 2.4.7).

In Chapter 3, we study derived equivalences for selfinjective Artin alge-
bras. Let A be an Artin algebra. Rickard raised a question whether a complex
P* € X°(P,) with Homg (Moa.4)(P®, P°[i]) = O for i # 0 is a tilting complex
or not if the number of nonisomorphic indecomposable direct summands of P*
coincides with the rank of Ky(A), the Grothendieck group of A. Our first aim of
this chapter is to show that if A is a representation-finite selfinjective Artin al-
gebra then every P* € K°(P,) with Homu(mod-4) (P*, P*[i]) = 0 for i % 0 and
add(P*) = add(vP*), where v is the Nakayama functor, is a direct summand of a
tilting complex (Theorem 3.3.6). Our second aim of this chapter is to show that
for any derived equivalent representation-finite selfinjective Artin algebras A, B
there exists a sequence of selfinjective Artin algebras A = By, By, -+ , B =B
such that, for any 0 < 1 < m, B;;1 is the endomorphism algebra of a tilting
complex for B; of length < 1 (Theorem 3.3.7).

In Chapter 4, we deal with Frobenius extensions. Let A be aring and e € A
an idempotent. Assume A contains a subring R such that ze = ex for all
z € R, Aep is finitely generated and eA 4 is embedded in Hompg(Ae, Rg)a as a
submodule. Then there exists a tilting complex of the form

T 5 0—=T 15T 50—

such that T° € add((1 — e)44), T~ € add(eAa) and eA[l] € add(T*). This
type of tilting complex plays an important role in the theory of derived equiv-
alences. Our aim in this chapter is to provide a way to construct extensions
A of a given ring R containing such an idempotent. To do so, we need the
notion of Frobenius extensions of rings due to Nakayama and Tsuzuku which
we modify as follows. Let A be a ring containing a ring R as a subring. Then
A is said to be a Frobenius extension of R if Ag and rA are finitely generated
projective and A4 = Hompg(4, Rg)a and a4 = 4Hompg(A, rR). We see that
if R is Auslander-Gorenstein then so is A. Next, for any integer n > 1, any
permutation m of I = {1,---,n} and any ring R, we provide a way to con-
struct a Frobenius extension A of R. Then 1 = )., e; with the e; orthogonal
idempotents in A and for any nonempty n-stable subset J of I we get a desired
idempotent e = 3 jed €5 Finally, we show that if R contains a regular element
and if 7 # 7 (1) then A is derived equivalent to a generalized triangular matrix
ring
e;Ae; Extz (A/AelA, eiA)
0 A /AeiA ’
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Chapter 1

Derived equivalences and
Gorenstein algebras

In this chapter, extending the notion of selfinjective Artin algebras to Noether
algebras, we introduce a notion of Gorenstein algebras. Our main aim is to pro-
vide a necessary and sufficient condition for a tilting complex over a Gorenstein
algebra to have a Gorenstein algebra as the endomorphism algebra.

Let R be a commutative noetherian ring and A a Noether R-algebra, i.e.,
A is a ring endowed with a ring homomorphism B — A whose image is con-
tained in the center of A and A is finitely generated as an R-module. To define
the Gorensteinness for A, we assume the base ring R is a Gorenstein ring (see
[11]). Then we call A a Gorenstein R-algebra provided that A has Gorenstein
dimension zero as an R-module (see [7]) and that DA is a projective generator
in the category of right A-modules, where D = Hompg(—, R). Assume A is a
Gorenstein R-algebra. We will see in Section 3 that A satisfies the Auslander
condition (see [12]) and has selfinjective dimension at most dim R on both sides,
where dim R denotes the Krull dimension of R. In particular, in case A is com-
mutative, A is a Gorenstein ring. Also, in case dim R = 0, A is a selfinjective
Artin algebra. Furthermore, for any prime ideal p of R with A, # 0 we will
see that Ay is maximal Cohen-Macaulay as an Ry-module and has selfinjective
dimension equal to dim R, on both sides. It follows that A is a Gorenstein
algebra in the sense of [18] in which the theory of Gorenstein algebras is studied
in detail. So we refer to [18] for the relationship of the notion of Gorenstein al-
gebras to the theory of commutative Gorenstein rings. Next, let P* be a tilting
complex (see [39]) over A and denote by B the endomorphism algebra of P°
in the homotopy category. We will show in Section 4 that B is a Gorenstein
R-algebra if and only if add(P*) = add(vP*), where v = D o Hom4(—, A4), and
that if A 2 DA as A-bimodules then B is a Gorenstein R-algebra with B = DB
as B-bimodules. Furthermore, we will provide an example of A and P* such

This chapter is based on my joint paper with M. Hoshino [3].
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that B does not have Gorenstein dimension zero as an R-module. On the other
hand, we will show in Section 5 that if P* is associated with a certain sequence
of idempotents in A then the condition add(P*) = add(vP*) is always satisfied.
There 1s another notion of Gorenstein algebras. Consider the case where R is
an artinian Gorenstein ring. Then an R-algebra A is sometimes called a Goren-
stein algebra if inj dim 24 = inj dim A4 < oo (see e.g. [8]). It follows by [34,
Proposition 1.6] that an R-algebra A is a Gorenstein algebra in this sense if and
only if D(4A) is a tilting module. We will extend this fact to the case where R
is a Gorenstein ring with dim R < oo.

For a ring A, we denote by Mod-A the category of right A-modules and
mod-A the full subcategory of Mod-A consisting of finitely presented modules.
We denote by A°P the opposite ring of A and consider left A-modules as right
A°P-modules. Sometimes, we use the notation X4 (resp., aX) to stress that
the module X considered is a right (resp., left) A-module. In particular, we
denote by inj dim X4 (resp., inj dim 4X) the injective dimension of a right
(resp., left) A-module X. A similar notation is used for projective and flat di-
mensions. In this chapter, complexes are cochain complexes of modules and as
usual modules are considered as complexes concentrated in degree zero. For a
complex X* and an integer n € Z, we denote by B*(X*), Z*(X*), B™(X*),
Z/™(X*) and H*(X*) the n-th boundary, the n-th cycle, the n-th coboundary,
the n-th cocycle and the n-th cohomology of X*, respectively. We denote by
K(Mod-A) (resp., D(Mod-A)) the homotopy (resp., derived) category of com-
plexes of right A-modules and by K*(Mod-A4), X~ (Mod-A), X?(Mod-A) (resp.,
D+ (Mod-A), D~ (Mod-A), D°(Mod-A)) the full triangulated subcategories of
K(Mod-A) (resp., D(Mod-A)) consisting of bounded below complexes, bounded
above complexes and bounded complexes, respectively. We denote by P4 the
full subcategory of mod-A consisting of finitely generated projective modules
and by X*(P4) the full triangulated subcategory of X*(Mod-A) consisting of
complexes whose terms belong to P4, where x = 4+, —, b or nothing. We use the
notation Hom®(—, =) (resp., — ®°® —) to denote the single complex associated
with the double hom (resp., tensor) complex. Finally, for an object X in an
additive category % we denote by add(X) the full additive subcategory of 2
whose objects are direct summands of finite direct sums of copies of X and by

@ X the direct sum of n copies of X.

We refer to [13], [22], [43] for basic results in the theory of derived categories
and to [39] for definitions and basic properties of derived equivalences and tilting
complexes. Also, we refer to [15] for standard homological algebra in module
categories and to [33] for standard commutative ring theory.

1.1 Preliminaries

Throughout this chapter, R is a commutative ring and A is an R-algebra, ie., A
is a ring endowed with a ring homomorphism R — A whose image is contained
in the center of A. We assume further that R is a noetherian ring and A is a
Noether R-algebra, i.e., A is finitely generated as an R-module. Note that A is

8



a left and right noetherian ring. In particular, mod-A is abelian and consists of
all finitely generated right A-modules. We set D = Hompg(—, R). Note that for
any X € Mod-A we have a functorial isomorphism in Mod-A°P

DX = Homa (X, DA), b (z+ (a — h(za))).

For R-algebras A, B we identify an (A°°®g B)-module X with an 4-B-bimodule
X such that rz = zr for all T € R and z € X. Also, for an R-algebra A we set
A® = AP ®p A. We identify (A°P)°P with A and (A4°)°P with A°.

In this section, we recall several definitions and basic facts which we need in
later sections.

Definition 1.1.1. A module X € Mod-R is said to be reflexive if the canonical
homomorphism

‘ ex: X —= D?*X,z (h+ h(z))
is an isomorphism, where D*X = D(DX).

Definition 1.1.2 ([7]). A module X € mod-R is said to have Gorenstein
dimension zero if X is reflexive, Exth (X, R) = 0 for i > 0 and Ext% (DX, R) = 0
for © > 0. We denote by Gg the full additive subcategory of mod-R consisting
of modules which have Gorenstein dimension zero.

Lemma 1.1.3 ([7, Lemma 3.10]). Let 0 > X — Y — Z — 0 be an ezact
sequence in mod-R. Then the following hold.

(1) I Y, Z € Gg, then X € Gr.
(2) Assume Extk(Z,R) =0. If X,Y € Gg, then Z € Gg.

Proof. See the proof of [7, Lemma 3.10]. a
Lemma 1.1.4. For any X* € X(Mod-R) we have a functorial homomorphism
Exe : HY(DX*) — DH(X*®)

and the following hold.
(1) If BO(DX*) = DB°(X*) canonically, then £x+ is monic.

(2) If B9(DX*) = DB(X*) canonically and Extk(B°(X*),R) = 0, then
Exe is an isomorphism.

Proof. We have functorial commutative diagrams in Mod-R with exact rows
0 —— B(DX*) —— DX° —— Z%DX*) —— 0

- ” e

0 — DB®(X*) —— DX° — DZO(X*),



0 — — HY(DX*) — Z%(DX*) —— DX~!
§x°l l(x' “
0 — DH%(X*) —— DZ%(X*) — DXL

Assume 7x. is an isomorphism. Then (x+ is monic and so is £x+. Furthermore,
if Extp(B°(X*),R) = 0, then DX° — DZ°(X"*) is epic, so that {x+ and hence
Ex+ are isomorphisms. O

Recall that rings A, B are said to be derived equivalent if KP(P,), X°(Pg)
are equivalent as triangulated categories (see [39] for details). Since A is a
Noether R-algebra, every ring B derived equivalent to A is also a Noether R-
algebra ([39, Proposition 9.4]).

Lemma 1.1.5. Let A, B be derived equivalent R-algebras. Let F : XP(Pg) >
KB(P4) be an equivalence of triangulated categories and F* : XKP(P4) = X°(Pg)
a quasi-inverse of F. Set P* = F(B) € X°(P4) and Q* = Homp(F*(A), B) €
KP(Pper). Then for anyi € Z we have an isomorphism in Mod-(B°P ®g A)

Homg (mod-4) (4, P*[d]) 2 Homgc(Moa-por) (B, Q°[4])
and an isomorphism in Mod-(A% ®p B)

Homgy(Mod-4)(P*, A[#]) = Homy (Moa-peor) (Q°, Bli]).
Proof. Set

G = FoHompye(—,B) : X°(Pger) — K°(Pa),
G* = Hom}(—, B) o F* : K°(P4) — K> (Ppges).
Then for any 7 € Z we have a bifunctorial isomorphism
HomIK(Mod—A) (X.a G(Y.)[l]) = Home(Mod-B°P) (Y,7 G* (X.)[ZD
for X* € KP(Pa) and Y* € KP(Pgop). Since G(B) = P* in K(Mod-A) and
G*(A) =2 Q* in X(Mod-B°P), and since G*(P*) = B in X(Mod-B°P) and
G(Q®) = A in K(Mod-A), the assertions follow. a

In several places below, our argument will depend on the term length of a
complex. So we truncate redundant terms of complexes. To do so, we need the
following.

Remark 1.1.6. For any P* € K(P4) the following hold.

(1) We have a functorial isomorphism of complexes

P* 5 Hom%.p (Hom$ (P*, A), A).
(2) If P* € X~ (P4) and H'(P*) = 0 for all i € Z, then P* = 0 in X(Mod-A).
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(3) If P* € X+(P4) and Hi(Hom’,(P*, A)) = 0 for all i € Z, then P* = 0 in
K (Mod-A).

Now, for any complex X* and n € Z we define the following truncations:

Ton(X®) o = 0= B(X*) = X" o XM
ggn(X');,.._,Xn—z_,Xn—l__)Zn(X.)_)O_)_._,
ojzn(X')1'“—*0—>Z’”(X')—->X"+1—>X"+2_>...,
oL (X)X XML S BY(X) o 0 e

Remark 1.1.7. For any P* € X(P4) and n € Z the following hold.

(1) If P* € X~ (P4) and HY(P*) = 0 for i > n, then o<, (P*) € X~(P4) and
P* = g4, (P*) in X(Mod-A).
(2) If P* € %*(P4) and H~"(Hom}(P*, A)) = 0 for i < n, then o} ,(P*) €
X*(Pa) and P* = 0%, (P*) in X(Mod-A).
Proof. (1) It follows by the assumption that o5, (P*) = 0 in X(Mod-A) and
B(P*) € P4. Since the exact sequence 0 — Z"(P*) — P™* — B"(P*) = 0 in
Mod-A splits, 0<,(P*) € X~ (Pa) and P* = 0¢,(P*) ® 05, (P*) as complexes,
so that P* & 0<,(P*) in X(Mod-A).
(2) Set @* = Hom}(P*,A) € X~ (P4er). Since H{(Q*) =0 for i > —n, by
(1) 0<-n(Q") € K~ (Paer) and Q° = 0<_,(Q*) in X(Mod-A°?). Thus we have
isomorphisms in X(Mod-A)
P* >~ Hom%.:(Q"%, 4)
2 Home (7-n(@"), )
= 0{>‘n (Hom;@" (Q.7A))
= oL, (P°).

0
Definition 1.1.8. For any P* € X~ (P4) with P* # 0 in X(Mod-A) we set
o(P*) = supli € Z | H¥(P*) #0)
and for any P* € X*(P4) with P* # 0 in X(Mod-A) we set
b(P*) = inf{i € Z | H™*(Hom% (P*, A)) # 0}.

Then for any P* € XP(P4) with P* # 0 in X(Mod-A) we set [(P*) = a(P*) -
b{P*).

Recall that an idempotent e € A is said to be primitive if eA is an indecom-
posable A-module and to be local if ede & End4(eA) is a local ring. Then a
ring A is said to be semipexfect if 1 =e; + -+ +e, in A with the e; orthogonal
local idempotents (cf. [10]).
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Lemma 1.1.9. Assume R is a complete local ring. Then A is semiperfect and
the Krull-Schmidt theorem holds in mod-A, i.e., for any nonzero X € mod-A
the following hold.

(1) X decomposes into a direct sum of indecomposable submodules.
(2) X is indecomposable if and only if End4(X) is local.

Proof. This is well known but for the benefit of the reader we include a proof.
Let m be the maximal ideal of R and I an injective envelope of R/m in Mod-R.
Since A is right noetherian, A = e; A®- - -® e, A with the e; orthogonal primitive
idempotents. Furthermore, every Hompg/(e; A4, I) € Mod-A°P is indecomposable
injective and hence e;Ae; & Ends(e;A) ¢ End ger (Homp(e; A, I))°P is local.
Next, for any nonzero X € mod-A, End4(X) is a Noether R-algebra and hence
is semiperfect. The last assertion follows. O

1.2 Nakayama functor

In the following, we set v = D o Homa(—, A) which we call the Nakayama
functor for A. Note that for any P € P4 we have a functorial isomorphism in
Mod-A

P®4 DA vPz®h (9 h(g(2))).

Lemma 1.2.1. For any P* € X®(P4) and Q* € X(Mod-A) we have a bifunc-
torial isomorphism of complexes

DHom (P*, Q") = Hom% (Q°*,vP*).
Proof. For any P € P4 and Q € Mod-A, we have a bifunctorial isomorphism
Q®4 Homa(P, A) = Homa(P,Q),z ® h + (a — zh(a))
and hence bifunctorial isomorphisms

DHomy (P, Q) = D(Q ® 4 Hom4(P, A))
>~ Hom4(Q, vP).

It is obvious that the bifunctorial isomorphism
DHoma (P, Q) = Homu(Q,vP)

for P € P4 and Q € Mod-A can be extended to a bifunctorial isomorphism of
complexes

DHom?% (P*, Q") = Hom%(Q°,vP*)
for P* € X°(Pa) and Q°* € K(Mod-A4). |

12



Lemma 1.2.2. For any P* € X®(P,) and Q* € KX(Mod-A) we have a bifunc-
torial homomorphism

€ps,qe : Homg(Moa-4)(Q°, ¥ P*) — DHomy(moa-4) (P*, Q%)

Furthermore, in case Q* € X~ (Pa) and Homy (Moa-4)(P*, Q°[1]) = 0 fori >0,
the following hold.

(1) €pe g+ is monic if Exth(A, R) = 0 for 1 <i < a(Q®*) — b(P*).

(2) €pe go is an isomorphism if Exth(A,R) = 0 for 1 <1 < a(Q®) — b(P*).
Proof. Set X* = Hom}(P*,Q*) € X(Mod-R). Then Homg(mod-4)(P*, Q%) =
H°(X*) and by Lemma 1.2.1 Homg((Mod 4)(Q*,vP*) = H(DX*). Thus the
functorial homomorphism £x. : HO(DX*) — DHO(X ) in Lemma 1.1.4 yields
a desired bifunctorial homomorphism. Next, assume Q* € X~ (P4) and assume
Homg(Moa-4)(P*,Q°[i]) = 0 for i > 0. Set I = a(Q*) — b(P*). By Remark
1.1.7, we may assume X* = 0 for i > {. In case [ < 0, we have B’(X*) = 0 and
BO(DX ) = 0. Assume ! > 1. Then, since H*(X*®) = 0 for 1 > 0, we have an
exact sequence

O-»B’O(X')—>X1—>---—>Xt—>0
with X* € add(Ag) for all 1 < i < I. Thus, if ExtR(4,R) = 0for 1 <i <,
then B®(DX*®) = DB'°(X*) canonically. Furthermore, if Ext}(A, R) = 0 for
1< i <1, then Exth(B°(X*®), R) = 0. The last assertions now follow by Lemma
1.1.4. O

Corollary 1.2.3. Assume Exty(A,R) = 0 for i > 0. Then for any P* €
KP(Pa) with Homac (mod- 4)(P*, P°[i]) = 0 fori > 0, we have HomK(Mod_A)(P
vP*[i]) =0 for i < 0.

Proof. For any i < 0, since Homg (mod-4)(P*, P*[—i + j]) = 0 for j > 0, by
applying Lemma 1.2.2(2) to Q°® = P*[—i] we have
Homgy (vod-4) (P*, vP°[i]) = Homg (moa-a) (P*[—i], v P*)
& DHomg(Mod-4) (P*, P*[—i])
=0.
O

In the following, for a complex P* € XP(P4) we always define add(P*)
as a full subcategory of KP(P4). Note however that the canonical functor
K(Mod-A) — D(Mod-A4) induces an equivalence between add(P*) defined in
XP(P4) and add(P*) defined in D(Mod-A) (cf. [26, Remark 1.7]).

Definition 1.2.4 ([39]). A complex P* € XP(P,) is said to be a tilting com-
plex if the following conditions are satisfied:

(1) Homg (Mod-4)(P*, P*[i]) = 0 for i # 0; and
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(2) add(P*) generates XP(P4) as a triangulated category, i.e., a full triangu-
lated subcategory of X®(P4) coincides with XP(P4) if it contains add(P*)
and is closed under isomorphisms.

Remark 1.2.5 ([39, Proposition 5.4]). Let P* € XP(P,) with Homug (Mod-4) (P,
P*[i]) = 0 for ¢ # 0. Then P*® is a tilting complex if and only if for any
X* € D™ (Mod-A) with Homp(moa-4)(P*, X°[{]) = O for all i € Z we have
X* =0in D(Mod-A).

Definition 1.2.6. For any P* € X°(P4) we denote by S(P*) the full subcate-
gory of D~ (Mod-A) consisting of complexes X* with Homop (mod-4) (P*, X *[4]) =
0 for ¢ # 0.

Proposition 1.2.7 ([39]). Let P* € X®(P4) be a tilting complex and B =
Endx(Mod-4)(P*). Then there exists an equivalence of triangulated categories

F* : D~ (Mod-A) = D~ (Mod-B)

such that F*(X*) & Homp(oa.a)(P*, X*) in D(Mod-B) for all X* € S(P*).

In particular, we have an equivalence
Homop (moa-4)(P*,—) : S(P*) = Mod-B

Proof. See [39, Section 4] for the first assertion. Then, since F*(P*) = B
in D(Mod-B), F* induces an equivalence S(P*) = S(B). Note also that we
have an equivalence Mod-B = S(B). Thus the last assertion follows (cf. [27,
Theorem 1.3(3)]). O

In the following, we use the notation A4 (resp., 4A) to stress that A is
considered as a right (resp., left) A-module. Then the notation D(A4,4) (resp.,
D(4A)) is used to stress that DA is considered as a left (resp., right) A-module.
Note that v(A4) = D(4A) and P4 = add(A4,).

Lemma 1.2.8. Assume A is reflezive as an R-module and add(D{4A)) = Pa.
Then we have an equivalence v : Py = Pa. In particular, for any tilting complex
P* € XP(P4), vP* is also a tilting complex and the following are equivalent.

(1) vP* € S(P*) and P* € S(vP*).
(2) add(P*) = add(vP*).

Proof. We have an anti-equivalence Homa(—, A) : P4 — Paop. Also, since A is
reflexive as an R-module, we have an anti-equivalence D : P op > add(D(44)).
Thus, since add(D(4A)) = P4, we have an equivalence v : P4 = P4 which is
extended to an equivalence of triangulated categories v : KP(P4) = XP(Pa),
so that vP* is a tilting complex.

(1) = (2). We have Homg(Moq-4)(P* ® vP*,(P* ®@ vP*)[i]) = 0 for i # 0
and hence by [26, Lemma 1.8] add(P*) = add(vP*).

(2) = (1). Obvious. O
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Lemma 1.2.9. Assume A= DA in Mod-A®. Then the following hold.

(1) For any P* € X(Pa) we have a functorial isomorphism of complezes
= ypPe.

(2) A € Gr as an R-module if and only if Ext(A, R) = 0 fori > 0.

Proof. (1) Fix an isomorphism 4 = DA in Mod-A®. Then we have functorial
isomorphisms of complexes P* = P* ®% A = P*®% DA=vP*.
(2) For any X,Y € Mod-A® we have a bifunctorial isomorphism

Ox.y : Homue(X, DY) = Homas (Y, DX),h— Dhoey.

We claim that 9‘4"4 = id};omAB(A,DA)A Let h € HomAe(A, DA) and a,b € A.
Then h(a)(t) = (h(L)a)() = A(1)(ab) and h(b)(a) = (bh(1))(a) = h(1)(ab),
so that (04,4(R)(a))(b) = ea(a)(h(d)) = h(b)(a) = h(a)(b). It follows that
04,4(h) = h. Since Dhoeyg = h, if h is an isomorphism, so is £4. Thus A4 is
reflexive as an R-module and the assertion follows. 0O

Proposition 1.2.10. Assume A = DA in Mod-A° and A € Gg as an R-
module. Let P* € KP(Pa) with Homx (moda-4)(P®, P*[i]) = 0 for i # 0 and
B= Endx(Mod_A) (P.) Then B = DB in Mod-B°®.

Proof. By Lemmas 1.2.2(2), 1.2.9(1) we have isomorphisms in Mod-B®

DB = DHomx(Mod_A)(P', P.)
= Homg(Mod-4) (P*, v P*)
= Homg (Moda-4)(P*, P*)
=B

1.3 Gorenstein algebras

In this section, we introduce the notion of Gorenstein R-algebras over a Goren-
stein ring R. We refer to [11] for the definition and basic properties of commu-
tative Gorenstein rings.

We denote by dim R the Krull dimension of R, by Spec(R) the set of prime
ideals in R and by (—), the localization at p € Spec(R). Also, for a mod-
ule X € Mod-R we denote by Supp(X) the subset of Spec(R) consisting of
p € Spec(R) with X, # 0. Note that we do not exclude the case where
Supp(A) # Spec(R), i.e., the kernel of the structure ring homomorphism R — A
may not be nilpotent.

Definition 1.3.1. Assume R is a Gorenstein ring. Then A is said to be a
Gorenstein R-algebra if A € Gr as an R-module and add(D(4A)) = Pa.
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In the rest of this section, we provide several basic properties of Goren-
stein R-algebras. Especially, we will see that our Gorenstein R-algebras are
Gorenstein algebras in the sense of [18]. However, unless otherwise stated, R is
assumed to be an arbitrary commutative noetherian ring.

Remark 1.3.2. Assume A is reflexive as an R-module. Then the following hold.
(1) add(D(44)) = P4 if and only if add(D(A4)) = Paer.
(2) In case R is a complete local ring, add(D(4A)) = Py if either Ay €
add(D(4A)) or D(4A) € Pa.

Proof. (1) Obvious.

(2) It follows by Lemma 1.1.9 that A = ¢; A®- - -@ e, A with the ¢; orthogonal
local idempotents and every indecomposable module in P4 is isomorphic to
some e;A. In particular, P4 contains only a finite number of nonisomorphic
indecomposable modules. Also, as remarked in the proof of Lemma 1.2.8, we
have an equivalence v : P4 = add(D(4A)). Thus P4 and add(D(4A4)) contain
the same number of nonisomorphic indecomposable modules and the assertion
follows. O

Lemma 1.3.3. The following hold.

(1) If I € Mod-R s injective, so is Homp(A,I) € Mod-A.

(2) Let p € Supp(A) and X € Mod-A,. Then X € Mod-A, is flat if and only

if so is X € Mod-A.
Proof. (1) Obvious.
(2) The “only if” part follows by the flatness of A, as an A-module and the

“f” part follows by the fact that 4, ® 4 A, = A, canonically. O
Lemma 1.3.4. Assume Extiz(4, R) = 0 fori > 0. Then the following hold.

(1) For an injective resolution R — I* in Mod-R, we have an injective resolu-
tion DA — Homy(A4,I*) inMod-A. In particular, we have inj dim D(4A)
< inj dim RR.

(2) For any X € Mod-A, we have Extly(X, DA) = Exty(X, R) for all i > 0.

(3) If R is a Gorenstein ring, then for any X € mod-A, X € Gr as an
R-module if and only if Exty (X, DA) =0 for ¢ > 0.

(4) If R is a Gorenstein ring with dim R = dim R, for all mazimal ideals
p € Spec(R), then inj dim D(4A) = dim R.

Proof. (1) follows by Lemma 1.3.3(1).
(2) Take an injective resolution R — I* in Mod-R. Then by (1) for any
1 > 0 we have

Ext% (X, DA) = H'(Hom% (X, Hom}y (4, 1%)))
=~ H(Homy(X,I%))
= Exth(X, R).
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(3) The “only if” part follows by (2). Assume Ext’ (X, DA) = 0 for i > 0.
Then by (2) Ext%(X,R) = 0 for : > 0. Take a projective resolution P* — X
in mod-R and set Q* = Hom%(P*, R) € X (Pr). We have only to show that
Ext% (Z1(Q®), R) = 0 for i > 0 (see [7, Proposition 3.8]). Note that H(Q®) =0
for ¢ > 0. Thus for any 7 > 0 and p € Spec(R) we have

ExtR(Z(Q%), R)p = Exti?(Z'(Q"), R)p
= Eth,j(ZlHj(Q')pv Ry)
=0
for j > dim R,. Thus Ext%(Z*(Q*), R) = 0 for i > 0.
(4) Take a maximal ideal p € Spec(R) with R/p®rA # 0. Let d = dim R, =
dim R. Note that d < co. Then, since R/p ®g A is a finite direct sum of copies

of R/p in Mod-R, and since Ext%(R/p, R) # 0, we have Ext{(R/p®r A, R) # 0
and hence by (2) Ext%(R/p ®r A, DA) # 0. The assertion follows by (1). O

Definition 1.3.5 (cf. [12]). A left and right noetherian ring A is said to
satisfy the Auslander condition if it admits an injective resolution A — E* in
Mod-A such that flat dim E™ < n for all n > 0.

Proposition 1.3.6. Assume R is a Gorenstein ring, A € Gr as an R-module
and 4A € add(D(A4)). Then the following hold.

(1) inj dim 4, A, < dim Ry for all p € Supp(A4).

(2) For any P* € X~ (Pa) with P* # 0 in X(Mod-A), Homy mod-4) (P*, Ali])
# 0 for some i € Z.

(8) A satisfies the Auslander condition.

Proof. (1) Note that Extf% (Ap, Ry) = Exth(A, R), = 0fori > 0and D(A4), =
Hompg, (Ap, Rp) in Mod-A3F. Thus we can apply Lemma 1.3.4(1) to A to
conclude that inj dim D(A4); < dim Ry as a left Ay-module. Then, since
AA € add(D(Ay)), we have 4,4, € add(D(A4a)y) and hence inj dim 4,4, <
dim R,.

(2) Let P* € X~ (Pa). Set @° = Hom}(P*,A) € X*(Paor) and assume
Hi(Q*) 2 Homa(od-a)(P*, Ali]) = 0 for all i € Z. We claim that P* = 0 in
K (Mod-A). It suffices to show that H*(P*), = 0 for all < € Z and p € Spec(R).
Let p € Spec(R). For any X € mod-A°" we have a functorial isomorphism

Hom ger (X, A)y — Hom gor (X, Ap).
Thus for any i € Z we have
H(P*), = Hi(Homer (Q°, 4))y
= Homg(Mod-4°r) (@, Al])p
& Ext)yer (277(Q%), Ay
2 Extlyos (Z777(Q")y, Ap)

17



for all § > 0. It follows by (1) that H*(P*), = 0.

(3) By Lemma 1.3.4(1), it suffices to show that flat dim Hompg (4, E(R/p))a
< dim Ry for all p € Spec(R), where E(R/p) denotes an injective envelope of
R/p in Mod-R. Note that E(R/p) € Mod-R,, and hence Hompg, (A, E(R/p)) =
Hompg(A, E(R/p)) in Mod-A,. Thus we may assume p € Supp(A) and by
Lemma 1.3.3(2) we have

flat dim Hompg(4, E(R/p)) 4 = flat dim Homg, (Ay, E(R/p))a,-

On the other hand, since by (1) inj dim 4, A, < dim R, for any 7 > dim R,
and X € mod-A," we have

Tor{"* (Homg, (4, E(R/p)), X) = Homg, (Extiyor (X, Ap), E(R/p))
=0

and hence flat dim Hompg, (4,, E(R/p))a, < dim R,. O

Proposition 1.3.7. Assume R is a Gorenstein ring and A is a Gorenstein
R-algebra. Then for any p € Supp(A) the following hold.

(1) A, is a Gorenstein R,-algebra.

2) A, is mazimal Cohen-Macaulay as an Ry-module.
p P

(3) inj dim 4,A, = inj dim Ap4, = dim R,.

Proof. (1) Note that D(4A), = Hompg, (4,, R,) in Mod-A,. Thus we have
add(Hompg, (Ap, Rp)a,) = Pa,. Also, Exth (A,, Rp) = Exti(A4,R), = 0 for
i > 0. Thus by Lemma 1.3.4(3) A, € Ggr, as an Rp-module.

(2) Note that by (1) A, € Gg, as an R,-module. Take a projective resolution
P* — Homp, (Ap, R,) in mod-R, and set Q* = Homy (P*,R,) € X*(Pg,).
Then we have an exact sequence in mod-R,

(]—)Ap—)QO—le—-;-'-

and the assertion follows.

(3) By Lemma 1.3.4(4) inj dim Hompg, (Ay, Ry)a, = dim R,. Thus, since
by (1) add(Homg, (Ap, Rp)a,) = Pa4,, inj dim Ay 4, = dim R,. By symmetry,
we also have inj dim 4, A, = dim R,. O

Assume R is a Gorenstein ring and A is a Gorenstein R-algebra. It then
follows by (2), (3) of Proposition 1.3.7 that A is a Gorenstein algebra in the
sense of [18]. So we refer to [18] for further properties enjoyed by A and for the
relationship of the notion of Gorenstein algebras to the theory of commutative
Gorenstein rings. Also, in case R is a semilocal ring with dim R = dim R, for all
maximal ideals p € Spec(R) and A = DA in Mod-A¢, it follows by Proposition
1.3.7(2) that A is a Gorenstein R-order in the sense of [6].

There is another notion of Gorenstein algebras. Consider the case where

18



R is an artinian Gorenstein ring. Then an R-algebra A is sometimes called a
Gorenstein algebra if inj dim 44 = inj dim A4 < oo (see e.g. [8]). It follows by
[34, Proposition 1.6] that an R-algebra A is a Gorenstein algebra in this sense
if and only if D(4A4) is a tilting module. In the following, we will extend this
fact to the case where R is a Gorenstein ring with dim R < co.

Definition 1.3.8. A module T' € Mod-A is said to be a tilting module if there
exists a tilting complex P* € X°(P4) such that P* = T in D(Mod-A), ie,
H*(P*) =0 for i 3 0 and HO(P*) = T in Mod-A.

Proposition 1.3.9 (cf. [34]). A module T € Mod-A is a tilting module if and
only if the following conditions are satisfied:

(1) Exty(T,T) = 0 fori> 0;

(2) there ezists an ezact sequence 0 — Pt—...— P'—T—0in Mod-A
with P7* € Pya for all0 <1 < 1; and

(3) there exists an exact sequence 0 — A — T° — --- — T™ — 0 in Mod-A
with T* € add(T) for all 0 <4 < m.

Proof. This is well known but for the benefit of the reader we include a proof.

“If” part. By the condition (2) we have a projective resolution P* — T in
Mod-A with P* € X®(P4). Then P* = T in D(Mod-A) and by the condition
(1) Homgc(mod-4)(P*, P*[i]) = 0 for i # 0. Finally, for any X* € D~ (Mod-A)
with Homp Moa-4)(P*, X*[i]) = O for all i € Z, by the condition (3) we have
HY(X*) = Homp(moa-4)(A,X*[i]) = 0 for all ¢ € Z and hence X* = 0 in
D(Mod-A). Thus by Remark 1.2.5 P* is a tilting complex.

“Only if” part. According to Remark 1.1.7, we have a projective resolution
P* — T in Mod-A with P* € XP(P,4) a tilting complex. Thus the conditions
(1), (2) are satisfied. Let B = End4(T"). Then Endxvoq-4)(P*) = B and there
exists an equivalence of triangulated categories F' : XP(Pg) = XP(P4) such that
F(B) = P*. Let F* : X°(P4a) = X®(Ps) be a quasi-inverse of F. Then Q* =
Homy (F*(A), B) € XP(Ppor) is a tilting complex with Endg(mod-per)(Q°) =
A°P. Also, by Lemma 1.1.5 Q* is a projective resolution of T in Mod-B°P.
Thus Endpger(T) = A°P and we have a right resolution A — Hom%.,(Q®,T)
in Mod-A. Since every Homper (QF, T) belongs to add(T4), the condition (3) is
satisfied. O

Proposition 1.3.10. Assume R is a Gorenstein ring with dim R < oo and
A € Gr as an R-module. Then the following hold.

(1) proj dim D(4A) < oo if and only if inj dim 4A < oco.
(2) D(aA) is a tilting module if and only if inj dim 44 = inj dim A4 < co.
(8) If add(D(4A)) = P4, then inj dim 4A = inj dim A4 < dim R.
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Proof. (1) “If” part. For any injective I € Mod-R and any X € mod-A°P we
have

Torf (Hompg (4, 1), X) = Hompg(Extlyes (X, 4),1)

for all ¢ > 0 and hence flat dim Hompg(A, )4 < co. Then by Lemma 1.3.4(1)
flat dim D(4A) < oo. Finally, since D(44) € mod-A, flat dim D(44) =
proj dim D(4A).

“Only if” part. Take a projective resolution P* — DA in Mod-A with
P* € XP(P4). Then we have a right resolution A — DP*® in Mod-A°P. Since
by applying Lemma 1.3.4(1) to A°P we have inj dim D(A4) < oo, and since
every term of DP*® belongs to add(D(A4)), it follows that inj dim 44 < co.

(2) “If” part. By applying (1) to both A and A°P we have proj dim D(44) <
oo and proj dim D(A4) < oo. Also, by applying Lemma 1.3.4(2) to both A
and A°P we have Ext’, (DA, DA) = Extlo,(DA,DA) = 0 for i > 0. Since
A 5 Enda(DA) and A = Endger (DA)°P canonically, the assertion follows by
[34, Proposition 1.6].

“Only if* part. Since A = End4(DA) canonically, it follows by [34, Theo-
rem 1.5] that D(A,) is also a tilting module. Thus by applying (1) to both A4
and A°P we have inj dim 44 < oo and inj dim A4 < co. The assertion follows
by [44, Lemma A].

(3) By Lemma 1.3.4(1) inj dim D(4A) < dim R and, since A4 € add(D(44)),
inj dim A4 < dim R. By symmetry, we also have inj dim 44 < dim R. The
assertion follows by [44, Lemma A]. O

1.4 Derived equivalences in Gorenstein algebras

In this section, for a tilting complex P* over a Gorenstein R-algebra A we ask
when B = Endg(moa-4)(P*®) is also a Gorenstein R-algebra. This question does
not seem to depend on the base ring R. So, unless otherwise stated, we assume
R is an arbitrary commutative noetherian ring.

We fix a complex P* € XP(P,4) such that P* # 0 in X(Mod-A) and
Homg((Mod-A)(P',P'[i]) =0fori#0. Set B = Endx(Mod‘A)(P.) and X* =
Hom$ (P*, P*) € X?(Mod-R). Note that X* € add(Ag) for all 7 € Z. Since
H{(X*) = 0 for i # 0, we have exact sequences in mod-R of the form

(*) 0—>ZO(X')—>XO—>~‘—)X1—>O,
()3¢) 0=-Xto.. . 5 X155 Z0X*)—>B—0.
Lemma 1.4.1. The following hold.

(1) Assume Exthy(A,R) =0 for i > 0. Then Exth(B,R) =0 fori > 0 if and
only if vP* € S(P*).

(2) Assume A € Gr as an R-module. Then B € Ggr as an R-module if and
only if vP* € S(P*).
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(8) Assume A € Pr as an R-module. Then B € Pr as an R-module if and
only if vP® € S(P*).

Proof. The “only if” parts of (2), (3) follow by (1). '

(1) Apply D to (x). Then DX° — DZ(X*) is epic and Ext%(Z°(X*), R) =

0 for > 0. Next, apply D to (**). Then
Exth(B, R) = Cok(DZ°(X*) — DB%(X*))

= Cok(DX° — DBY(X*))

=~ HY(DX"*)
and Exty(B, R) & Bxti; (B%(X*), R) = H{(DX*) for i > 1. Since by Lemma
1.2.1

HY(DX*) = H*(Hom% (P*,vP*))

= Homx(Mod_A) (P., vP*® [’t])
for all i € Z, and since by Corollary 1.2.3 Homg(nod-4)(P*,vP*[i]) = 0 for
1 < 0, the assertion follows.

(2) “If” part. Note that X* € Gg for all ¢ € Z. Applying Lemma 1.1.3(1) suc-
cessively to (*), we conclude that Z°(X*) € Gg. Next, since by (1) Extk (B, R) =
0 for ¢ > 0, by applying Lemma 1.1.3(2) successively to (**), we conclude that
B € Gr as an R-module. .

(3) “If” part. By (*) we have Z°(X*) € Pg. Since by (1) Extk(B,R) =0
for ¢ > 0, it follows by (x%) that B € Pg as an R-module. O

Lemma 1.4.2. For any p € Supp(A) with A, € Pgr, as an R,-module the
following are equivalent.

(1) By € Pr, as an Ry-module.

(2) Homy (Mog-4)(P*,vP*[i]), = 0 for i # 0, this is the case if vP* € S(P*).
Proof. For any X € mod-A and Y € Mod-A we have a bifunctorial isomorphism
Homy (X,Y), = Homy, (X,,Y}).

Also, for any X € mod-A we have functorial isomorphisms in Mod-A4,

(VX)P = Home (HomA(Xa A)PvRP)
= Hompg, (Homy, (X;, 4p), Ry).

Thus we can apply Lemma 1.4.1(3) to P* ®% R, € K®(Pg4,) (cf. [41, Theorem
2.1)). O

Theorem 1.4.3. Assume A =2 DA in Mod-A® and A € G as an R-module.
Then the following hold.

(1) B = DB in Mod-B® and B € Gr as an R-module.
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(2) If A € Pr as an R-module, then B € Pr as an R-module.

(3) For any p € Supp(A), if A, € Pr, as an Ry-module, then B, € Pg, as
an Ry-module.

Proof. By Proposition 1.2.10 B & DB in Mod-B®. Also, by Lemma 1.2.9(1)
vP* € S(P*). The assertions follow by Lemmas 1.4.1(2), 1.4.1(3) and 1.4.2,
respectively. 0

Throughout the rest of this section, we assume P°® is a tilting complex.
Then A, B are derived equivalent and hence there exists a tilting complex
Q° € xb(PB) such that 4 = EndgC(Mod_B) (Q.)

Remark 1.4.4. We have Supp(A) = Supp(B).

Proof. It follows by (%), (x*) that for any p € Spec(R) with A, = 0 we have
B, = 0. By symmetry, the assertion follows. O

Theorem 1.4.5. Assume A € Gr as an R-module and add(D(4A)) = Pa.
Then the following are equivalent.

(1) B € Gr as an R-module and add(D(pB)) = Pp.
(2) vP* € S(P*) and P* € S(vP*).
(3) add(P*) = add(vP*).
Proof. By Proposition 1.2.7 we have an equivalence
Homp (mMoa-4)(P*,—) : S(P*) = Mod-B.

Also, by Lemma 1.2.2(2) Homp mod-4)(P*,vP*) = DB in Mod-B. The asser-
tion follows by Lemmas 1.2.8, 1.4.1(2). O

According to Lemma 1.4.1(3), we can replace Gg by Pgr in Theorem 1.4.5.

Corollary 1.4.6. Assume A € Pr as an R-module and add(D(4A)) = Pa.
Then the following are equivalent.

(1) B € Pr as an R-module and add(D(gB)) = Pg.
(2) vP* € S(P*) and P* € S(vP*).
(3) add(P*) = add(vP").

Example 1.4.7. Assume R contains a regular element ¢ which is not a unit.

Let E B
A= <CR R)

be an R-algebra which is free of rank 4 as an R-module. We construct a tilting
complex P* € XP(P4) such that vP* ¢ S(P*). Set

(10 (o0 (0 0 4 b= (01
ea={p 0o)0 2%\0 1) *T\c o) ¥ "Tlo o)
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It is easy to see that v(e; A) = ey A and v(esA) = e A. In particular, D(4A) =
Aya, so that A is a Gorenstein R-algebra if R is a Gorenstein ring. Set P =
e1 A[1] and let P3 be the mapping cone of h : €1 A — €24, = — az. Then Cok h =
R/cR in Mod-R and Hompg(Cok h,e; A) = 0. Thus Hom 4(Cok h,e; A) = 0 and
by [25, Proposition 1.2] P* = P! @ Py € XP(P,) is a tilting complex. On the
other hand, vPs is isomorphic to the mapping cone of e24 — e A,z — bz,
and hence Homy(mod-4) (Pr, v P5[1]) # 0. Thus vP* ¢ S(P*) and by Lemma
1.4.1(1) Extp(B, R) # 0, where B = Endx(Mod-4)(P*). More precisely, we have
an R-algebra isomorphism
B (R R/ cR)

0 R/cR)

At present, we do not have any example of tilting complexes P*® over a
Gorenstein R-algebra A such that vP* € S(P*) and add(P*®) # add(vP°®). In
case R is an artinian Gorenstein ring, it follows by the exactness of D that for
any tilting complex P* € XP(P4) we have vP* € S(P*) (cf. [25, Lemma 3.1]).

Proposition 1.4.8. Assume A, B € Gr as R-modules. Then the following hold.
(1) A € Pr as an R-module if and only if B € Pg as an R-module.

(2) For any p € Supp(A), A, € Pr, as an Ry-module if and only if B, € Pr,
as an Ry-module.

(8) If add(D(4A)) = Pa, then D(pB) is a tilting module.

Proof. (1) follows by (2), (3) of Lemma 1.4.1 and (2) follows by Lemmas 1.4.1(2),
1.4.2.

(3) By Lemma 1.2.8 vP* € XP(P4) is a tilting complex and by Lemma
1.4.1(2) vP* € S(P*). Let F* : D~ (Mod-A) = D~ (Mod-B) be the equiv-
alence of triangulated categories stated in Proposition 1.2.7. Then we have
F*(vP*) = Homg (Mod-4) (P*,¥P*) in D(Mod-B). Since by Lemma 1.2.2(2) we
have Homg(Mmod-4)(P*,vP*®) = DB in Mod-B, the assertion follows. O

Proposition 1.4.9. Assume R is a Gorenstein ring with dim R < oo and
A,B € Ggr as R-modules. Then D(4A) is a tilting module if and only if so is
D(sB).

Proof. By [30, Proposition 1.7(2)], inj dim A4 < oo if and only if inj dim Bg <
0o. Note also that A°P, B°P are derived equivalent ([39, Proposition 9.1]). Thus
inj dim 4A < oo if and only if inj dim B < co. According to [44, Lemma A],
the assertion follows by Proposition 1.3.10(2). 0

1.5 Suitable tilting complexes

In this section, R is an arbitrary commutative noetherian ring. Following
[26], we provide a way to construct tilting complexes T* € KP(P,4) such that
add(T*) = add(vT"*).

We start by formulating the argument in {14, Lemma of 1.2] as follows.
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Lemma 1.5.1. Let T* € X®(P,) be a tilting complex. Let P* € KP(P4) with
P* # 0 in X(Mod-A) and with Homx (mod-4)(P*, P*[i]) = 0 for i # 0 and form
a distinguished triangle in X®(P4)

Q* — é I, L N
such that Homy(Moq-4)(P®, f) is epic. Then Q° @ P* is a tilting complex if the
following conditions are satisfied:
(1) Homg (Moa-4)(P*, T*[i]) = 0 unless —1 < i < 0;
(2) Homg (Moa-4)(T*, P*[i]) = 0 fori > 1;
(3) P® € add(vP*); and
(4)-Ext(A4,R) =0 for 1 <i< a(Q®)—b(P*) —1.

Proof. Note first that such a homomorphism f exists. Since Homg (Mod-4)(P°,
T*) = HO(Hom}(P*,T*)) € mod-R, it follows that Homs(moda.4)(P*, T*) is
finitely generated over Endx (moa-4)(P®). Let f1,-- -, fn € Homg(mod-4)(P*,T*)
be generators over Endx(Mod-4)(P*) and set

F = o Ju) 1 EP P - T,
Then Homxmod-4)(P*, f) is epic.
Obviously, add(Q® @ P*) generates K°(P4) as a triangulated category.

Claim. The following hold.

(1) Hormg (utoa..ay(P*, Q*[i]) = 0 for i # 0

(2) Homyc(Mod-4)(Q%, P*[i]) = 0 for i # 0.

(3) Homs(uoaa)(T*, Qi) = 0 for i > 1

(4) Homg(moa-4)(Q*,T°[i]) = 0 for i < —1.

Proof. (1), (3) and (4) follow by the construction.
(2) Let © > 0. By the construction, Homg(moda-4)(Q°, P*[f]) = 0. Next,
since
a(Q°[i]) — b(P%) = a(Q%) —i — b(P*)
<a(@") - b(P?) -1,
by (1) and Lemma 1.2.2(1) we have Homg(Moa-4)(Q@°[i],¥P®) = 0. It then
follows that Homgy(moda-4)(Q°[], P*) = 0.

Now, by (1), (3) of Claim we have Homg(poq-4)(Q%, Q°[d]) = 0 for ¢ > 0
and by (2), (4) of Claim we have Homg(Moq-4)(Q°, Q*[i]) = 0 for i < 0. 0
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Throughout the rest of this section, we fix a sequence of idempotents eg, e;,

- in A such that add(egA4) = P4 and e;y1 € e;Ae; for all ¢+ > 0. We will
construct inductively a sequence of complexes Tg, 77, -+ in KP(P4) as follows.
Set Tg = epA. Let k > 1 and assume T3, 77, -+ -, Tr_, have been constructed.

Then we form a distinguished triangle in K2(Pa)

Tk
Q- Peaad BT, —
such that Homg(moa.4)(ex 4, fi) is epic and set T = Q3 @ er A.
Lemma 1.5.2. For any | > 0 the following hold.
(1) T} = 0 unless 0 < i < L.
(2) T} € add(e;_;A4) for 0 <i <.
(3) Homx(Mod_A)(ezA,ﬂ'[‘iD =0 fori>0.
(4) add(T}) generates XP(Pa) as a triangulated category.
Proof. By induction on [ > 0. O
Lemma 1.5.3. For any l > 1 the following hold.
(1) HI(Ty?) € Mod-(A/Ae_;A) for0<i<j <L
(2) If D(e;A4) € add(ade;) for 1 <4 <, then HI(VT}) € Mod-(A/Ae;_; A)
for0<i< <L
Proof. (1) We have H/(T") = H/(Q}) = H/-(T ;) = --- = HY(T} ;,,). Also,
by Lemma 1.5.2(3)
H! (T j41) ®a Aep_jq1 & Hl(Tl'_jH ®% Aer_ji1)
= Hl(HomZ(el—jHA) Tl.—j+1))
= Homg (Moa-4) (€1—5+14, T} ;11 [1])
=0.
Thus, since | —i > 1 — j + 1, it follows that H/(T}) ®4 Ae;—; = 0.
(2) Since by (1) H/(T ®% Aei—;) 2 HI(T) ®4 Ae;—; = 0, we have
H (vT}) ®4 Aer_; 2 HI (VT @% Aer_s)
~ H(T ®% DA®% Ae_;)
= (T} ®% D(er—iA))
=0.
O

Lemma 1.5.4 ([26, Remark 2.3]). Letl > 0. For any T* € X°(P4), add(T*)
is uniquely determined if the following conditions are satisfied:
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(1) T* =0 unless 0 < i < I
(2) T* € add(e;_;A4) for 0 <@ <;
(3) HI(T*) € Mod-(A/Ae;_;A) for 0<i < j<l; and
(4) add(T*) generates X°(P4) as a triangulated category.
Proof. We can apply [26, Remark 2.3] to P* = T*[l]. O

Theorem 1.5.5. Let | > 1 and assume Exty(A,R) =0 for 1 <i<l—1. Then
the following hold.

(1) If e;A s € add(D(ade;)) for 1 <i <1, then T is a tilting complex.

(2) If A is reflevive as an R-module and add(e;A4) = add(D(ade;)) for
0 <1<, then add(T}) = add(VI}).

Proof. (1) It is obvious that T3 is a tilting complex. Thus by Lemmas 1.5.1,
1.5.2 we can make use of induction to prove that T} is a tilting complex for
0<k<l

(2) By (1) Ty is a tilting complex. Then, since add(eqA4) = P4, we have
add(D(4A)) = P4 and hence by Lemma 1.2.8 vT is also a tilting complex.
Thus by Lemmas 1.5.2, 1.5.3 both 7" and vT}® satisfy the conditions (1)-(4) of
Lemma 1.5.4 and hence add(T}") = add(vT}"). O
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Chapter 2

Noether algebras of finite
selfinjective dimension

Let R be a commutative noetherian ring and A a Noether R-algebra, i.e.,
A is a ring endowed with a ring homomorphism R — A whose image is con-
tained in the center of A and A is finitely generated as an R-module. Note that
Noether algebras are left and right noetherian rings. We set A® = A°P ®p A,
where A°P denotes the opposite ring of A. Then a complex V* € K*(Mod-A4°)
is said to be a dualizing complex for A if the following conditions are satisfied:
(1) V* € DP(Mod-A)sq and V* € DP(Mod-A%P)gq4; (2) V* € Dioa-a(Mod-A)
and V* € Dyoq-40r (Mod-AP); (3) Homp moa-4)(V*, V*[4]) = 0 for i # 0 and
Homp (mod-40r)(V®, V*[1]) = 0 for i # 0; and (4) there exists a ring isomor-
phism A = Endop(mod-4)(V'*) given by left multiplication and there exists a
ring isomorphism A = Endp(mod-40r)(V®)°P given by right multiplication (see
[22] for details). Note that A itself is a dualizing complex for A if and only if
inj dim 44 = inj dim A4 < oo (cf. [44, Lemma A]). Now, take a minimal injec-
tive resolution R — I* in Mod-R and set V* = Hom¥%(A,I®). In this chapter,
we are mainly concerned with the case where V* is a dualizing complex for A.
We will see that V* is a dualizing complex for A if and only if the following con-
ditions are satisfied: (A1) R, is a Gorenstein ring for all p € Supp(4); and (A2)
sup{dim R, | p € Supp(4)} < oo, where Supp(A) = {p € Spec(R) | A, # 0}
and dim R, denotes the Krull dimension of R, (Propositions 2.3.7 and 2.3.8).
Assume V* is a dualizing complex for A. Then we will show in Section 3 that
the following statements are equivalent: (1) inj dim 44 = inj dim A4 < oo; (2)
there exists a quasi-isomorphism P* — V* in X(Mod-A4) with P* € XP(P,)
a tilting complex such that A = Endx(mod-4)(P*); (3) there exists a quasi-
isomorphism Q* — V* in K(Mod-A°P) with Q* € KP(P4ep) a tilting complex
such that A & Endgy(mod-4cr)(Q*)°P; and (4) there exist quasi-isomorphisms

This chapter is based on my paper [1].

27



P* — V* in X(Mod-A) with P* € XP(P4) and Q* — V* in K(Mod-A°P) with
Q* € XP(P4op) (Theorem 2.3.9). Namely, A itself is a dualizing complex for A
if and only if V'* is quasi-isomorphic to tilting complexes in both sides. Assume
further that A itself is a dualizing complex for A. Then we will show in Section
4 that the functor — ®% V'* induces a self-equivalence of DP(mod-A) (Theorem
2.4.7).

In case the base ring R is a field, V* = Hompg(A4, R) and our results men-
tioned above have been established by several authors (see e.g. [16, Theorem
2.1], (19, Chapter III, Theorem 2.10] and [34, Proposition 1.6]).

Let A be a left and right noetherian ring. We denote by Mod-A the cate-
gory of right A-modules and mod-A the full subcategory of Mod-A consisting of
finitely generated modules. We denote by A°P the opposite ring of A and con-
sider left A-modules as right A°P-modules. We denote by Proj-A (resp., Inj-A4,
Flat-A) the full subcategory of Mod-A consisting of projective (resp., injective,
flat) - modules and by P4 the full subcategory of mod-A consisting of finitely
generated projective modules. Sometimes, we use the notation M4 (resp., 4 M)
to stress that the module M considered is a right (resp., left) A-module. For an
object X in an additive category B, we denote by add(X) the full subcategory
of B whose objects are direct summands of finite direct sums of copies of X.
For an additive category B, we denote by X(B) (resp., X~ (B), X*(B), XP(B))
the homotopy category of complexes (resp., bounded above complexes, bounded
below complexes, bounded complexes) over B. As usual, we consider objects
of B as complexes over B concentrated in degree zero. For an abelian category
A, we denote by D(A) (resp., D~(A), D*(A), D(A)) the derived category of
complexes (resp., complexes which have bounded above homology, complexes
which have bounded below homology, complexes which have bounded homol-
ogy) over A. We always consider K*(B) (resp., D*(A)) as a full triangulated
subcategory of K(B) (resp., D(A)), where * = —, + or b. For a cochain complex
X* over an abelian category A, we denote by Z™(X*®), Z"(X*) and H*(X*) the
n-th cycle, the n-th cocycle and the n-th homology of X*, respectively. Finally,
we use the notation Hom®(—, —) (resp., — ®°® —) to denote the single complex
associated with the double hom (resp., tensor) complex and Ext™(—, —) (resp.,
Tor™(—,—)) to denote the n-th hyper Ext (resp., the n-th hyper Tor), i.e.,
Ext”(—,—) = H*(RHom"(~, -)) (resp., Tor™(—, ) = H"(— & ).

We refer to [13], [22] and [43] for basic results in the theory of derived cat-
egories and to [39] for definitions and basic properties of tilting complexes and
derived equivalences. Also, we refer to [15] for standard homological algebra in
module categories and to [33] for standard commutative ring theory.

2.1 Preliminaries

In this section, we recall several definitions and basic facts which we need in
later sections. Throughout this section, A is a left and right noetherian ring.

Lemma 2.1.1. Assume inj dim A4 < 0. Then the following hold.

28



(1) flat dim 4 F < inj dim A4 for all E € Inj-A°P.
(2) proj dim M, < inj dim A4 for all M € Mod-A with proj dim M4 < oo.
(3) proj dim My < inj dim A4 for all M € Mod-A with flat dim M4 < oo.

Proof. This is well known but for the benefit of the reader we include a proof.
Let inj dim A4 = d < 0.
(1) For any X € mod-A and 7 > d we have

Torf (X, E) & Hom or (Ext’y (X, A), E) = 0

(see [15, Chapter VI, Proposition 5.3]). Thus flat dim 4 E < d.

(2) Let 0 = P~ — ... — P® — M — 0 be an exact sequence in Mod-A
with the P* projective. Assume n > d. Then, since inj dim P;" < d, we have
Ext’, (M, P~™) = 0 and the inclusion P~ — P~"+1 splits.

(3) Let X € mod-A and P* — X a projective resolution in mod-A. For any
K € Flat-A and ¢ > d we have

Ext’ (X, K) = H(Hom% (P*, K))

= H{(K ®% Hom% (P*, A))

~ K ®4 H'(Hom% (P*, A))

~ K ®4 Bxtly (X, A)

=0
and inj dim K4 < d. Next, let F' € Flat-A and Q* — F a projective resolution
in Mod-A. Set K = Z'~91(Q*). Since F and the QF are flat, so is K. Thus
inj dim K4 < d and Extf;rl(F, K) =0, so that the inclusion K — Q¢ splits
and proj dim F4 < d. Finally, let F* — M be a bounded flat resolution in

Mod-A. Since proj dim F% < d for all k € Z, we have proj dim M4 < oo and
hence proj dim My < d. )

For later use, we replace A by A°P in Lemma 2.1.1.
Lemma 2.1.2. Assume inj dim g4 A < co. Then the following hold.
(1) flat dim E4 < inj dim 4A for all E € Inj-A.

(2) proj dim oM < inj dim 4A for all M € Mod-A°P with proj dim 4 M <
0.

(3) proj dim aM < inj dim 4A for all M € Mod-A°P with flat dim 4 M < oco.

Definition 2.1.3 ([22]). A complex X* € D*(Mod-A) is said to have finite
injective dimension if Ext’(—, X*) vanishes on mod-A for ¢ > 0. We denote
by DP(Mod-A)gq the full triangulated subcategory of D (Mod-A) consisting of
X* € D¥(Mod-A) which have finite injective dimension.
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Remark 2.1.4 ({22]). For a complex X*® € D (Mod-A) the following are equiv-
alent.

(1) X* has finite injective dimension.
(2) There exists a quasi-isomorphism X* — E® in X(Mod-A) with E* €
&P (Inj-A). In particular, X* € DP(Mod-A).

Definition 2.1.5 ([22]). A complex X* € D(Mod-A) is said to have finite Tor

dimension if Torf(X*, —) vanishes on mod-A4°P for i 3> 0. For * = b or nothing,

we denote by D*(Mod-A)frg the full triangulated subcategory of D*(Mod-A)
consisting of X* € D*(Mod-A) which have finite Tor dimension.

Definition 2.1.6 ([13]). We denote by X(Proj-A)y, the full triangulated sub-
category of K(Proj-A) consisting of X* € X(Proj-A) such that Homgc(pod-4) (X *®
,—) vanishes on acyclic complexes. Then X(Proj-A)r, = D(Mod-A) canonically
as triangulated categories.

Definition 2.1.7 ([22]). For any X* € X(Mod-A) and k € Z, we define the
following truncated complexes

ng(X.) Ceeo s XR2 ) xRl —->Zk(X') s Qe

TeR(X®) s X2 s XL L xXE L0

Lemma 2.1.8 ([22]). For a complezr X* € X(Mod-A) with H*(X*) € mod-A
for all i € Z and H*(X®) = 0 for i > 0, there erists a quasi-isomorphism
P* — X* in X(Mod-A) with P* € X~ (Pa).

Proof. Let n € Z and assume H*(X*) = 0 for 1 > n. Then we have a quasi-
isomorphism o<, (X*) — X*. Then we may assume X* € X~ (Mod-A). O

2.2 Gorenstein dimension

Throughout this section, R is a commutative noetherianringand p: R— I®isa
minimal injective resolution in Mod-R. We will provide an equivalent condition
for a complex X* € DP(mod-R) to have finite Gorenstein dimension in the sense
of [30] (see Proposition 2.2.8 below).

Definition 2.2.1. A module M € Mod-R is said to be reflexive if the canonical
homomorphism

ey : M — Homg(Hompgr(M, R)R),a — (h+— h(a))

is an isomorphism.

For any X* € X~ (Mod-R) we have a functorial homomorphism in X(Mod-R)

Exe : X* — Homp (Hom%y(X°*, R), R)
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such that €&, = exx for all k € Z. Next, for each k € Z we have a functorial
homomorphism

My + M — Homp(Homp (M, I*),1¥),a = (g = g(a))

for M € Mod-R, where I* is the k-th term of I°. Then for any X* €
X~ (Mod-R) we have a functorial homomorphism in X(Mod-R)

Nxe : X* — Homg(Homp(X*®, I°),1°)
whose i-th term

Nie : Xt — H Homp (Hompg (X7, I¥), 1Y)
J—k+l=i
is given by 7. (z)jk1 = 0 () if k = I and n.(z);k, = O otherwise for all
z€ XVand j,k,l €Z with j —k+1=1.
Lemma 2.2.2. For any X* € X~ (Mod-R) we have a commutative diagram in
K(Mod-R)

Exe

X* ——— Hompg(Homg(X*, R), R)

o] [

Homy (Hom%k (X*®,1°%),1°) —— Homy(Homzx(X*, R),I*),
py R

where s = Homp(Hom%(X®, R), 1) and py = Homy (Hom%(X*®, 1), I°).
Proof. For each n € Z we will check the commutativity of the following diagram

Xm 2. S Hompg(Homg(X™, R), R)

"7}0l l#?

[l HomrHomp(X?,19,I") —— ][] Hompg(Hompg(X?,R),I").
K

p—gt+r=n ’ ptr=n
Let z € X™. Let pf(exn(z)) = (@p,r)p+r=n. It is easy to see that pn o(h)
u(h(z)) for h € Homp(X™, R) and ¢, = 0 unless 7 = 0. Next, let n%.(z)
(9p.q,r)p—g+r=n and M?(ﬂ}-(m)) = (¥p,r)ptr=n- Then g, qq(f) = f(z) for f
Hompg(X™, I9) and g, 4, = O unless ¢ = 7, so that ¥, o(h) = gno0(ph)
p(h(z)) for h € Homg(X™, R) and ¢p,, = 0 unless r = 0. Thus u}(ex~(z)) =
(). :

For any X*,Y* € D(Mod-R) we have a bifunctorial isomorphism

A

Homp (mod-ry (X *, RHom% (Y*, R)) = Homp(moa.r) (Y, RHomg (X*, R)),

which we denote by @xe«,y+. We set Exo = 9)_(%,RHom1'2(X‘,R) (idRHomy, (x*,R)) for
X* € D(Mod-R).
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Lemma 2.2.3. Let X* € D~ (Mod-R) and take a quasi-isomorphism Y® —
Hom%(X*, R) with Y® € X(Proj-R)L. Then we have the following commutative
diagrams in D(Mod-R)

Hom},(Homp(X*®, I°),I*) <X X

| Jo

Homp (Homp(X*®, R),I*) +——— Homp(Homgk(X*, R), R)

L !

Homp (Y, 1°) — Hom%(Y*, R),
and
X —£X* . RHom},(RHom}(X*, R), R)

o= |
Homg(Homg(X*, R),R) —— RHomk(Homgk(X*®, R), R)

! L

~

Hom%(Y*, R) e RHomy(Y*, R).
In particular, nx. is a quasi-tsomorphism if and only if Exe is an isomorphism.

Proof. We may assume X* € X~ (Proj-R). By Lemma 2.2.2 the top square of
the first diagram is commutative and by [30, Lemma 2.5] the top square of the
second diagram is commutative . It is easy to see that the bottom squares are
commutative. O

Definition 2.2.4 ([7]). A module M € mod-R is said to have Gorenstein
dimension zero if M is reflexive, Ext% (M, R) = 0 for i > 0 and Exth(M*,R) =0
for 7 > 0, where (—)* = Hompg(—,R). We denote by Gr the full additive
subcategory of mod-R consisting of modules which have Gorenstein dimension
zero. Note that Pr C Gr. Next, a module M € mod-R is said to have finite
Gorenstein dimension if M has a left resolution P* — M with P* € X®(Gg).

Remark 2.2.5 ([7]). For any M € mod-R the following are equivalent.
(1) M has Gorenstein dimension zero.

(2) Exth(M,R) = 0 for i > 0 and Ext®(Z''(Q®),R) = 0 for i > 0, where
Q* = Homg (P*, R) with P* — M a projective resolution in mod-R.

Definition 2.2.6. A complex X* € DP(mod-R) is said to have finite Gorenstein
dimension if X* 2 Y* in D(Mod-R) for some Y* € X®(GRr).

Remark 2.2.7. For any M € mod-R the following are equivalent.
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(1) M has finite Gorenstein dimension as a module.
(2) M has finite Gorenstein dimension as a complex.

Proof. The implication (1) = (2) is obvious. Conversely, let Y* = M in
D(Mod-R) with Y* € XP(Gg). Since H'(Y*) = 0 for i > 0, it follows by [7,
Lemma 3.10] that Z°(Y*) € Gg. Thus we have a left resolution o<o(Y*) — M
with OSO(Y.) (S SCb(QR) O

Proposition 2.2.8 (cf. [30]). For any X* € D°(mod-R) the following are
equivalent.

(1) X* has finite Gorenstein dimension.
(2) Hompmod-r)(X*, Rli]) = 0 for i > 0 and nx. is a quasi-isomorphism.
Proof. By Lemma 2.2.3 and [30, Proposition 2.10]. O0

2.3 Main result

Throughout this section, R is a commutative noetherian ring and A is a Noether
R-algebra. We assume that A has finite Gorenstein dimension as an R-module.
Let R — I* be a minimal injective resolution in Mod-R and set V* = Homp (A4,
I*) € K*(Mod-A°), where A° = A°°@rA. Note that since H*(V'*) & Ext%(A, R)
= 0 for s 3 0 we have V* € DP(Mod-4°). Also, V* € K*(Inj-4) and
V* € K*(Inj-A°P) because Hompg (44, E) € Inj-A and Homp(A4, E) € Inj-A®?
for all F € Inj-R.

Lemma 2.3.1. The following hold.

{1) Homx(Mod,A)(V‘,V'[i]) = fOf’i 75 0 and Homx(Mod_Aop)(V', V'[’t]) =0
foris#0.

(2) There exist R-algebra isomorphisms A = Endx(mod-4)(V*) given by left
multiplication and A = Endg(mod-40r)(V*)P given by right multiplica-
tion.

Proof. Since Ag has finite Gorenstein dimension, by Proposition 2.2.8 we have
a quasi-isomorphism

na : A — Homp(Homy(A4,1°),1%).
Also, by adjointness we have isomorphisms in X(Mod-A)

Homy(Hom}, (A, I°),I*) = Hom} (Homp (4, I*), Homg (4, 1°))
= Hom} (V*,V*).

Thus we have a quasi-isomorphism

§a: A— Homy(V*,V*)
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and hence Homg(moa-4)(V*, V*[i]) = H*(Hom}(V*,V*)) = 0 for ¢ # 0 and
A = H°(Hom}%(V*®,V*)) & Endx(moa-4)(V*) in Mod-R. Next, 64 is given by
the composite of the following maps

A— H Hompg(Hompg(A, I*),I%),a — ((fr = fr(a)))kez,
kez

[ Homg(Hompg(A, I*), I*) = T] Homa(V*, V¥)

kez keZ
which sends ((fx — fi(a)))kez to ((fx — afx))kez. It follows that 64 induces
an R-algebra isomorphism A = Endx(moa-4)(V'®) which is given by left multi-
plication. By symmetry, the assertion follows. O

Lemma 2.3.2. Assume inj dim 2A = inj dim Agq < oo. Then there exist
quasi-isomorphisms P* — V* in X(Mod-A) with P* € X®(Pa) and Q* — V*
in K(Mod-A°P) with Q* € K°(P g0p).

Proof. We claim first that V* ¢ Db(MOd-A)de. Let M € mod-A°P and ¢ >
inj dim 4A. By Lemma 2.1.2(1) flat dim V} < inj dim 4A for all k > 0. Thus,
since for any k > 1 we have a distinguished triangle in D(Mod-A)

Tek-1(V*) = 1<k (V*) = VF[-k] —,

we can make use of induction on k > 0 to conclude Tor? (t<k(V*), M) = 0 for
all £ > 0. Then, since M € mod-A°P, we have

Tor (] [ r<(V®), M) = H((] ] r<a(V®)) ®% M)

k>0 k>0
= B ([] (r<k(V*) ®Y M)
k>0
= [[H (r<(V*) ®5 M)
k>0
=~ H TOI?(TSk(V.)) M)
k>0
= 0.

Thus H 7<k(V*) € D(Mod-A)fra. Now, since lim 7<x(V'*) = V* as complexes,
k>0
we have an exact sequence of complexes

0=V* = HTSk(V.) _lls_l“_i__ff_, H TSk(V.) =0
£>0 k>0
which yields a distinguished triangle in D(Mod-A) (cf. [13])

ve o [T rarve) =5 [ ra(v) —.
£>0 k>0
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It follows that V* € D®(Mod-A)ra.

Next, since HY(V'®) = Extk (4, R) € mod-R for all i > 0, there exists a quasi-
isomorphism P* — V* in K(Mod-A4) with P* € X~ (Pa). Since H(P®) =
H*(V*)=0 for i < 0, we have a projective resolution 7<o(P*) — Z°(P*) in
mod-A. Then for any M € mod-A°P and 7 >> 0 we have

Tor(Z°(P*), M) = H™(7<o(P*) ®% M)

= H(P* @y M)

= HH(V* @4 M)

= Tord (V*, M)

= 0.
Thus flat dim Z'°(P*) < oo and, since Z'°(P*) € mod-A, proj dim Z'°(P*) < co.
So, by.truncating redundant terms, we may assume 7<o(P*) and hence P*
belong to X®(P4). By symmetry, the last assertion follows. |

Definition 2.3.3. Let K be a triangulated category. A subcategory B of K is
said to generate K as a triangulated category if a full triangulated subcategory
of K which contains B and is closed under isomorphisms coincides with K. For
a subcategory B of K we denote by (B) the full triangulated subcategory of K
generated by B.

Proposition 2.3.4. Assume that there exist quasi-isomorphisms P* — V*
in K(Mod-A) with P* € XP(Pa) and Q* — V* in X(Mod-A°P) with Q* €
KP(Pacr). Then the following hold.

(1) P* is a tilting complex with A = EndxmMoa-4)(P*)-
(2) Q° is a tilting complex with A = Endg(mog-400)(Q°)°P.
Proof. (1) Since V* € X+ (Inj-A), by Lemma 2.3.1 we have
Homuac(mod-4) (P*, P*[i]) = Homyc(Moa-4)(V*, V*[i]) = 0

for i # 0 and A 2 Endg(Moa-4)(P*), and since V* € K*(Inj-A°P), by Lemma
2.3.1 we have quasi-isomorphisms in K(Mod-A)

A — Hom%ep (V®,V*®) — Hom%.p (Q%, V*).

Also, since Hom%o, (QF,V*) € (add(V*)) for all k& € Z, Hom%.,(Q*,V*) €
(add(V'*)). Thus A4 € (add(V*)) in D(Mod-A). Let M* € D~ (Mod-A) and as-
sume Homop (Mod-4)(P*, M*[i]) = 0 for all i € Z. Then, since Homp (oa.4)(V*,
M?*[i]) = 0 for all © € Z, and since A € (add(V'*)), we have

HY(M*) = Homp (Mod-4) (A4, M*[i]) = 0

for all i € Z and M* = 0 in D(Mod-A). It now follows by [39, Proposition 5.4]
that P* is a tilting complex.
(2) By symmetry. O
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In the following, we are mainly concerned with the case where V'* is a dual-
izing complex for A (see [22] for details).

Definition 2.8.5. Let A be a left and right noetherian ring. For * = —b
or nothing, we denote by D¥ . ,(Mod-A) the full triangulated subcategory of
D*(Mod-A) consisting of X* € D*(Mod-A) with H¥(X*) € mod-A for all i € Z.

Definition 2.3.6 ([22]). Let A be a left and right noetherian ring and V* a
bounded below complex of A-A-bimodules with bounded homology. Then V*
is said to be a dualizing complex for A if the following conditions are satisfied:

(1) V* € DP(Mod-A)gq and V* € DP(Mod-A°P)gq;
(2) V* € Dyod-a(Mod-A) and V* € Dyyoq- 400 (Mod-A°P);

(3) quD(Mod,A) (V.,V.[Z]) =0 for 1 7& 0 and HOm'D(MOd_Aop)(V‘, V.[’L]) =0
for ¢ 5 0; and

(4) there exist ring isomorphisms A = Endp(moa-4)(V'®) given by left multi-
plication and A = Endop(mod.4er)(V*)°P given by right multiplication.

We denote by Spec(R) the set of prime ideals of R. For any p € Spec(R) we
denote by (—), the localization at p and by dim R, the Krull dimension of R,.
We set Supp(A) = {p € Spec(R) | 4, # 0}.

Proposition 2.3.7. Assume V* € DP(Mod-A)sa. Then the following condi-
tions are satisfied:

(A1) R, is a Gorenstein ring for all p € Supp(A); and
(A2) sup{dim R, | p € Supp(4)} < co.

Proof. There exists an integer d € Z such that Ext’ (—, V*) vanishes on mod-A
for 7 > d. Thus for any ¢ > d and M € mod-A4, since

Exth (M, R) = Exth (M, I°)
=~ BExty (M, V*)
= 0,
we have Ext}éb (M, Ry) = Exth(M,R), = 0 for all p € Supp(A). Let p €
Supp(A) and M = A®r R/p. Then M, = A,®g, R, /pR,; is a finite dimensional
vector space over a filed R,/pR, and M, is a finite direct sum of copies of

R,/pR, in Mod-R,. It follows that Ext‘év (Ry/pR,, Ry) =0 fori > d and R,
is a Gorenstein ring with dim R, < d. 0O

Throughout the rest of this section, we assume the conditions (Al), (A2) in
the proposition above are satisfied.

Proposition 2.3.8. The following hold.
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(1) A has finite Gorenstein dimension as an R-module.
(2) V* is a dualizing complex for A.
Proof. Set d = sup{dim R, | p € Supp(4)}.

(1) Let P* — A be a projective resolution in mod-R and set X = Z/~4(P*).
Set Q* = Homy(P*,R) and Y = Z/4+1(Q*). According to Remark 2.2.5, it
suffices to show that Extr(X,R), = Exti(Y,R), = Oforalli > 1 and p €
Supp(A). Let p € Supp(A). Since inj dim R, < d, we have

Exth(X, R), & Exth, (X,, Rp)
= Bxtg (Ap, Rp)
=0,
for all ¢ > 1. Then H*(Q* ®% R,) = 0 for all i > d + 1 and hence
Extg(Y, R)p = Exty, (Y5, Ry)
o Exth-ti(ZIQd-i—l(Qo)p,Rp)
=0,
for all 7 > 1. ]

(2) Let M € mod-A. We claim that Ext} (M,V*) = 0 for z > d. Note that
Exty (M, V*) = Extz(M,I*) = Extk(M,R) for all ¢ > 0. For any i > d and
p € Supp(A), since inj dim R, < d, we have

Exty (M, V*), = Exth(M, R),
= Exty, (My, Ry)
=0
and hence Ext’ (M, V*) = 0. Thus V* € D*(Mod-A)gq. By symmetry, we also

have V* € D®(Mod-A°P)gq. Next, we have H{(V*) = Ext% (4, R) € mod-A for
all © € Z. Finally, by Lemma 2.3.1, V* is a dualizing complex for A O

Note that A itself is a dualizing complex for A if and only if inj dim 44 =
inj dim A4 < o0.

Theorem 2.3.9. The following are equivalent.
(1) inj dim 4A =inj dim A < co.

(2) There exists a quasi-isomorphism P* — V* in K(Mod-A) with P* €
KP(P4) a tilting complex such that A = Endx moa-a)(P*).

(8) There exzists a quasi-isomorphism Q* — V* in KX(Mod-A°P) with Q* €
KP(Pacw) a tilting complex such that A = Endg(Mod-a0r) (@°)°P.

(4) There exist quasi-isomorphisms P* — V* in K (Mod-A) with P* € KP(P4)
and Q* — V* in K(Mod-A°P) with Q* € KP(P 4er).
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Proof. We have proved (1) = (4) in Lemma 2.3.2 and (4) = (2) and (3) in
Proposition 2.3.4.

(2) = (4). Since P* = V* in D(Mod-A), P* € D?(Mod-A)sq and hence
A € X°(Pa) = (add(P*)) € D>(Mod-A)ga. Thus inj dim A4 < co. Next, by
Proposition 2.3.8 we have a quasi-isomorphism V*® — E* in X(Mod-A°P) with
E* € X"(Inj-A°?). Since by Lemma 2.1.1(1) flat dim E* < inj dim A, for all
k € Z, we have E* € D®(Mod-A°P)¢rg and hence V* € DP(Mod-AP)¢rq. Since
Hi(V*) € mod-A® for all i € Z, there exists a quasi-isomorphism Q°* — V*
in X(Mod-A°P) with Q* € X~ (Pacr). Note that since H (Q®) = 0 for all
i < 0 we have a projective resolution 7<o(Q*) — Z’°(Q*) in mod-A°® and that
Q* € DP(Mod-A°P)¢rg. Thus for any M € mod-A we have

Tord (M, 7°(Q")) = H(M & 7<0(@"))
= H (M 0% Q%)
=0

for 7 >> 0 and flat dim Z'°(Q*) < co. Now, since Z’°(Q*) € mod-A°P, we have
proj dim Z°(Q*) < oo. So, by truncating redundant terms, we may assume
7<0(Q*) and hence Q* belong to K®(Pep).

(3) = (4). By symmetry.

(4) = (1). Note that we have proved (2) < (4) and (3) < (4). We have
proved inj dim A4 < co in the proof of (2) = (4). By symmetry, we also have
inj dim 4A < oo. It follows by [44, Lemma A] that inj dim 4A = inj dim A4 <
0. O

2.4 Self-equivalence

In this section, we show that if both A and V* are dualizing complexes for A
then — ®% V* induces a self-equivalence of D°(mod-A).
Remark 2.4.1 (cf. [22, Chapter I, Proposition 4.8]). Let A be a left and right
noetherian ring. For * = — or b, there exists an equivalence of triangulated
categories

D*(mod-4) = Dk .4 (Mod-A).

In the following, we need the notion of way-outness of exact functors. We
refer to [22] for the definition and basic properties of way-out functors.

Lemma 2.4.2 ([22]). Let A,B be left and right noetherian rings and F :
Dinoa-4(Mod-4) — D(Mod-B) an ezact functor. Then the following hold.

(1) Assume F(P) € Dyod-p(Mod-B) for all P € P4 and F is way-out left.
Then F(X*®) € Dmod-a(Mod-B) for all X* & ‘D;;od_A(Mod-A).

(2) Assume F(M) € Dyod-(Mod-B) for all M € mod-A and F is way-
out in both directions. Then F(X*) € Duyoa-p(Mod-B) for all X* €
:Dmod—A (MOd'-A) .
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Proof. See [22, Chapter I, Proposition 7.3]. O

Lemma 2.4.3 ([22]). Let R be a commautative ring and A an R-algebra. For
a complex X* € D(Mod-A), the following hold.

(1) X* € DP(Mod-A)sq if and only if RHom® 4(—, X*) : D(Mod-4) —
D(Mod-R) is way-out in both directions.

(2) X°® € DP(Mod-A)srq if and only if X* ®% — : D(Mod-A°P) — D(Mod-R)
is way-out in both directions.

Proof. (1) is a special case of [22, Chapter I, Proposition 7.6] and (2) is a slight

modification of [22, Chapter II, Proposition 4.2) O

Throughout the rest of this section, R is a commutative noetherian ring and
A is a Noether R-algebra. Take a minimal injective resolution R — I® in Mod-R
and set. V* = Homp(4,I*) € X (Mod-A®). We assume the conditions (Al),
(A2) in Proposition 2.3.7 are satisfied. Then by Proposition 2.3.8 A has finite
Gorenstein dimension as an R-module and V* is a dualizing complex for A.

Lemma 2.4.4. There exists a functorial isomorphism
X* 5 RHom%e, (RHom% (X*,V*®),V*)
for all X® € Dyyoa.4a(Mod-A).
Proof. By Lemma 2.4.3,
RHom%(—,V*) c RHom%es (—, V*) : D(Mod-4) — D(Mod-A4)

is way-out in both directions. Thus, since A = RHom}., (RHom}(4,V*),V*),
the assertion follows by [22, Chapter I, Proposition 7.1]). O

Lemma 2.4.5. For * = b or nothing, we have an anti-equivalence
RHom% (—,V*®) : D¥oq.a(Mod-A4) = DE g g00 (Mod-A°P)
whose quasi-inverse is given by
RHom%op (—, V*) : Dfoa-aer (Mod-A°P) 5 DY, 4 4(Mod-A).

Proof. (1) By Lemma 2.4.3 RHom}(—,V*) : D(Mod-4) — D(Mod-A°P) is
way-out in both directions. Since RHom% (4,V*) 2 V* € Dy04. 400 (Mod-A°P),
we have RHom% (P, V*®) € Dpoa-400 (Mod-A°P) for all P € P4. Therefore, by
Lemma 2.4.2, we have RHom% (X*,V*) € Dpoa-400(Mod-A°P) for all X* €
Dimod-4(Mod-A). Thus we have an exact functor

RHomY(—, V*) : Dimod-A(Mod-A) — Dnog. ses (Mod-A%).
By symmetry, we have an exact functor
RHOm'Aop (—-, V.) 5 Dmod_AOP (MOd-ADp) — fDmod_A(MOd-A).

The assertion for * = nothing follows by Lemma 2.4.4. Then, since RHom% (—,
V*) and RHom%.,(—, V'*) are way-out in both direction, the assertion for * = b
follows automatically. 0

39



Lemma 2.4.6. Assume inj dim 4A = inj dim A4 < co. Then for x = b or
nothing we have an anti-equivalence

RHom?% (=, A) : D* s (Mod-A) = D%, 4. ser (Mod-A°P)

mod-

whose quasi-inverse is given by
RHom%ep (—, A) : Dioqsor (Mod-A°P) = DF 4 4 (Mod-A).

Proof. Since A is a dualizing complex, we can replace V* by A in the proof of
Lemma 2.4.5. O

Theorem 2.4.7. Assume inj dim 4A = inj dim A4 < co. Then for any X* €
DP(mod-A) we have a functorial isomorphism

X* ®% V* 5 RHom%o, (RHom% (X°*, A),V*).
In particular, we have an equivalence
~@% V* . DP(mod-4) = DP(mod-A).
Proof. By Lemmas 2.4.5, 2.4.6 and Remark 2.4.1, we have anti-equivalences
RHom%e, (—, V*) : DP(mod-A°P) = DP(mod-A),
RHom%(—, 4) : D°(mod-4) 5 D" (mod-A°P).
Next, for any X* € DP(mod-A), we have functorial isomorphisms

RHom%o» (X* ®5% V°,V*) 2 RHom} (X°, RHom%., (V*,V*))
=~ RHom} (X*, 4)
in D(Mod-A). Note that we have seen in the proof of Lemma 2.3.2 that
V* € D°(Mod-A°)erq. Thus by Lemma 2.4.3(2) — ®% V* is way-out in both

directions. For any X* € DP(mod-A), by Lemma 2.4.2 we have X* ®% V* €
Dimod-4(Mod-A) and hence by Lemma 2.4.4 we have functorial isomorphisms

X* @Y V* = RHom%., (RHom$ (X* @4 V*,V*),V*)
=~ RHom%., (RHom% (X*, RHom®%., (V*,V*)),V*)
=~ RHom%., (RHom% (X*, 4),V*)

in D(Mod-A). O
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Chapter 3

Derived equivalences for
selfinjective algebras

Let A be an Artin algebra. Rickard [39, Proposition 9.3] showed that for
any tilting complex P* € KP(P4) the number of nonisomorphic indecomposable
direct summands of P* coincides with the rank of Kg(A), the Grothendieck
group of A, which generalizes earlier results [20, Proposition 3.2] and [34,
Theorem 1.19]. He raised a question whether a complex P* € KP(P4) with
Homg (Moa-4)(P*®, P*[i]) = 0 for i # 0 is a tilting complex or not if the number
of nonisomorphic indecomposable direct summands of P*® coincides with the
rank of K(A) (see also [34]). In case P* is a projective resolution of a module
T € mod-A with proj dim T4 < 1, Bongartz [14, Lemma of 2.1] has settled
the question affirmatively. More precisely, he showed that every T' € mod-A
with proj dim T4 < 1 and Ext4 (T, T) = 0 is a direct summand of a classical
tilting module, i.e., a tilting module of projective dimension < 1. Unfortu-
nately, this is not true in general (see [39, Section 8]). Our first aim of this
chapter is to show that if A is a representation-finite selfinjective Artin alge-
bra then every P* € XP(P,4) with Homuy(Mog-4)(P°®, P*[i]) = 0 for ¢ # 0 and
add(P*) = add(vP*), where v is the Nakayama functor, is a direct summand
of a tilting complex (Theorem 3.3.6).

Rickard [40, Theorem 4.2] showed that the Brauer tree algebras over a field
with the same numerical invariants are derived equivalent to each other. Sub-
sequently, Okuyama pointed out that for any Brauer tree algebras A, B with
the same numerical invariants there exists a sequence of Brauer tree algebras
A = By, By, , By, = B such that, for any 0 < ¢ < m, B;;; is the endomor-
phism algebra of a tilting complex for B; of length < 1. These facts can be
formulated as follows. For any tilting complex P* € K®(P,) associated with
a certain sequence of idempotents in a ring A, there exists a sequence of rings
A= By,Bi,- - ,Bm = Endx(Mod-4)(P*) such that, for any 0 <1 < m, B;,1 is

This chapter is based on my joint paper with M. Hoshino [2].
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the endomorphism ring of a tilting complex for B; of length < 1 determined by
an idempotent (see [26, Proposition 3.2]). We refer to [21], [32] for other exam-
ples of derived equivalences which are iterations of derived equivalences induced
by tilting complexes of length < 1. Our second aim of this chapter is to show that
for any derived equivalent representation-finite selfinjective Artin algebras A, B
there exists a sequence of selfinjective Artin algebras A = By, By, -+ ,B,, = B
such that, for any 0 < ¢ < m, B;;; is the endomorphism algebra of a tilting
complex for B; of length < 1 (Theorem 3.3.7).

For a ring A, we denote by Mod-A the category of right A-modules. We
denote by A°P the opposite ring of A and consider left A-modules as right A°P-
modules. Sometimes, we use the notation X4 (resp., 4X) to stress that the
module X considered is a right (resp., left) A-module. For an object X in an
additive category B, we denote by add(X) the full subcategory of B whose ob-
jects are direct summands of finite direct sums of copies of X and by X the
direct sum of n copies of X. For a cochain complex X ® over an abelian category
A, we denote by Z*(X*), Z"(X*) and H"(X*) the n-th cycle, the n-th cocycle
and the n-th cohomology of X*, respectively. For an additive category B, we
denote by X(B) (resp., X*(B), X~ (B), X®(B)) the homotopy category of com-
plexes (resp., bounded below complexes, bounded above complexes, bounded
complexes) over B. As usual, we consider objects of B as complexes over B con-
centrated in degree zero. For an abelian category 4, we denote by D(A) (resp.,
D+ (A), D™(A), D(A)) the derived category of complexes (resp., bounded
below complexes, bounded above complexes, bounded complexes) over 4. We
always consider K*(B) (resp., D*(A)) as a full triangulated subcategory of X(B)
(resp., D(A)), where * = +, — or b. We denote by Hom®(—, —) the associated
single complex of the double hom complex.

We refer to [13], [22], [43] for basic results in the theory of derived categories
and to [39], [41] for definitions and basic properties of derived equivalences and
tilting complexes.

3.1 Preliminaries

Throughout this chapter, R is a commutative artinian ring with the Jacobson
radical m and A is an Artin R-algebra, i.e., A is a ring endowed with a ring
homomorphism R — A whose image is contained in the center of A and is
finitely generated as an R-module.

For any Artin R-algebra A, we denote by mod-A the full subcategory of
Mod-A consisting of finitely generated modules and by P4 (resp., T4) the full
subcategory of mod-A consisting of projective (resp., injective) modules. Also,
we set D = Homg(—, E(R/m)), where E(R/m) is an injective envelope of R/m
in Mod-R, and v = D o Hom4(—, A), which is called the Nakayama functor.

Remark 3.1.1. The Krull-Schmidt theorem holds in mod-A4, i.e., for any nonzero
module X € mod-A the following hold.

(1) X decomposes into a direct sum of indecomposable submodules.
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(2) X is indecomposable if and only if End4(X) is local.
Remark 3.1.2. The following hold.
(1) X 5 D2X,z+ (h+ h(z)), for all X € mod-R.

(2) D :mod-A — mod-A°P is an anti-equivalence and induces anti-equivalences
PA ':* IAOP and IA :!‘ PAop.

(3) v : mod-A — mod-A induces an equivalence Py — Zy4.
Lemma 3.1.3. For any P* € XP(P4) the following are equivalent.

(1) P* € add(vP*).

(2) vP* € add(P*).

(3) add(P*) = add(vP*).

Proof. Note that every idempotent splits in K(Mod-A) (see [13, Proposition
3.2]). Thus, since we have an isomorphism of Artin R-algebras

Endy(Mod-4)(P*) = Endgcmoa-4) (VP*),

it follows that P* and vP*® have the same number of nonisomorphic indecom-
posable direct summands. O

Recall that A is said to be selfinjective if the equivalent conditions of Lemma
3.1.3 are satisfied for P* = A.

Remark 3.1.4. If A is selfinjective, then v : mod-A — mod-A is an equivalence
and induces an equivalence P4 — Pa.

Lemma 3.1.5 ([25, Lemma 3.1]). For any P* € X®(P4) and X* € X(Mod-A)
we have a bifunctorial isomorphism

Homx(Mod_A) (X*,vP*) = DHC)m:K(Mod-A) (P, X*).

Definition 3.1.6. For any P* € X®(P4) we denote by S(P*) the full subcate-
gory of D~ (Mod-A) consisting of complexes X* with Homp (vod-4)(P®, X*[i]) =
0 for i # 0.

Lemma 3.1.7. Assume A is selfinjective. Then for any tilting complex P® €
KP(Pa) the following are equivalent.

(1) Endg(mod-4)(P*) is selfinjective.
(2) P* e S(wP*).
(3) add(P*) = add(vP*).
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Proof. Set B = Endx(mod.4)(P*). Note that by Lemma 3.1.5 vP* € S(P*®) and
Homg((Mod_A)(P‘, vP®) = D(gB).
(1) & (3). Note first that we have an equivalence (see {39, Section 4])

Homop(moa-4)(P*, =) : S(P*) = Mod-B.

We may consider add(P*) and add(vP*) as full subcategories of S(P*) via
the canonical functor X®(P4) — D~ (Mod-A4). Then add(P*) and add(vP*)
are closed under direct summands because every idempotent splits in X°(P4)
(see [13, Proposition 3.4]). Thus the equivalence above induces equivalences
add(P*) = Pp and add(vP*) 5 Ip.

(2) = (3). We have Homx (moda-4)(P* ® vP*, (P* @ vP*®)[i]) = 0 for 1 # 0
and hence by [26, Lemma 1.8] add(P*) = add(vP*).

(3) = (2). Obvious. o

In case A, B are finite dimensional selfinjective algebras over a field and
F : XP(Pa) = XP(Pg) is an equivalence of triangulated categories, it was
pointed out in [5, Section 2] that for any P* € XP(P4) there exists an object-
wise isomorphism F(vP*®) & vF(P*). We need to extend this fact to the case
of Artin algebras.

Lemma 3.1.8. Let A, B be derived equivalent selfinjective Artin R-algebras
and F : XP(Pa) = KP(Pg) an equivalence of triangulated categories. Then for
any P* € KP(P4) we have a functorial isomorphism vF(P*) = F(vP*).

Proof. Let G : X®(Pg) = X®(P4) be a quasi-inverse of F. Then for any P* €
KP(P4) and Q* € XP(Pp), by Lemma 3.1.5 we have bifunctorial isomorphisms

Homg Mmoa-B)(Q°, VF(P*)) = DHomgc(Moa-B) (F(P*), Q%)
& DHomg (Moa-4)(P*, G(Q*))
= Hom (Mod-4)(G(Q"), v P*)
= Homg (Moa.B) (@, F (¥ P*)).

The assertion follows by Yoneda lemma. O
Definition 3.1.9. For any nonzero P* € X~ (P4) we set
a(P*) = max{i € Z | H(P*) # 0},
and for any nonzero P* € X (P4) we set
b(P*) = mini € Z | Homs(vioa.)(P*[i], 4) # 0}.
Then for any nonzero P* € XP(P,) we set [(P*) = a(P*)—b(P*) and call it the

length of P*. For the sake of convenience, we set [(P*) = 0 for P* € X°(Pa)
with P* = 0.
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Remark 3.1.10 (/6]). For any complex X*® and n € Z we define truncations
USn(X'):“-——-)Xn—Z — X! -—>Z"(X'>_>O_;... ,
o_lZn(Xo) _,O_ézln(X.)erH-l ___*X?z+2_}_“ )

Then P* = g<,(P*) for any nonzero P* € X~ (Pa), where a = a(P*), and
P* = gL, (P*) for any nonzero P* € X*(P4), where b = b(P*).

3.2 Torsion theories

We need to recall several definitions and basic results on torsion theories.

Definition 3.2.1 ([3]). A pair (7, F) of full subcategories 7, F in an abelian
category A is said to be a torsion theory for A if the following conditions are
satisfied:,

(1) TnF={0};
(2) T is closed under factor objects;
(3) F is closed under subobjects; and

(4) for any X € A there exists an exact sequence 0 = X' = X — X" — 0
with X’ € T and X" € F.

Definition 3.2.2. Let A be an abelian category and C a full subcategory of A.
Then we denote by +C (resp., C*) the full subcategory of A consisting of objects
X with Homu(X,C) = 0 (resp., Hom4(C, X) = 0). For an object Y € A, we
use the notation 1Y (resp., Y1) instead of +add(Y) (resp., add(Y)?).
Remark 3.2.3. Let (7,F) be a torsion theory for an abelian category A. Then
the following hold.

(1) F=TL and T =+F.
(2) 7 and F are closed under extensions.

(3) There exists a subfunctor ¢ of the identity functor 14 : A — A, called the
associated torsion radical, such that ¢(X) € 7 and X/t(X) € F for all
XeA

Proof. (1) By the conditions (1)=(3), # C 7+ and T C +F. On the other hand,
by the condition (4), 7+ C F and 1 F C 7.

(2) Immediate by (1).

(3) For each X € A, take an exact sequence

0 X X X IX, X7 0

with X’ € T and X” € F. For any Z € 7, since Homu4(Z, X") = 0,
Homy(Z,vx) is an isomorphism. It follows that X’ is maximum in the col-
lection of subobjects of X belonging to 7. We set t(X) = X’. Next, let
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f:+ X — Y be a morphism. Since Hom4(X',Y"”) = 0, my o foitx = 0 and
there exists a unique morphism f’ : X’ — Y’ such that foux = vy o f.
We set t(f) = f’. Then for any X € A we have idx otx = ix oidyyx)
and hence t(idx) = idyx). Also, for any consecutive morphisms f : X — Y
and g : Y — Z, since fory = ty ot(f) and goty = itz ot(g), we have
go foux =iz 0t(g) 0 t(f) and hence (g f) = t(g) o (f). 0

Although the next lemma is well-known, we include a proof because it will
play an indispensable role in the next section.

Lemma 3.2.4. For any Y € mod-A, by setting T = 1Y and F = T+, we have
a torsion theory (T,F) for mod-A.

Proof. 1t is obvious that the conditions (1)-(3) of Definition 3.2.1 are satisfied.
Let X € mod-A. Let {X)}rea be the set of submodules of X belonging to T
and set X’/ = UAe A X Note that 7 is closed under extensions and finite direct
sums. In particular, A is directed, where A < p if and only if X C X,,, and X’
is a submodule of X. Thus we have an epimorphism ;.4 Xx — X' in Mod-4
and, since Hom4 (Pycp X, V) = [ep Homa(Xy,Y) = 0, it follows that X' €
T. Next, we claim that X/X’ € F. Let Z € T and f € Homu(Z, X/X’). Take
a pull-back of f along with the canonical epimorphism X — X/X":

0 X’ w Z — 0
" s
0 X’ X X/X' —— 0.
Then, since W € 7, Im g C X’ and f=0. a

Definition 3.2.5. Let A be an abelian category and C a full subcategory of
A closed under extensions. Then an object X € C is said to be Ext-projective
(resp., Ext-injective) if Ext (X, C) = 0 (resp., Ext(C, X) = 0).

Lemma 3.2.6. Let (7,F) be a torsion theory for mod-A. Then a module
X €T is Ext-injective if and only if X = t(E) with E an injective envelope of
X.

Proof. “If” part. Let E € mod-A be an injective module and take an exact
sequence
0—tE)EYSZ-0

with Z € 7. We claim that y is a split monomorphism. Denote by ¢ : t(E) — E
the inclusion. By the injectivity of E, ¢ = ¢ o pu for some ¢ : ¥ — E. Note
that by Remark 3.2.3(2) Y € 7. Thus ¢(Y) C t(F) and ¢ = ¢ o ¢ for some
¢ Y — t(E). Then ¢ =10¢ op and idyp) = ¢ o p. It follows that ¢(E) is
Ext-injective.

“Only if” part. Let X € T and E an injective envelope of X. We consider
X as a submodule of E. Then X C t(F) and we have an exact sequence

0—X —L>t(E') —t(E)/X — 0.
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Since t(E)/X € T, and since X is Ext-injective, the inclusion ¢+ : X — t(E) has
to be a split monomorphism. On the other hand, E and hence ¢(E) are essential
extensions of X. It follows that X = t(E). O

We refer to [9, Chapter V, Sections 1 and 2] for the following Definitions 2.7,
2.8 and Lemmas 2.9, 2.11.

Definition 3.2.7. Let A be an abelian category and C a full subcategory of A.
Let f : X — Y be a morphism with X, Y € C. Then f is said to be right (resp.,
left) almost split in C if f is not a split epimorphism (resp., monomorphism) and
if every morphism h: Z — Y (resp., h: X — Z) with Z € C factors through f
unless h is a split epimorphism (resp., monomorphism).

Definition 3.2.8. Let A be an abelian category and C a full subcategory of 4
closed under extensions. Then a nonsplit exact sequence

025y L x—o0

with X,Z € C is said to be an almost split sequence in C if the following
conditions are satisfied:

(1) End4(X) and End 4(Z) are local; and
(2) f (resp., g) is right (resp., left) almost split in C.

Lemma 3.2.9. Let A be an abelian category and C a full subcategory of A closed
under extensions. Let

O—%Zl—)'yrl—*XlﬁO, 0—>Zg—~>Y2——>X2-—>O
be almost split sequences in C. Then X; = X, if and only if Z1 =2 Z,.

Definition 3.2.10. For each indecomposable module X € mod-A, we take a
minimal projective resolution Py — X and set 7X = Z7!(vPy).

Lemma 3.2.11. Let X € mod-A be an indecomposable nonprojective module.
Then Ext} (X, 7X) # 0 and the following hold.

(1) As a right module over End a(X ), Ext}y (X, 7X) is embedded in DEnd 4(X)
and hence has a simple socle.

(2) A nonsplit exact sequence
0-7X—-Y—>X—=0

representing a nonzero element of the socle of Exth(X,7X) is an almost
split sequence in mod-A.

Lemma 3.2.12 ([23, Lemma 2]). Let (T,F) be a torsion theory for mod-A
and X € T an indecomposable module. Then the following hold.
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(1) X is Ext-projective if and only if TX € F.

(2) Assume X is not Ext-projective and let 0 — 7X =Y — X — 0 be an
almost split sequence in mod-A. Then the induced sequence

0—=t(rX)—=t(Y)—-X =0
is an almost split sequence in T . »

Definition 3.2.13. Assume A is selfinjective and let {e;,- - , e, } be a basic set
of orthogonal local idempotents in A. Then there exists a permutation p of the
set I = {1,---,n}, called the Nakayama permutation, such that v(e;A) 2 e, ;) A
foralli e I

Proposition 3.2.14. Assume A is selfinjective and has a cyclic Nakayama
permutation. Then for any tilting complezr P* € KP(P4) with Ends(Mmod-4)(P*)
selfinjective we have [(P*) = 0.

Proof. Set | = I(P*). We may assume P! = 0 unless 0 < 7 < . Suppose to the
contrary that { > 1. Set X = H'(P*) and Y = H°(P*). Since by Lemma 3.1.7
add(P*) = add(vP*), we have add(P*) = add(v*P*) for all k > 0. Thus for
any k > 0, since Homg(poq.4)(P®, P*[~!]) = 0, and since V¥ P* € add(P*), we
have

Hom (v X,Y) = Hom 4 (H' (v* P*), H(P*))
= HomK(Mod_A)(x/kP',P'[—l])

=0.
By Lemma 3.2.4 there exists a torsion theory (7, F) for mod-A such that 7 =
LY and F = T+. Let {e1,- -, en} be a basic set of orthogonal local idempotents

in A and set S; = e;A/e;J for 1 < ¢ < n, where J is the Jacobson radical of A.
Note that vS; = Sy;) forall 1 <i < n. Let S € mod-A be a simple module
which is a factor module of X. For any k > 0, since v*X € 7, and since v*S is a
factor module of 1* X, we have v*S € T. Note that S = S; for some 1 <4 < n.
Then v*S = S (;) for all k > 0. Since p is cyclic, it follows that .S; € T for all
1 <% < n. Thus F does not contain any simple module and F = {0}. On the
other hand, by the construction we have 0 # Y € F, a contradiction. 0O

3.3 Main results

To begin with, we modify [14, Lemma of 2.1] as follows.

Lemma 3.3.1. Let P* € X®(P4) be a complez with Homx (moa-4)(P*, P*[i]) =
0 for i # 0 and add(P*) = add(vP*). Assume there exists a tilling complex
T* € KP(P4) such that Homg(mod-4)(P*, T*[i]) = 0 unless =1 <4 < 0. Form
a distinguished triangle in X®(P4)

Q- —_ P.(n) _;f_) To e
such that Homgc(moa-4)(P®, f) is epic. Then Q° @ P*® is a tilting complez.
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Proof. Note first that such a homomorphism f exists. To see this, set X* =
Hom} (P*,T*) € X®(mod-R). Then Homx (moa-4)(P®,T*) = H°(X*) € mod-R,
i.e., Homy(moa-4)(P°®,T*) is finitely generated over R. It then follows that
Homx (mod-4)(P*, T*) is finitely generated over Endx(mod.4)(P*). Take a set of
generators f1,- -, fn € Homg(moa-4)(P*,T*) over Endyc(Moa-4)(P*) and set

F=(f, - Ja): PP ST,

It then follows by the construction that Homg(moa-4)(P*, f) is epic.
Obviously, add(Q® ® P*) generates X°(P,) as a triangulated category. Note
also that by Lemma 3.1.5 Homg(moa-4)(T*, P*[i]) = O unless 0 < < 1.

Claim. The following hold.
(1) Homg(Mod-4)(P*®,Q°[d]) = 0 for 1 # 0.
(2) Homg(Moa.4)(Q°, P*[1]) = 0 for i # 0.
(3) Homg(Mod-4)(T*,Q%[i]) =0 for i > 1.
(4) Homg(Moa.4)(Q°,T*[]) = 0 for 1 < —1.

Proof. (1), (3) and (4) follow by the construction and (2) follows by (1) and
Lemma 3.1.5. O

Now, by (1), (3) of Claim Homg(moa-4)(Q%,Q°[#]) = 0 for i > 0 and by (2),
(4) of Claim Homx(mod-4)(@%, @°[]) = 0 for ¢ < 0. This finishes the proof of
Lemma 3.3.1 O

Corollary 3.3.2. Assume A is selfinjective. Let P* € X°(Pa) be a complex
with P* = 0 unless 0 < 1 < 1. Assume Homx (mod-4)(P*, P*[i]) = 0 for i # 0
and add(P*) = add(vP*). Then there exists some Q* € K°(P,) such that
Q* @ P* is a tilting complez. In particular, if the number of nonisomorphic in-
decomposable direct summands of P* coincides with the rank of the Grothendieck
group Ko(A), then P® is a tilting complez.

Proof. Applying Lemma 3.3.1 to T* = A, the first assertion follows. The last
assertion follows by [39, Proposition 9.3]. O

Recall that A is said to be representation-finite if there exist only a finite
number of nonisomorphic indecomposable modules in mod-A.

Remark 3.3.3 ([30] and [40]). Let A, B be derived equivalent selfinjective Artin
R-algebras. Then A is representation-finite if and only if so is B.

Proof. This follows by the fact that A, B are stably equivalent (see [30, Theorem
3.8] and [40, Corollary 2.2]). O
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Lemma 3.3.4. Assume A is selfinjective and representation-finite. Let P*® €
KP(P4) be a complex of length > 1 with Homg (Mod-4)(P*, P*[i]) = 0 for i #0
and add(P*) = add(vP*). Then there ezists a tilting complex T* € X®(Pa) of
length 1 such that

(1) HOmx(Mod_A)(T',P.[’iD =0 fOT"i Z l(P.),
(2) Homg(moa-4)(P*[i],T*) = 0 fori < 0, and

(3) Endx(moa-4)(T*) is a selfinjective Artin R-algebra whose Nakayama per-
mutation coincides with that of A.

Proof. Set | = I(P*). We may assume P' = 0 unless 0 < 7 < I. Note that
add(P*) = add(vP*) implies add(H°(P*)) = add(H°(»P*)). Also, by Lemma
3.2.4 there exists a torsion theory (7, F) for mod-A such that 7 = *H(P*) =
LH°(vP*) and F = T+. We denote by ¢ the associated torsion radical.

Claim 1. HY(P*) € T and H°(P*),H°(vP*) € F.
Proof. By the construction H°(P*), H°(vP*) € F. Also, by Lemma 3.1.5

Hom 4 (H!(P*), H° (v P*)) & Homg (Mod. 4) (P, v P*[—1])
& DHomx (Mod-4)(P*, P*[l])
=0

and H!(P*) € T. 0

Claim 2. v : mod-A = mod-A induces 7 = 7 and F = F. In particular,
v(t(X)) = t(vX) for all X € mod-A.

Proof. We have vT = L(vH?(P*)) = *H°(vP*) = 7 and then v¥ = (vT)* =
Tt =F. |

Let {e1, -+ ,en} be a basic set of orthogonal local idempotents in A. Set
I = {1,---,TL}, I, = {Z el ] e;A € T}, I, = {’L el ! e;A Gf} and
Iy =I\ 11 UI. For each i € I, we define a complex T € be('PA) as follows.
Set Tp = e;A[—1] if ¢ € I, and set T = e;A if i € I,. Assume ¢ € I3. Since
e; A is indecomposable injective, t(e; A) is indecomposable. Also, by Lemma 2.6
t(e;A) is Ext-injective. To this module ¢(e;A), we associate an indecomposable
Ext-projective module X; € T as follows. Set Y1 = t(e;A) and for k > 1 set
Yiy1 = t(7Y%) unless Y is Ext-projective. Then, according to Lemma 3.2.9,
Y., has to be Ext-projective for some m > 1 because 7 contains only a finite
number of nonisomorphic indecomposable modules. We set X; = Y;,, and define
T? as the (—1)-shift of a minimal projective presentation of X;. Now, we set
T* = @, ; T7 (cf. [27, Theorem 5.8]). Also, we denote by p the Nakayama
permutation of A.

Claim 8. VT =2 T, foralli € I. In particular, vT* 2 T'* and Endy (mod-4) (1)
is a selfinjective Artin R-algebra with p the Nakayama permutation.
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Proof. By Claim 2 the sets I; are p-stable. Thus VT = T;(i) fori € I U I,.
Let i € Is. Then by Claim 2 v(t(e;A4)) = t(v(e;d)) = t(epm)A) and hence
vX; = X,i;). Thus vT7 = T;(i). Now, for any 7 € I, by Lemma 3.1.5
DHomx(Mod_A) (Ti.: T.) =, Homx(Mod,A) (T', I/Ti.)
= Homx(Mod_A) (T.,Tp'(i))

Claim 4. HY(T*) € T and HO(T*),H°(WT*) € F.

Proof. By the construction H*(T*) € 7. Also, by Lemma 3.2.12(1) HO(vT7) =
7X; € F for all i € I3 and hence HO(vT*) € F. It then follows by Claim 3 that
HO(T*) € F. 0

Claim 5. T* is a tilting complex.
Proof. By Claim 4 Homg(moa-4)(T*, T*[-1]) = Homu (HY(T*),H°(T*)) = 0.
Then by Lemma 3.1.5 and Claim 3
Homx(Mod‘A) (T., T.[l]) = DHomx(Mod_A) (T., I/T.{-—l])
& DHomg(Moa-4) (T, T*[—1])
=0.
Thus by Claim 3 we can apply the last part of Corollary 3.3.2. O

Claim 6. Homx(Mod_A) (T., p [’L]) = 0fori 2 l and Homgc(Mod_A) (P. [’L}, T') =0
for z < 0.

Proof. For any i > I we have a(P*[i]) < b(T*) and Homgx (moa-4)(T*, P*[4]) = 0.
Similarly, for any i < —1 we have a(T**) < b(P*[4]) and Homg(moa-4) (P*[i], T*)
= 0. Also, by Lemma 3.1.5 and Claims 1, 4
Homu(Mod-4) (T, P*[l]) = DHomg (Moa-4) (P*, vT*[—1))
> DHoma(H'(P*), H°(vT*))
=0,

Homgc(Mod-4)(P*[—1],T*) = DHomg (Moa-4) (T°, vP*[—1])
= DHom 4 (H!(T*), H*(vP*))
= 0.

O
This finishes the proof of Lemma 3.3.4. O

Remark 3.3.5. Consider the case where [(P*) = 1 in the above lemma. Then
Homgc(moa-4)(T* @ P*,(T* & P*)[i]) = 0 for ¢ # 0 and by [26, Lemma 1.8] we
have P* € add(T").
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Theorem 3.3.6. Assume A is selfinjective and representation-finite. Let P® €
KX®(P4) be a complex with Homgc(moq-a4) (P®, P°[i]) = 0 fori # 0 and add(P*) =
add(vP®). Then there exists some Q* € XP(Pa4) such that Q° & P* is a tilting
complex. In particular, if the number of nonisomorphic indecomposable direct
summands of P* coincides with the rank of the Grothendieck group Ko(A), then
P* is a tilting complex.

Proof. Set | = I(P*). We may assume P* = O unless 0 <¢ <. Incasel <1,
this is a special case of Corollary 3.3.2. Assume [ > 2. Let T* € X®(P4) be
a tilting complex constructed in Lemma 3.3.4 and set B = Endx(Mod-4)(T*).
There exists an equivalence of triangulated categories F' : XP(P4) = XP(Pp)
which sends T to B. Denote by G : X*(Pg) = XP(Pa) a quasi-inverse of F.
Set P* = F(P*). Then HOmx(Moq-B)(P°, P*[i]) = Homgx (Moda-4) (P, P*[d]) = 0
for i # 0. Also, by Lemma 3.1.8 vP* 2 F(vP*) and hence add(P*) = add(vP*).
Furthermore,

H*(P*) 2 Homg(Moa-B) (B, P°[i])
o Homx(Mod.A)(T'> P°l4])
=0

fori > land Homx(ModAB)(P’ [s], B) = Homg(Mod-4)(P*[i], 1) = 0 fori < 0, so
that {(P*) < I—1. Thus by induction hypothesis there exists some Q* € X*(Pp)
such that Q° @ P* is a tilting complex. Then, by setting Q* = G(Q*), Q* & P*
is a tilting complex. O

Theorem 3.3.7. Assume A is selfinjective and representation-finite. Then for
any selfinjective Artin R-algebra B derived equivalent to A the following hold.

(1) There exists a sequence of selfinjective Artin R-algebras A = B, By,- -+,
B,, = B such that for any 0 <1 < m, B,y is the endomorphism algebra
of a tilting complez for B; of length < 1.

(2) The Nakayama permutation of B coincides with that of A.

Proof. (1) Let P* € KP(Pa) be a tilting complex with B = Endg(moa-4)(P*).
Set | = [(P*). In case | < 1, we have nothing to prove. Assume ! > 2.
Let T* € X"(P4) be a tilting complex constructed in Lemma 3.3.4. Set
B; = Endx(Mod-4)(T*) and let F : KP(Pa) — KP(Pp,) be an equivalence
of triangulated categories which sends T* to B;. Note that B; is selfinjec-
tive and representation-finite, and that P = F(P*) is a tilting complex with
B = Endx(Mod-B,)(Pr). Also, as in the proof of Theorem 3.3.6, we have
I(P?) €1~ 1. The assertion now follows by induction.

(2) By (1) and Lemma 3.3 4. O
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Chapter 4

Frobenius extensions and
tilting complexes

Let A be a ring and e € A an idempotent. Assume A contains a subring R
such that ze = ez for all 2 € R, Aeg is finitely generated and eA 4 is embedded
in Hompg(Ae, Rr)a as a submodule. Then A/AeA is finitely presented as a
right A-module and Hom4(A/AeA,eA) = 0. Thus by [25, Proposition 1.2]
there exists a tilting complex (see [39]) of the form

T 20T 15T =0—---

such that T° € add((1 — e)A4), T~! € add(ed,) and eA[l] € add(T*). This
type of tilting complex plays an important role in the theory of derived equiv-
alences. For instance, Rickard [40] showed that the Brauer tree algebras over a
field with the same numerical invariants are derived equivalent to each other and
then Okuyama pointed out that such derived equivalences are given as iterations
of derived equivalences induced by tilting complexes of the above type. Our aim
is to provide a way to construct extensions A of a given ring R containing such
an idempotent. To do so, we need the notion of Frobenius extensions of rings
due to Nakayama-Tsuzuku [36, 37] (cf. also Kasch [28, 29]) which we modify
as follows. Let A be a ring containing a ring R as a subring. Then A is said to
be a Frobenius extension of R if the following conditions are satisfied: (F1) Ag
and pA are finitely generated projective; and (F2) A4 = Homg(A, Rr)4 and
4A = sHompg(A, rR). We will see that Frobenius extensions preserve various
homological properties (cf. [28], [29], [35], [36], [37] and so on). For instance,
the following hold: inj dim A4 < inj dim Rg and inj dim 4A < inj dim gR; if
R is a noetherian ring satisfying the Auslander condition (see [12]) then so is
A; and, if R is a quasi-Frobenius ring, i.e., a selfinjective artinian ring then so
is A.

For any integer n > 1, any permutation 7 of / = {1,--- ,n} and any ring R,

This chapter is based on my joint paper with M. Hoshino [4].
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we will provide a way to construct a Frobenius extension A of R which enjoys
the following properties: (a) 1 = Y. ;.;e; with the e; orthogonal idempotents;
(b) e;z = me; for all 4 € I and = € R; (c) e;Ae; # 0 for all 4,5 € I; (d)
e;Aa % e;jAs unless i = j; (e) every e;Ae; is a local ring whenever so is R;
(f) e;Agq = HomR(Ae,r(i),RR)A and AAeﬂ'(i) =~ sHompg(e;A,rR) for all ¢ € I;
and (g) there exists a ring automorphism 7 € Aut(A) such that 7(e;) = ex@)
for all 4 € I. In particular, for any nonempty m-stable subset J of I, we get a
desired idempotent e = ). ; e;. In case 7 is cyclic, we have constructed such a
Frobenius extension in {24f (cf. also [31] and [38]). We generalize this construc-
tion. Namely, we define an appropriate multiplication on a free right R-module
A with- a basis {e;; }: jer U {vi}icr,, where Iy = {i € I | w(i) =i}, and then set
e; = e;; for 1 € I. To do so, we need a certain pair (¢,w) of an integer t > 1
and a mapping w : I x I — Z and a certain pair (¢, o) of a nonunit c € R and a
ring automorphism o € Aut(R). Although the ring structure of A depends on
the ‘choice of (t,w) and (c, o), the properties (a)-(g) above are always enjoyed.
Finally, consider the case where c is regular. Then we will see that if Iy is empty
then A can be embedded as a subring in the 7 x n full matrix ring M, (R) over
R, and that if i € I'\ Jo then A is derived equivalent to a generalized triangular
matrix ring

0 AJAe;A

and Ext}y(A/Ae; A, e;A) = ex—1(;y(A/Ae; A) as right (A/Ae; A)-modules.

For a ring R, we denote by Z(R) the center of R, by R* the set of units in
R and by Aut(R) the group of ring automorphisms of R. We denote by Mod-R
the category of right R-modules and sometimes consider left R-modules as right
R°P.modules, where R°P denotes the opposite ring of R. We use the notation
Xg (resp., rX) to stress that the module X considered is a right (resp., left)
R-module. For a module X, by an injective resolution of X we mean a cochain
complex I* of injective modules such that I* = 0 for i < 0, H(I*) = 0 for 7 > 0
and HO(I*) = X, where H*(—) denotes the i*? cohomology. We refer to [15] for
standard homological algebra in module categories.

( eiAei Extfq(A/AeiA, eiA) >

4.1 Definition and basic properties

In this chapter, a ring 4 is said to be an extension of a ring R if A contains R
as a subring. We start by modifying the notion of Frobenius extensions of rings
due to Nakayama-Tsuzuku [36, 37] (cf. also Kasch [28, 29]) as follows.

Definition 4.1.1. Let A be an extension of a ring R. Then A is said to be a
Frobenius extension of R if the following conditions are satisfied:

(F1) Ag and gA are finitely generated projective; and

(F2) Ag = Homp(A,RRr)4 and 4A = aHompg(A, gR).

Remark 4.1.2. Let A be an extension of a ring R and assume there exists an
isomorphism of right A-modules ¢ : A4 — Hompg(A, Rr)a. Then the following
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hold.

(1) There exists a ring homomorphism 6 : R — A such that z¢(1) = ¢(1)0(z)
for all z € R. In particular, ¢ is an isomorphism of R-A-bimodules if and only
if 0(z) ==z forallz € R.

(2) Assume Ag is finitely generated projective. Then pHompg(A, Rg) is
finitely generated projective and we have an isomorphism of A-R-bimodules

4Ar 5 aHompg(Homg(A, Rg), RR)r,a — (h+— h(a)).

Thus, if ¢ is an isomorphism of R-A-bimodules, then rA is finitely gener-
ated projective and we have an isomorphism of A-R-bimodules ¥ : 4Agr =5
aHomp(A, rR)r such that ¥(a)(b) = ¢(b)(a) for all a,b € A.

Throughout the rest of this section, A is a Frobenius extension of R. We
fix an isomorphism of right A-modules ¢ : A4 — Hompg(4, Rr)4. Then, as
remarked above, there exists a ring homomorphism 6 : R — A such that z¢(1) =
#(1)8(z) for all z € R. For a right (resp., left) A-module M4 (resp., aL) we
denote by Mpyry (resp., e(R)L) the right (resp., left) R-module on which R
operates via # : R — A. Then ¢ yields an isomorphism of R-A-bimodules
¢ : or)Aa — rHompg(A, Rg)a. Similarly, we fix an isomorphism of left A-
modules 1 : 4A = sHompg(A, gR). Then there exists a ring homomorphism
n: R — A such that ¥(1)z = n(z)¥(1) for all = € R. For aright (resp., left) A-
module M, (resp., 4L) we denote by M, (r) (resp., ,(r)L) the right (resp., left)
R-module on which R operates vian: R — A. Then v yields an isomorphism
of A-R-bimodules v : 44y (r) = aHompg(A, rR)r. Note that gryA and A,(r)
are finitely generated projective.

Recall that in [36, 37] A is said to be a Frobenius extension of second kind
if @ induces a ring automorphism of R and to be a Frobenius extension of first
kind if 8(z) = z for all z € R. However, we will see in Section 3 that 6(R) # R
in general. In the following, we collect several basic properties of Frobenius
extensions (cf. [28], [29], [35], [36], [37] and so on). By symmetry, “right” and
“left” can be exchanged in the following statements.

Remark 4.1.3. Let X € Mod-R, M € Mod-A and L € Mod-A°P. Then we have
the following bifunctorial isomorphisms:

(1) Homp(M,X ®g A) = HomR(Mn(R),X);
(2) Homy4 (Homg(A, X), M) = Hompg(X, My(r)); and
(3) Hompg(4, X)®aL=XQ®gr e(R)L.

Proof. Since rA and Ap are finitely generated projective, we have functorial
isomorphisms in Mod-A

X ®r A = Homg(Homg(4, grR), X),z® a — (h+ zh(a)),
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X ®gr Hompg(A, Rg) = Hompg(4,X),z® h— (a+— zh(a))

which are special cases of Watt’s theorem (cf. [42]). Since sHompg(A, rR)r =
AAqy(r), we have bifunctorial isomorphisms

Homa (M, X ®r A) = Hom4 (M, Homg(Ay(ry, X))
=~ Homg(M ®4 Ay(r), X)
= Hompg(My(r), X)-
Similarly, since pRHompg(4, Rr)a = g(r)Aa, We have bifunctorial isomorphisms
Hom 4 (Hompg(4, X), M) = Homa (X ®r gr)A, M)
= Hompg (X, Hom4(gr) 4, M))
= Hompg (X, My(r)),

Homp (A, X)®a L = X ®ror)A®a L= X ®rowrL
]

The first two isomorphisms of the following preliminary lemma are known
as Eckmann-Shapiro lemma.

Lemma 4.1.4. Let X € Mod-R, M € Mod-A and L € Mod-A°P. Then for
any i > 0 we have the following bifunctorial isomorphisms:

(1) Ext’,(M,Hompg(4, X)) = Exty (M, X);

(2) Ext',(X ®r A, M) = Exth(X, M);

(3) Tor?(X ®g A, L) = Tor (X, L);

(4) Bxty,(M, X ®r A) = Exth (M, gy, X);

(5) Ext’y(Hompg(A4,X), M) = Exty(X, My(ry); and
(6) Torf (Homg(A, X), L) = Torf (X, o(ryL).

Proof. See [15, Chapter VI, Section 4] for the first three isomorphisms; (1)

follows by the projectivity of Ag and (2), (3) follow by the flatness of gA.
Similarly, according to Remark 4.1.3, the last three isomorphisms follow by

the exactness of — ®g A and Hompg (4, —). a

Proposition 4.1.5. The following hold.
(1) If R is right noetherian (resp., artinian), so is A.
(2) Extiy (M, A) = Exth(M, R) for all M € Mod-A and i > 0. In particular,
inj dim A4 < inj dim Rpg.
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(8) If I* is an injective resolution of Rg, then Hompg(A,I*) is an injective
resolution of A4 with flat dim Hompg(A, I) 4 < flat dim Ij'z for alli > 0.

Proof. (1) follows by the fact that Ag is finitely generated. Also, since A4 =
Hompg(A, Rg) 4, (2) follows by Lemma 4.1.4(1). Finally, since Homg(A4,—)
is exact, and since Ay = Hompg(A, Rg)a, (3) follows by (1), (6) of Lemma
4.14. ]

Lemma 4.1.6. Assume the inclusion R — A is a split monomorphism of R-
R-bimodules. Then for any X € Mod-R the following hold.

(1) inj dim Hompg(4,X)a = inj dim X ®r A4 = inj dim Xg.
(2) proj dim Hompg(A, X)a = proj dim X ®r A4 = proj dim Xg.
(3) flat dim Hompg(4, X)4 = flat dim X ®r A4 = flat dim Xg.

Proof. Note that every X € Mod-R is a direct summand of both Hompg (4, X)r
and X ®g Ag.

(1) By Lemma 4.1.4(1) inj dim Hompg(4,X), < inj dim Xgr. Conversely,
assume inj dim Hompg(A4,X)4 = d < co. Then for any Y € Mod-R and 7 > d by
Lemma 4.1.4(1) Exth(Hompg(4,Y), X) = 0 and hence Exty(Y,X) = 0. Thus
inj dim Xg <d.

Similarly, by Lemma 4.1.4(4) inj dim X ®r A4 < inj dim Xg. Conversely,
assume inj dim X ® g A4 = d < oo. Then for any ¥ € Mod-R and i > d
by Lemma 4.1.4(2) Ext(Y, X ®r A) = 0 and hence Exty(Y,X) = 0. Thus
inj dim Xg <d.

(2) and (3) follow by the same arguments as in (1). O

Proposition 4.1.7. Assume the inclusion R — A is a split monomorphism of
R-R-bimodules. Then the following hold.

(1) If A is right noetherian (resp., artinian), so is R.
(2) inj dim A4 = inj dim Rpg.

(3) If I* is an injective resolution of Rg, then Hompg(A,I®) is an injective
resolution of Aa with flat dim Homg(A, I*) 4 = flat dim I for alli > 0.

Proof. (1) Take a homomorphism of R-R-bimodules v : A — R such that
v(z) = z for all z € R. Then v(aA) = a for all right ideals a of R and the
assertion follows.

(2) Since As = Homg(A, Rr)a, this follows by Lemma 4.1.6(1).

(3) follows by Proposition 4.1.5(3) and Lemma 4.1.6(3). O

Definition 4.1.8. A Frobenius extension A of R is said to be split if the inclu-
sion R — A is a split monomorphism of R-R-bimodules.
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4.2 Notation

To construct a desired Frobenius extension, we fix the following notation which
will be kept throughout this and the next sections.

Let n > 1 be an integer, ™ a permutation of I = {1,--- ,n} and Iy = {i €
I|7(z) =i}. Lett > 1 be an integer, let w : I X I — Z be a mapping and define
a mapping x : I — Z as follows:

ot it € I,
I = 06, 7)) itie I\ Io.

We assume the following conditions are satisfied:
(W1) w(i,i) =0 for all ¢ € I;
(W2) w(i, 7)) + w(g, k) > w(i, k) for all 2,5,k € I,
(W3) w(3,7) +w(f,i) > 1 unless i = j; and
(W4) w(s, ) + w(j,n(?)) = x(¢) unless ¢ = j € Io.

Example 4.2.1. Let t = 2 and define w : I x I — Z as follows: w(i,5) = 0 if
i=74,w(i,j)=2if = 7(2) # ¢ and w(i,5) = 1 otherwise. Then the conditions
(W1)-(W4) are satisfied.

Lemma 4.2.2. We have w(n(i),n(5)) = w(3,7) — x(2) + x(j) for alli,j € I.

Proof. We may assume i # j. In case j # w(3), by (W4) {w(3, 7)—x(1)}+x(j) =
(i) + {w(, (@) + w(x(@D), 1))} = wn(i),w()). Assume j = 7(a).
Then i € T\ Io and w(i, 1) — x(3) + x(3) = w(i, m(3)) — X&) + X(r(5)) = x(r()).
Note that by (W1) w(m(5),n(n(:))) = 0. Thus, since 7(i) # 7(j), by (W4)

x(m(i)) = w(r (@), 7(4)) + w(w(5), m(w(9))) = w(r(i),7(3).
For the sake of convenience, we define a mapping A : I X I x I — Z as follows:
)\(ivjy k) = w(iaj) + w(ja k) - w(iv k)

for all 4,7,k € I. It is easy to see that the following hold:
(L1) A(¢,5,k) > 0 for all 4,5,k € I;
(L2) A(i,5,k) = 0 if either i = j or j = k;
(L4) A(G,j,m(2)) =0foralli € I\ Iy and j € I; and
(L5) A(3,4,4) = x(i) for all i € Iy and j € I\ {4}.

Lemma 4.2.3. The following hold.
(1) w(,j) +w(d, k) = A(4,5,k) +w(i, k) for alli, 5,k € 1.
(2) MG, 3, k) + A3,k 1) = A(6,5,0) + A4, k, 1) for all,5,k,l€ 1.
(3) Mr(3),7(5),m(k)) = A(t,4, k) for all 4,3,k € 1.
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(4) MG, 3,k) = A(4,k,1) for alli € Iy and j,k € I\ {i}.

Proof. (1) and (2) follow by the definition and (3) follows by Lemma 4.2.2.

" (4) By (2) and (LS) A(iwjv k)_’\(j>k7i) = /\(i>j> 7’) _"\(ivkvi) = X(i)—X(i) E

Also, we fix a ring R together with a pair of a nonunit ¢ € R\ R* and a
ring automorphism ¢ € Aut(R) satisfying the following condition:

(¥) o(c) = c and zc = co(z) for all 2 € R.

This is obviously satisfied if either ¢ = 0 and o is arbitrary, or ¢ € Z(R) and
o = idr. We provide a non-trivial example.

Example 4.2.4. Let k[X] be a polynomial ring in one variable X over a com-
mutative ring k and a = (X™) an ideal of k[X] generated by X™ with m > 3.
Set R = k[X]/a, z = X +a and ¢ = 2" with m > r > (m+ 1)/2. Then there
exists ¢ € Aut(R) such that o(f(z)) = f(z + c) for all f(X) € k[X]. It is easy
to see that the condition () is satisfied.

Here, we deal with the case of n = 1. Let S be a free right R-module with a
basis {e,v} and define the multiplication on .S subject to the following axioms:

(S1) e = ¢, v? = —vc’ and ev = v = ve; and

(S2) ze = ez and zv = vo'(z) for all z € R.

Lemma 4.2.5. The following hold.
(1) S is an associative ring with 1 = e.

(2) S is a split Frobenius extension of R, where R is considered as a subring
of S via the injective ring homomorphism R — S,z + ex.

(8) If R is local, so is S.

Proof. (1) and (2) will be proved in the next section (see Theorem 4.3.1).

(3) Let m = R\ R* and 9 = em+vR. It is easy to see that I is an ideal of
S. We claim that 91 = S\ $*. Take a basis {a, p} for RHomg(S, Rgr) such that
a = ea(a)+vp(a) for alla € S. Then for any a,b € A we have a(ab) = a(a)a(b)
and p(ab) = ot(a(a))p(d) + p(a)a(b) — cto?(p(a))p(b). For any a € S* we have
ala) € R* and a € S\ M. Let a € S\ M. Then ala) € R and, since ¢’ € m,
afa) — ctp(a) € R*. Thus, by setting z = o%(a(a)) ™ p(a)(c'p(a) — a(a)) ™, we
have (ea(a)™!+vz)a = e. Similarly, a has aright inverse too. Thusa € S*. 0O

4.3 Construction
Let A be a free right R-module with a basis {e;;}; jer U{vi}ier, and define the
multiplication on A subject to the following axioms:

(A1) eijer, = O unless j =k;

(A2) e;jejx = e PF) unless i = k € Ig and j € I'\ {i};
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(A3) ejjes; =v; + e;;cX® for alli € Iy and j € I'\ {i};

(A4) v;v; = 0 unless i = j and v? = —v;cX() for all ¢ € Iy:

(AB) viejr = 0 = e;;vk unless 1 = j = k and ve;; = v; = eyv; for all © € Iy;
(A6) ze;; = e;;0%09) () for all 4,5 € I and = € R; and

(A7) 2v; = v;0X@)(z) for all i € Iy and z € R.

As usual, we require c® = 1 even if ¢ = 0. We fix a basis {o;;}ijerU{pi}ier,
for pRHompg (A, Rg) such that '

a= Z eijo(a) + Z vipi(a)

i,j€l i€lo
for all a € A. Recall that x(¢) =t for all 7 € Iy. For any a,b € A we have

ab= Y eije;a”U (ai5(a)) k()

1,9,kel
+ Y vi{ot(ai(a))pi(b) + pi(a)aus(b) — o (pi(a)) pi(b)}
i€lo
= Y e U @)au®) + Y v U (aus(a))ayi(b)
ij,kel ielo,jel\{i}
+ > vi{o*(aii(@))pi(b) + pila)us(b) — cto*(pi(a)) pi(b)}
i€ly

and hence the following hold:

(M1) aix(ad) = 31 AE3K) g0 U (a5 (a))eusp (b) for all 4,k € I; and

(M2) pi(ab) = e iy 00 (@i(a)) asi(b) + 0" (i) pi (b) + pi(a) xii (b) —
ctat(p;(a))p;(b) for all i € Iy.

In the following, we set e; = e;; and «; = «y; for 2 € I. Note that by (W1),
(A6) ze; = e;z for all 4 € I and z € R, and that by (L2), (A1), (A2) and (A5)
1= Zie 7 € Wwith the e; orthogonal idempotents.

Theorem 4.3.1. The following hold.

(1) A is an associative ring with 1 = 3. e;, where the e; are orthogonal
idempotents.

(2) e;Ae; = e;R+v;R for alli € Iy and e;Ae; = e;;R unlessi =3 € Iy. In
particular, e;Ae; = S as rings for all i € Iy and e;Ae; = R as rings for
allieI\I.

8) e;Aa FEe; Ay unlessi = 7.
i)

(4) e;Aa = Hompg(Aer(), Rr)a and gAeriy = sHompg(e;A, rR) for all i €
1, so that for any nonempty w-stable subset J of I, by settinge =

€i,
we have eAs = Hompg(Ae, Rg)a and gAe = sHompg(eA, gR).

icJ
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(5) A is a split Frobenius extension of R, where R is considered as a subring
of A via the injective ring homomorphism R — A,z Y, e;x.

Proof. (1) Let a1,a2,a3 € A. For any i, € I by (M1) we have

a;1(ay (azas))

= ZC’\(i’j'l)d“’(j")(aij(al))aﬂ(a}gag)
jelI

= Z PGP CR)) (aij(al)){z AURD GO0 (o) (a5)) i (as)}
jer kel

= Z AEINHAGRD GAGRDT G (o (a1)) 0 D (asp(a2)) i (as),
g.kel

ait((a1az)a3)

- Z C)\(i,k,l)o_w(k,l) (aik (ala’z))akl(aﬁ)
kel

_ Z CA(i,k,l)aw(k.l)({Z c’\(i'j'k)a“’(j'k)(aij (a1))ajx(a2)})ai(as)
kel jel

— Z C)\(z’,k,l)—i-)\(i,j,k) aw(k,t)-i—w(j,k) (aij (al ))O,w(k,l) (ijk (02))akl(a3)
j.kel

and hence by (1), (2) of Lemma 4.2.3 a;)(a;(aza3)) = oy ((araz)as). Similarly,
for any i € Iy by (M1), (M2) we have

pi(ai(azas))
= Y 0*Uay(a1))i(aras)

JeN{i}

+ o(ai(a1))pi(azas) + pi(ar)ai(azas) — c'o*(pi(ar))pi(azas)
= > 0*U9(ay(a){D_ ORI ED (ai(az))ani(as)}

jeI\{i} kel
+ot(a(@)){ Y. 0“0 (ais(az))ei(as) + o*(@i(as))pi(as)
Je{i}

+ pi(az)ai(as) = c*a*(pi(az)) pifas)}

+ pi(a){D_ 9960 (045(az)) oy (as)}
jel
—cta'(pi(@)){ Y 0“0 (ai;(a2))eyi(as) + o*(eui(az))pi(as)
Jel\{i}
+ pi(az)ai(as) — o’ (pi(az))pi(as)}
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= Z AR GAERADTOGD) (05(a1)) oD (e (a2)) i (as)
dkel\{i}

+ Y 00 (ay;(01))asi(as)ei(as)
Jen{i}

+ Y 0t (ei(a1)) 0 (aus(a2)) aji(as) + ot (i(ar)) ot (ai(as)) pi(as)
JjeI\{i}

+ 0*(ai(a1)) piaz)as(as) — c*a?*(@i(a1))o* (pi(aa))pi(as)

+ Z ctot(pi(a1))o? P (aij(az))ajias) + pi(ar)ai(as)es(as)
JeN{i}

= Y o' (pifa1))o? ) (auj(an))asi(as) — c'ot(pi(ar))ot(au(az))pi(as)
jeI\{i}

— o (pi(a1))pi(az)ai(as) + o (pi(a1))o* (pi(az)) pi(as),
and

pi((a1a2)as)

= Z 7“0 (a5 (a1a2)) asi(as)
jeI\{i}

+ 0*(ai(a1a2)) pi(as) + pi(araz)ai(as) — o’ (pi(araz))ps(as)

= > U] AN B) (g (ar))ars(a2)})agi(as)

jeI\{i} kel

+ ot ({D 2096909 (ay5(a1))ass(a2)} ) pilas)

jel

+{ Y 0¥ (ais(01))agi(a2) + o (as(ar))pilan)
jen\{i}

+ pi(ar)ai(as) — cto’(pi(a1))pi(az) yei(as)

—cot({ > 0“9 (ais(a1))ayi(az) + o*(cu(ar))pi(ar)
jeI\{i}

+ pi(ar)ai(az) = c*o*(pi(ar)) piaz)}) pi(as)
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= > AEkDGuGIreED) (0 (a1))o 0 (g (a2))i(as)
JkeI\{i}
+ > o*(ei(a1))o*P? (aus(as))ai(as)
jen{i}
+ Z ot U (ay5(ar)) ot (ei(a2)) pilas)
jen{i}
+ 0" (ai(a1))o(ai(az))pi(as)
+ Z 0“0 (a;5(ar))aji(az)o(as) + o (s (a1))pi(az)ai(as)
JeI\{i}
+ pi(ar)ai(az)aifas) = o’ (pi(a1))pi(az)ai(as)
= > o0 (04(ar)) o (asi(az))pi(as)
JeI\{i}
— cto?(ai(a1))o* (pi(ar)) pilas) — c'o*(pi(a1))o(@i(az)) pifas)
+ 0 (pi(a1))a* (pi(az))pi(as)

and hence by (1), (4) of Lemma 4.2.3 p;(ai(aza3)) = p;((a1a2)as).

(2) Immediate by the construction.

(3) Let 4,5 € I and assume there exists an isomorphism h : e;A4 = e;A4.
Let a € e;A with e; = h(a) = h(ei)a. Since h(ae;) = h(a)e; = e; = h(a),
a = ae; € e;Ae; and e; € e;Ae;Ae;. Suppose to the contrary that ¢ # j.
Then by (2) e;Ae; Ae; = e;Aeie;Ae; = ej;Rey; R = ejei; R If j € I\ Iy, then
Cj,;ein = 6jC/\(j’i’j)R. AISO, if ] S Io, then ejie,-jR = ('l)j + ejct)R. In either
case, we have e; € ej;¢;; R, a contradiction.

(4) Consider first the case ¢ € I\ I;. We claim that the homomorphism

¢i : 6iAA — HomR(Ae,T(i), RR)A,G. = ai,,r(i)a
is an isomorphism. For any a,b € A by (L4), (M1) we have

(@in(3)a)(b) = o x(3)(abd)
= 3 AT GO (a5 (0) )ty iy ()
jeI
= > Um0 (ay;(a))ajm(i) (b)-

jeI

Thus ;i@ = D jer o@ (@) (@ij(@))ajq@y for all a € A, In particular,
Qi r(i)€ij = n(s) for all 7 € I and ¢; is bijective. Next, let 1 € Ip. We
claim that the homomorphism

¢; :e;Aa — Homp(Ae;, RR)a,a — pia
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is an isomorphism. For any a,b € A by (M2) we have

(pia)b = p;(ab)

= 3 040D (ay5(a)) s (b) + 0 (es(a))pi(b)
jeI\{i}
+ pi(a)es(b) = c'a*(pi(a))pi(b).

Thus pia = 3. 1y 0“0 (ayj(a)) i + pi(@)a; + ot (u(a) — c*pi(a))p; for all
a € A. For any a € ¢;A with p;a = 0, we have a;;(a) = 0 for all j € I'\ {4},
pi(a) = 0 and a;(a) — c*p;(a) = 0, so that a = 0. Thus ¢; is monic. Also, we
have pie;; = ay; for all §j € I'\ {i}, pie; = pi and p;(e;c’ + v;) = oy, so that ¢;
1s epic.

(5) Tt follows by (1), (4) that A4 = Hompg(A, Rr)4. Similarly, we have
4A = sJHomg(A, gR). Finally, let ¢ : R — A,z ), e;z. Foranyi€ [, o
is R-R-bilinear and satisfies a;p = idg. O

Recall that a ring R is said to be quasi-Frobenius if it is selfinjective and
artinian on both sides. It follows by Propositions 4.1.5, 4.1.7 that A is quasi-
Frobenius if and only if so is R.

Corollary 4.3.2. Assume R is local. Then the following hold.
(1) e;Ae; is local for all i € I, so that A is semiperfect.
(2) A is connected, i.e., indecomposable as a ring.
(3) A is basic.

(4) If R is quasi-Frobenius, so is A with soc(e;Aa) = eq;)A/ eI for all
1 € I, where MM is the Jacobson radical of A.

Proof. (1) By Lemma 4.2.5(3) and Theorem 4.3.1(2).

(2) By Theorem 4.3.1(2).

(3) By Theorem 4.3.1(3).

(4) Let m = R\ R*. It is not difficult to see that 9 = 3, ;e;m +
Ziel’ja\{i} e R+ ZiGIo v;R. Let ¢ € I. Note that e¢;A4 is indecompos-
able by (1) and is injective by Proposition 4.1.5(2). Also, by Theorem 4.3.1(4)
e;Aa = Hompg(Aer(i), Rr)a. Since Aer(;)/Mer;y = R/m as right R-modules,
there exists 0 # h € Homg(Aer (i), Rr) with h(Mer(;)) = 0. Then Nt = 0 and
her(i) # 0. Thus soc(Hompg(Aer(:), Rr)a) = hA = eri) Al ey M. a

The permutation m of I may be considered as a permutation of {e;}icr.
We claim that this permutation can be extended to a ring automorphism of A.
As an additive group, A has an automorphism 7 such that for any a € A the
following hold:

(H1) angi @) (n(a)) = X (a;4(a)) for all 4,5 € I; and

(H2) pi(n(a)) = ) (p;(a)) for all i € L.
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Proposition 4.3.3. The mapping 1) is a ring automorphism of A satisfying the
following conditions:

(1) nleiz) = exiym(y) for all 1,5 € I;
(2) n(v;) = v; for all i € Iy; and
(3) n(z) = Y icr eﬁ(i)aX(i) (z) for allz € R.

Proof. 1t is easy to see that the required conditions are satisfied. In particular,
we have (1) = 1. Let a,b € A. For any ¢,k € I by (H1), (M1) we have

(i) (k) (n(ab))
= oX®) (a4 (ab))
= PO MR (o (@) ase 1))
jel
= Z HNBIR) Gx(R)+w (k) (g (a))a"(k)(ajk ),
jel
O (), (k) (77(‘1)77(5))
- Z ck("(i)"’(")’"(k))a“'(”(j)‘”(k))(a,r(i),,,(j)(n(a)))a,r(j),,r(k) (n(b))
jel
= Z @@ m(R) g (97 (B)) (6X0) (5 (a) ) ) 0 XF) (0t (B))
jel
= Zch(ﬂ(i)ﬂr(j),W(k))dw(w(j)ﬂr(k))wLx(j)(aij(a)))gx(k)(ajk(b))
jel

and hence by Lemmas 4.2.2, 4.2.3(3) ax(i)x(x)(n(ab)) = n(i)mx)(n(a)n(b))-
Also, for any 4 € Iy, since x(i) = t, by (H2), (M2) we have

pi(n(ab))
a*(pi(ab))

=o'({ Y 0“9 (aij(a))ass(b) + o*(ci(a))ps(b)
FeI\{i}
+ pi@)as(b) — co*(pi(a))pi(b)})
3 o0 (a5(a))ot (ags(b)) + 0% (ai(a))o (ps(B))
jeI\{i}
+ 04 (ps(@))o(ea(b)) — c'o® (pi(a))o*(pi(B),
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pi(n(a)n(b))

= > o) () 20y (1(0))) (i) m iy (D))
Jen{i}

+ 0t (ar iy (n(a))) pi(n(b)) + pi(n(a)) iy (n(b))
— cta(pi(n(b)))pi(n(b)))

= > 0O (0XD(ay(a))o" (e5:(5))
jen{s}

+ at (0% (@) o (pi(b)) + ot (pi(a)) o (s (b))
— cfa* (o (pi(a))o(pi(b)))
= > gl OmIx0)(05(a))ot (ays(b)) + 0% (ai(a)) o (i (b))

Jel\{z}
+0*(pi(a))o’ (i (b)) — o (pi(a))a* (pi (b))
and hence by Lemma 4.2.2 p;(n(ab)) = p:(n(a)n(b)). O

Remark 4.3.4. We have seen in the proof of Theorem 4.3.1(4) that there exists an
isomorphism ¢ : A4 = Hompg(A4, Rr)a such that ¢(1)(a) = Dien o () (@) +
Yicr, pi(a) for all a € A. Set = 7! € Aut(A). Then z¢(1) = ¢(1)8(z) for
all € R (cf. Remark 4.1.2(1)).

Remark 4.3.5. Set w; = v; + e;cX® for i € Iy and w; = ein@) for i € I'\ Io.
Then the following hold.

(1) {eij}ijer Y{wi}ier, is a basis for A and gives rise to another description
of the multiplication of A.

(2) ¢(w;) = an(s) for all i € I, where ¢ is the same as in Remark 4.3.4.

3) Set w= ), .;w;. Then n{w) = w and aw = wn(a) for all a € A, so that
el
R, c,0) can be replaced by (4, w,n) in our construction.
Ui

In the following, we denote by M, (R) the n x n full matrix ring over R.
Recall that c is said to be regular if cx # 0 and zc # 0 for any 0 #£ z € R.

Proposition 4.3.6. For any ¢ € I there exists a ring homomorphism
& A— Mn(R),a = (IR 0R) (a5 (a))); ker-

Assume c is regular. Then Ker §; = Zj c1, ViR In particular, if Io is empty,
then &; is injective.

Proof. 1t is easy to see that &;(1) is the unit matrix. Let a,b € A. Obviously,
&i(a+b) = &(a) + &(b). Also, for any j,1 € I by (M1) and (1), (2) of Lemma
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4.2.3 we have
Mg g-wlind) (aji(ab))

— C)\(i,j,l)a—w(i,l) ({z C)\(j,k,L)aw(k,l) (ajk(a))akl(b)})

kel
— Z c/\(i,j,l)-i—)\(j,k,l)a_w(k,l)-w(i,l) (ajk (a))o,—w(i,l) (akl (b))
kel
_— Z CA(i,j,k)+A(i,k,l)O,A(i,k,l) —w(i,k) (ajk(a))o,-w(i,l) (Q’kl(b))
kel
— Z{Ck(i,j‘k)of-w(i,k) (ajk (a))}{CA(i,k,l)o.—w(i,l) (a’kl(b))}
kel
and hence &;(ab) = &;(a)&;(b). The last assertion is obvious. O

4.4 Tilting complexes

In this section, we provide a construction of two-term tilting complexes associ-
ated with a certain type of idempotent (cf. [25]).

For a ring A we denote by X(Mod-A) (resp., D(Mod-A)) the homotopy
(resp., derived) category of cochain complexes over Mod-A and consider mod-
ules as complexes concentrated in degree zero. We use the notation (—){m] to
denote the m-shift of complexes. Also, we denote by P4 the full subcategory of
Mod-A consisting of finitely generated projective modules and by X®(P,) the
full triangulated subcategory of X(Mod-A) consisting of bounded complexes
over P4. Finally, for an object X in an additive category 2l we denote by
add(X) the full additive subcategory of 2 whose objects are direct summands
of finite direct sums of copies of X and by X (™) the direct sum of m copies of
X. We refer to [39] for tilting complexes and derived equivalences and to [22],
[43] for derived categories.

Let A be an extension of a ring R and e € A an idempotent. Assume
ze = ez for all z € R, Aeg is finitely generated projective and eA4 is em-
bedded in Hompg(Ae, Rr)a as a submodule. Note first that we have a ring
homomorphism ¢ : R — eAe,z + ex. Let

p:Ae®@peAs — Ag,a®b— ab

be the multiplication map and S°® its mapping cone. Set Ty = eA[l], Ty =
(1—e)A®4 S® and T* = 17 @ Ty. Note that T is the mapping cone of the
multiplication map

(1-e)A®ap:(1—e)Ae®@reds — (1—e)Aa.
Note also that Ae @z eAs € add(eAy4). Since the multiplication map
eAQap:eAe@reAy s — eAy
is a split epimorphism and its kernel belongs to add(eA ), we have eA®4 S*® €
add(T7}) and hence S* € add(T™).
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Proposition 4.4.1. The following hold.
(1) T* is a tilting complex.

(2) Assume p s monic. Then Endx(Mod-4) (T*) is isomorphic to the following
generalized triangular matriz ring

eAe Exth(A/AeA,eA)
0 AfAeA ‘

Assume further that o is an isomorphism and there exists an idempotent
f € A such that Hompg(Ae, Rp)a = fAa. Then Extl(A/AeA, eA) =
F(A/AeA) as right (A/AeA)-modules.
Proof. (1) Obviously, T* € X®(Pa) and Homg(moa-4)(T*, T*[m]) = 0 un-
less =1 < m < 1. Since e(A/AeA) = 0, A/AeA = (1 — e)(A/AeA) and
HO(T*) = A/AeA. Thus, since Homy(eA, A/AeA) = (A/AeA)e = 0, it fol-
lows that Homa (7™, (1 — e)A ®4 p) is epic and Homx(moa-4) (7%, T°[1]) = 0.
Also,

Homa(A/AeA, Homp(Ae, Rr)) = Hompg((A/AeA)e, Rr) =0

and hence Hom4(A/AeA, eA) = 0. Thus Hom4(H%(T*),T~') = 0 and hence
Homg (Moa-4) (T, T*[~1]) = 0. Next, we have a distinguished triangle in X°(P4)
of the form

A— S — (Ae®ged)[l] —.

Since S* € add(T*), and since (Ae®geA)[1] € add(T}), it follows that add(T™*)
generates KP(P4) as a triangulated category.

(2) We have Endgc(mod-4)(T7) = Enda(eAa) = ede. Also, since (1—€)A®4
p is monic, we have Homg(moa-4) (17,75 ) = 0. Furthermore,

Endy(moa-4)(T7) = Endpmoa-a)(T7)
= Endp(mod-4) (A/AeA)
= End(A/AeA)
>~ A/AeA,

Homg (Moa-4)(T5, T3 ) = Homp (moa-4) (17, I7)
= HomﬂD(Mod—A) (A/AeAv CA[l])
=~ Exth (A/AeA, eA).
Consequently, Endx (Mod-4)(1"*) is isomorphic to the desired generalized trian-
gular matrix ring.
Next, assume ¢ is an isomorphism and there exists an idempotent f € A

such that Homg(Ae,Rr)4 = fA4. For any M € Mod-A we have functorial
isomorphisms

Hom4 (M, fA) = Hom 4 (M, Homg(Ae, Rg)) = Homg(M ®4 Ae, Rg).
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Thus, since u ®4 Ae is an isomorphism, so is Hom(u, fA). Then by applying
Homa(—, fA) to the exact sequence

0— Ae®peAH A— AJ/AeA — 0,

we have Hom4(A/AeA, fA) = 0 and Exty (A/AeA, fA) = 0. Note that fAe =
R as right R-modules. Thus, by applying fA®4 — to the above exact sequence,
we get an exact sequence of the form

0— eAq — fAs — f(A/AeA)a — 0
to which we apply Hom 4(A4/AeA, —) to conclude that
f(A/AeA) = Homuy (A/AeA, f(A/AcA))
o Extl (A/AeA, eA)
as right (A4/AeA)-modules. O

Remark 4.4.2. Let K = Ker(eA®4 ) and assume add(K4) = add(eA4). Then
add(S*) = add(T*) and S* is a tilting complex.

Proof. Note that eA®4 S* = K[1] in be(PA). Since eA 4 € add(K 4), we have
Ty € add(eA®4 S*). Thus T* € add(S*) and hence add(S*) = add(T*®). Then,
since T is a tilting complex, so is S°. O

In the following examples, A is the Frobenius extension of R constructed in
the preceding section. We use the same notation as in the preceding section.

Example 4.4.3. Let J be a nonempty m-stable subset of I and set ¢ = ZjeJ ej.

~

Then ze = ex for all z € R, Aep is finitely generated projective and eAy =
Hompg(Ae, Rr)4. In this case, the mapping cone of the multiplication map

@Aej' ®r ejAA — AA

jeJ
is a tilting complex.

Proof. We have seen in the preceding section that all the conditions are satisfied.
Let Jo = J NIy and d the number of elements of J. Set d; = d for j € Jy and
dj =d—1for j € J\ Jo. Note that d; > 1 for all j € J. Since we have a split
exact sequence in Mod-A of the form

0— @ejA(dJ’) — @eAej ®re;jA—eA—0,

jedJ jeJ
the last assertion follows by the same argument as in Remark 4.4.2. i}

Example 4.4.4. Assume c is regular and I\ Ip is not empty. Let i € I'\ Iy and
set e = e; and f = ex-1(;). Then the following conditions are satisfied:
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(1) ze = ez for all z € R, Aeg is finitely generated projective and eAy is
embedded in Hompg(Ae, Rg)4 as a submodule;

(2) the multiplication map Ae @ eA — A,a ® b+ ab is monic;
(3) the ring homomorphism R — eAe, z + ez is an isomorphism; and
(4) HomR(Ae,RR)A =~ fAa.

Proof. We denote by u: Ae; @ ;A — A,a ® b — ab the multiplication map.
Note that Ae; ®f e;A is a free right R-module with a basis {e;; ® e} er,
and that ejieq = 0D unless j = | € Ip and ejie; = v + e;cX(9) for all
4 € Ip. Thus, since c is regular, it is easy to see that p is monic. Also, for any
a € e;A we have (a;a)(ej;) = a;(aes;) = 3?0 (qy5(a)) for all j € I and
hence aza = 3, A3 g0 (a5(a)) ey, so that by the regularity of ¢ the
homomorphism
e;iAp — Homp(Ae;, Rr)a,a — aia

is monic. We have seen in the preceding section that the remaining conditions
are satisfied. a
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