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SUMMARY Secure operating systems (secure OSes) are widely used
to limit the damage caused by unauthorized access to Internet servers.
However, writing a security policy based on the principle of least privilege
for a secure OS is a challenge for an administrator. Considering that remote
attackers can never attack a server before they establish connections to it,
we propose a novel scheme that exploits phases to simplify security policy
descriptions for Internet servers. In our scheme, the entire system has two
execution phases: an initialization phase and a protocol processing phase.
The initialization phase is defined as the phase before the server establishes
connections to its clients, and the protocol processing phase is defined as
the phase after it establishes connections. The key observation is that access
control should be enforced by the secure OS only in the protocol process-
ing phase to defend against remote attacks. Since remote attacks cannot be
launched in the initialization phase, a secure OS is not required to enforce
access control in this phase. Thus, we can omit the access-control policy
in the initialization phase, which effectively reduces the number of policy
rules. To prove the effectiveness of our scheme, we wrote security policies
for three kinds of Internet servers (HTTP, SMTP, and POP servers). Our
experimental results demonstrate that our scheme effectively reduces the
number of descriptions; it eliminates 47.2%, 27.5%, and 24.0% of policy
rules for HTTP, SMTP, and POP servers, respectively, compared with an
existing SELinux policy that includes the initialization of the server.
key words: secure operating system, SELinux, Internet server, policy de-
scription

1. Introduction

Secure operating systems (secure OSes) are widely used to
limit the damage caused by unauthorized access to Internet
servers. For example, Hewlett-Packard Development Com-
pany (HP) developed the secure platform VirtualVault [11]
based on Trusted HP-UX, the secure OS developed by
HP to operate the Netscape Web server securely. PitBull
LX [2] utilizes technologies based on secure OSes to oper-
ate the Apache Web server securely. A secure OS intro-
duces mandatory access control (MAC), which can be used
to ensure system-wide data confidentiality and integrity. In
addition, a secure OS focuses on the principle of least priv-
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ilege [18] by giving a process exactly the rights required to
perform its given task. Therefore, even if a server is hijacked
by attackers, they can only perform operations authorized to
the server processes.

However, it is difficult to introduce and maintain a se-
cure OS because of the complexity of its security policy
configuration. In a secure OS, all subjects and objects are
labeled, and the security policy in the system is defined with
respect to these labels. To label subjects and objects, a server
administrator is required to have expertise in the resources
each process uses. Then, he or she needs to write a policy
to grant access rights to the processes based on the principle
of least privilege.

A particular challenge is that the policy configuration
for the initialization process of the system is extremely com-
plicated because of various transactions, such as booting,
mounting file systems, and network configuration. Even if
we focus on defending against remote attacks like targeted
policy [10] available in SELinux [1], the policy configura-
tion remains difficult. To defend effectively against a remote
attack using a secure OS, we have to grant minimal access
rights to processes running an Internet server to limit the
damage when the server is hijacked by remote attackers. To
accomplish this, we are required to have a detailed under-
standing of the behavior of the servers. However, a server
initialization process has complicated steps, such as read-
ing configuration files and linking libraries. Moreover, its
initialization process tends to depend on its execution envi-
ronment, such as an OS or the version of the server. When
the kinds of resources that the server uses are changed (for
example, by a version upgrade), it is necessary to reconfig-
ure a security policy.

Our scheme focuses on the protection from remote at-
tacks. Since secure OSes are often used to protect Internet
servers from remote attacks, our scheme tries to simplify
the policy description solely for the defense against remote
attacks. In this paper, we leverages the fact that the server
is never attacked by remote attackers before it establishes
any connections to its clients. If we defend against a remote
attack using a secure OS, access control by the secure OS
needs to be enforced only after the server establishes con-
nections.

Because remote attackers can never attack a server be-
fore it establishes connections to them, we propose a scheme
that exploits phases to simplify a security policy description.
One of the authors proposed simplifying security policy de-
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scriptions for sandbox systems by exploiting phases [21].
Our work applied this concept to secure OSes. Through
our effort to apply the concept to secure OSes, this paper
demonstrates the following three points. First, the phase
concept can be incorporated into a wider range of secure
platforms other than sandbox systems. Second, the engi-
neering effort to incorporate the phase into SELinux is rea-
sonable. Finally, and the most importantly, this paper shows
the quantitative result of incorporating the phase concept
into SELinux. Since the secure OSes are totally different
from sandbox systems in their security models and mecha-
nisms, the quantitative analysis shown in our previous paper
is useless in the context of secure OSes.

We define the initialization phase as the phase before
the server establishes any connections to its clients and the
protocol processing phase as the phase after it establishes
connections. There is no need to enforce access control
in the initialization phase because remote attacks cannot be
launched; it needs to be enforced only in the protocol pro-
cessing phase. We can therefore eliminate the policy de-
scription before the server establishes connections. Addi-
tionally, we need not have detailed information about var-
ious transactions until the server establishes connections,
which makes it easier to write the policy. Our scheme does
not completely eliminate the need for the knowledge about
server behaviors; rather, it reduces the amount of security
policy descriptions.

We implemented our proposed scheme with SELinux
and evaluated the effectiveness of our proposal by writing
policies for three kinds of Internet servers (HTTP, SMTP,
and POP servers). As a result, we were able to eliminate
47.2%, 27.5%, and 24.0% of the policy rules for HTTP,
SMTP, and POP servers, respectively, compared with an ex-
isting SELinux policy which includes the initialization of
the server.

The rest of the paper is structured as follows. In Sect. 2,
we describe the main features of secure OSes and ana-
lyze the difficulty of writing policy for Internet servers. In
Sect. 3, we introduce our proposal. In Sect. 4, we describe
its implementation. In Sect. 5, we examine our proposal by
comparing existing SELinux policy and our policy that ex-
ploits phases for three kinds of servers. In Sect. 6, we de-
scribe related work and in Sect. 7, we conclude the paper.

2. Motivation

Breaches of Internet servers routinely cause tremendous
damage, such as destruction of private information or sys-
tems. Because only a handful of programmers have the
mindset to write secure code, vulnerability of servers will
continue to be a problem.

Secure OSes are widely used to prevent the damage
caused by unauthorized access to Internet servers. For ex-
ample, Hewlett-Packard Development Company (HP) de-
veloped the secure platform VirtualVault [11] based on
Trusted HP-UX, the secure OS developed by HP to operate
the Netscape Web server securely. PitBull LX [2] utilizes

technologies based on secure OSes to operate the Apache
Web server securely. Even if a server running on a secure
OS were hijacked by attackers, they would only be able to
perform operations authorized to the server processes.

However, the secure OS is known for the difficulty of
its security policy configuration, which remains the biggest
barrier to system administrators trying to introduce it. Un-
fortunately, few researchers are interested in simplifying
policy descriptions for the secure OS, while a lot of work
has been proposed to help analyze policy configuration [3],
[7], [12], [13], [20], [25], [27].

In this paper, we tackle the problem of simplifying pol-
icy descriptions for Internet servers, which makes it easier
to introduce secure OSes.

2.1 Secure OSes

A secure OS implements a mandatory access control
(MAC), which focuses on providing an administratively-
defined security policy that can control all subjects and ob-
jects, basing decisions on all security-relevant information.
Subjects and objects are labeled, and the security policy in
the system is defined with respect to these labels. In addi-
tion, the secure OS focuses on the principle of least privilege
by giving a process exactly the rights it needs to perform its
given task. Many secure OSes have been developed, such
as SELinux [1], Trusted BSD [6], Trusted Solaris [14], and
SEDarwin [26].

In this paper, we focus on simplifying SELinux policy
descriptions for Internet servers. SELinux was originally a
development project of the National Security Agency (NSA)
and it implements a security architecture called Flask [22].
SELinux now implements three different security mod-
els: type enforcement (TE) [4], role based access control
(RBAC) [19], and multi-level security (MLS) [8]. Among
these security models, we focus on TE because it plays the
predominant role in the access control.

In TE, a security attribute called type is bound to each
subject and object. A type that is bound to a subject is also
called domain. Objects are partitioned into object classes
(file, directory, process, socket, etc.) and security-sensitive
operations are divided into access vectors or access modes
(read, write, getattribute, accept, etc.). A combination of
a user identity, a role, and a type is called a security con-
text. Whenever a subject tries to access an object in a given
mode, it is checked whether that is authorized by the se-
curity policy according to the security contexts of the sub-
ject and the object involved in the access. The construct
allow permits specification of the access rights granted in
each domain. For example, the allow rule “allow httpd t
httpd conf t read;” grants the Apache HTTP server running
in the domain httpd t the access right on reading its config-
uration files whose type is httpd config t.

SELinux provides security context transition for
changing security contexts of a subject and object. Secu-
rity context transition for a subject can occur when a sub-
ject executes a program. The security context of a process
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after transition is determined from the security contexts of
the program and the process before the transition. Security
context transition for an object occurs when a new object is
created. The security context of a new object is determined
from the security contexts of the subject and other related
objects (for example, the parent directory for a file).

2.2 Difficulty of Policy Configuration

To grant minimal access rights to all system processes based
on the principle of least privilege, we are required to have
detailed knowledge of all daemons and applications running
on a secure OS and write a policy for them with no mistakes.
First, we need to label subjects and objects depending on the
kinds of services or applications. Then, we write a policy
for granting each subject exactly the access rights it needs
to perform its given task.

Even if we focus on defending against remote attacks
like the targeted policy [10] available in SELinux, policy
configuration remains difficult. The targeted policy makes
policy configuration easier than the strict policy [9] by fo-
cusing on defense against remote attacks. Its aim is to pro-
vide additional security compared with the standard Linux
DAC for commonly used daemons, such as httpd, dhcpd,
and mailman. To use a secure OS to defend against a remote
attack, we have to grant minimal access rights to the domain
bound to an Internet server to limit the damage when the
server is hijacked by remote attackers. To accomplish this,
we are required to have a detailed understanding of the be-
havior of the servers.

The initialization process of an Internet server is par-
ticularly complicated because the server process needs var-
ious kinds of resources that are scattered in a lot of direc-
tories. Making matters worse, these directories are diffi-
cult to determine from the server’s primary transaction, such
as dealing with web pages or e-mail. We use the initial-
ization process of the Apache HTTP server as an exam-
ple. Figure 1 shows the configuration rules for the initial-
ization of Apache. Here, “initialization” means the trans-
action from the time the server program (httpd) is exe-
cuted until Apache establishes any connections to its clients.
This policy includes 30 types scattered in a lot of directo-
ries: /dev (device t), /etc (etc t), /lib (lib t), /proc (proc t),
/root (root t), /usr (usr t), and /var (var t). Apache’s ini-
tialization has complicated steps, such as loading modules
(httpd module t), linking libraries (lib t), and reading con-
figuration files (httpd config t, net conf t). Sixty out of the
83 rules shown in Fig. 1 are used only for the initialization
of Apache, which means that the resources which Apache
needs for initialization are significantly different from those
needed after it establishes connections to its clients. After
establishing a connection, Apache just returns the requested
web pages to clients; these transactions are quite simple
compared with the initialization. In addition, the resources
used for initialization (for example, function libraries and
configuration files) tend to depend on their execution envi-
ronment, such as an OS or version of Apache, while content

files used for providing services (for example, HTML files)
do not depend on their execution environments. Moreover,
whenever the resources needed for the server change (for
example, because of a version upgrade), it is necessary to
reconfigure the policy; we have to relabel objects and write
a policy that grants access rights on operating server again.

3. Proposal

In this section we propose the simplification of security pol-
icy descriptions by exploiting phases.

3.1 Policy Description Exploiting Phases

To simplify security policy descriptions for Internet servers,
we propose a scheme that exploits phases, dividing the life-
time of the server into the phase before the server establishes
any connections and the phase after it establishes connec-
tions. Note that our scheme targets only on the protection
from remote attacks. If the system is locally attacked (for
example, by canonical users), our scheme provides the same
security level as traditional Linux.

We define the initialization phase as the phase before
the server establishes any connections to its clients and the
protocol processing phase as the phase after it establishes
connections. In the initialization phase, the server is un-
tainted and can never be attacked by remote attackers, so
access control need not be enforced, which results in reduc-
ing the number of access-control policy rules. On the other
hand, access control needs to be enforced in the protocol
processing phase because the server could be tainted and at-
tacked.

Our scheme simplifies the description of security poli-
cies because the administrator does not have to write the
policy for the initialization phase. This eliminates the need
for the knowledge about server behaviors in the initializa-
tion phase, but it does not imply the need for the knowledge
about the server behaviors is completely eliminated; the ad-
ministrator must have the knowledge about the behavior in
the protocol processing phase.

In our scheme, we write different security policies for
each phase. For the initialization phase, we write a policy
that grants all access to all domains because the server is not
vulnerable to attack. For the protocol processing phase, we
write a policy that grants minimal access rights based on the
principle of least privilege to a domain bound to the server
and grants all access rights to other domains.

Because access control is not enforced in the initializa-
tion phase, we need to transit the phase from the initializa-
tion phase to the protocol processing phase when the server
establishes any connection. When the phase transition oc-
curs, the security policy for the protocol processing phase is
loaded and access control is enforced.

We define three kinds of fundamental events for the
phase transition. One is the connect system call, which re-
quests that a connection be established. Another is the ac-
cept system call, which accepts a connection, and the other
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Fig. 1 Configuration rules for the initialization of Apache.

Fig. 2 The phase transition of Apache.

is the recvfrom system call, which is mainly used for receiv-
ing packets in UDP communication. Establishing a connec-
tion could lead to the server being tainted because the server
may be attacked by remote attackers. Therefore, we need to
detect the establishment of a connection and cause the phase
transition from the initialization phase to the protocol pro-
cessing phase to enforce access control by the secure OS.

For example, the phase transition of Apache is shown
in Fig. 2. After an OS boots, the policy of the initialization

phase that grants all access rights to all domains is loaded
into a secure OS and access control is not enforced. Once
Apache executes the accept system call and establishes a
connection, the phase transition occurs from the initializa-
tion phase to the HTTP protocol processing phase. The pol-
icy of the HTTP processing phase is loaded into the secure
OS, which grants minimal access rights to the domain bound
to Apache and grants all access rights to other domains.

We developed a configuration file in XML for deter-
mining events that cause the phase transition. For example, a
configuration file for causing the phase transition for Apache
is shown in Fig. 3. The phase name before the transition (in
this case, the initialization phase) is described in src-phase
tag and the phase name after the transition (in this case, the
HTTP processing phase) is in dst-phase tag. By naming all
phases, we can easily understand the role of each phase. To
specify that Apache causes the phase transition, the domain
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bound to Apache (httpd t) is written as an attribute value of
event tag. To specify the event for the phase transition, the
name of the system call for establishing a connection (ac-
cept) is written as a value of event tag. Condition tag can
include a number of event tags to define a lot of events for
the phase transition.

Figure 4 shows the configuration rules for the HTTP
processing phase to run SPECweb2005 [24], the famous
benchmark program for HTTP servers. The policy of the
HTTP protocol phase includes 20 types, while 30 types are
included in the initialization policy of Apache (shown in
Fig. 1). Most of these 20 types are used for providing ser-
vice: types used for communicating with users (http port t,
port t, netif t, node lo t, node t), and types used for read-
ing content files (httpd sys content t, httpd php exec t). We
can also understand the configuration rules of the HTTP pro-
cessing phase more easily than the initialization of Apache
because most of the configuration rules defined in the
HTTP processing phase are for dealing with requests from

Fig. 3 Example of the configuration file for Apache.

Fig. 4 Configuration rules for the HTTP processing phase.

clients. For example, the rules for granting the domain
httpd t rights on establishing connections to its clients, get-
ting the requests from its clients, and reading HTML files
(httpd sys content t) are defined in the policy.

The phase transition occurs only once from the initial-
ization to the protocol processing phase. However, there
is an exception when two or more servers operate on one
machine. Suppose that an SMTP server and a POP server
operate on one machine. In this case, the phase transition
occurs twice as shown in Fig. 5. If the SMTP server enters
the protocol processing phase before POP server does, the
SMTP policy becomes effective and the transition is made
to the SMTP processing phase. Note that the POP policy is

Fig. 5 The phase transition of Sendmail and Dovecot running on one
machine.



YOKOYAMA et al.: REDUCING SECURITY POLICY SIZE FOR INTERNET SERVERS IN SECURE OPERATING SYSTEMS
2201

not enabled at this time of point. After that, when the POP
server establishes a connection, the POP policy is enabled
and the transition is made to SMTP-POP processing phase,
in which both policies for SMTP and POP are effective.

3.2 Security Concerns and Defense Mechanisms

We assume that an attacker can contrive an attack tailored to
our scheme. Suppose a server running in a protocol process-
ing phase is hijacked and attackers craft a malicious code
into files which they can access with write or append permis-
sion. Next, the machine is restarted, and if the server process
reads the compromised files in the initialization phase, the
server might execute the code and suffer damage.

However, this type of attack does not pose a big threat
to our scheme because we can defend against it completely
with a taint-based approach. We regard all of the files writ-
ten/appended by the processes that established connections
with clients as tainted. And we add the read system call to
one of the system calls for starting phase transition. After
the machine is restarted, if a tainted file is to be read in the
initialization phase, a server transits to the processing phase.
Thus, we can defend against such an attack.

This taint mechanism might decrease the merit of our
scheme because the phase transition caused by the read sys-
tem call occurs earlier compared with one caused by one of
the other three system calls (accept, connect, and recvfrom).
However, this mechanism does not have a large influence on
the availability of our scheme because the server reads the
compromised files in the initialization file only rarely.

We investigated three kinds of real Internet servers
(HTTP, SMTP, and POP servers) by running
SPECweb2005 [24] with three-workload benchmark de-
signs (banking, ecommerce, and support) for the HTTP
server, and SPECmail2001 [23] for the SMTP and POP
servers. We used Apache 2.2.6 for the HTTP server, Send-
mail 8.13.8 for the SMTP server, and Dovecot 0.99.14 for
the POP server. In this investigation, we found no case in
which the tainted files were read in the initialization phase.

Even if the phase transition is caused by the read sys-
tem call, the number of policy rules in our scheme are still

Fig. 6 Architecture of our system.

fewer than existing other schemes (for example, targeted
policy available in SELinux). Therefore, we believe our
scheme can be of great help to system administrators intro-
ducing secure OSes for protecting Internet servers.

4. Implementation

We implemented our proposed scheme into Fedora Core 4
with SELinux and Linux kernel 2.6.18 to evaluate the ef-
fectiveness of our proposal. Our system consists of three
components: a phase management module, a policy load
daemon, and a phase transition database. The architecture
of our system is shown in Fig. 6.

The phase management module is the kernel module
which hooks the connect, accept, recvfrom, and read system
calls to check whether a phase transition occurs, changes the
current phase to the new one, and makes a request for load-
ing a new policy to the policy load daemon. Additionally,
when the phase management module is loaded, it creates
a phase transition database that stores conditions of phase
transitions in the kernel memory by receiving the contents
of the configuration files from user space.

For implementing a taint-based defense mechanism for
an attack tailored to our scheme, when the phase manage-
ment module is loaded, it also receives the list of tainted files
stored on a regular file from user space and copies it in the
kernel memory. By hooking the write system call, if a file
is written in the protocol processing phase by the process
that establishes connections to clients, the phase manage-
ment module updates the list of tainted files stored in both
kernel memory and in the regular file.

The policy load daemon is the daemon which loads a
policy specified by the phase management module. Since
SELinux is designed to load a policy in user space, we devel-
oped this daemon by utilizing a load policy program avail-
able in SELinux to simplify our implementation.

When the connect or accept or recvfrom or read system
call is executed, the phase management module hooks it and
checks whether a phase transition occurs by referring to the
phase transition database. If there is a phase transition, the
phase management module makes a request to the policy
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load daemon to load a new policy for the protocol processing
phase, and the policy load daemon loads it into SELinux.

5. Experiments

We wrote security policies for three kinds of Internet servers
(HTTP, SMTP, and POP servers) with the targeted policy
available in SELinux and our policy that exploits phases,
and then analyzed them to evaluate the effectiveness of our
proposal. We do not address whether the policies we refac-
tored are properly configured, because the goal of our work
is to present a scheme for reducing the number of policy
rules. In addition, we wrote the security policy for perform-
ing all of the transactions from the time the OS boots un-
til the server program is executed with the strict policy, se-
lecting daemons which are necessary for the management
of Internet servers. Finally, we compared the performance
of SELinux and one with our module by running bench-
mark programs. We used Apache 2.2.6 for the HTTP server,
Sendmail 8.13.8 for the SMTP server, and Dovecot 0.99.14
for the POP server.

5.1 Simplification of the Policy Description

We wrote the security policies for three kinds of Internet
servers (HTTP, SMTP, and POP servers) with the targeted
policy and our policy that exploits phases (HTTP, SMTP,
and POP processing phase) running SPECweb2005 [24] for
the HTTP server, and SPECmail2001 [23] for the SMTP and
POP servers.

We defined phase transition events for these servers as
follows. Apache runs in the domain httpd t and transits from
the initialization phase to the HTTP processing phase when
it executes the accept system call. Sendmail runs in the do-
main sendmail t and transits from the initialization phase to
the SMTP processing phase when it executes the accept sys-
tem call. Dovecot runs in the domain dovecot t for dealing
with requests from clients and in the domain dovecot auth t
for authenticating clients. When a client sends a request to
Dovecot, the process running in the domain dovecot auth t
establishes connections to the client first. Therefore, when
the process running in the domain dovecot auth t executed
the accept system call, we defined that Dovecot transited
from the initialization phase to the POP processing phase.

Under these conditions, we wrote the policies with the
targeted policy and our policy that exploits phases. Tables 1
and 2 summarize the results of policy descriptions.

Table 1 shows the number of types necessary for writ-
ing each policy. As for Apache, 19 types are necessary and
18 types are eliminated in our policy compared with the
targeted policy, including httpd modules t, httpd config t,

Table 1 Comparison of types.

Apache Sendmail Dovecot

targeted policy 37 38 34
our policy 19 32 31

net conf t, device t, and so on. For Sendmail, six types
are eliminated in our policy, including sendmail var run t,
net conf t, var spool t, ld so cache t, and so on. For Dove-
cot, three types are eliminated in our policy, including dove-
cot etc t, null device t, and devpts t. This result means that
these eliminated types are used only for the initialization
of the servers and never for providing services to clients.
Therefore, with our policy, server administrators do not have
to label objects bound to these types.

Table 2 shows the number of access-control rules de-
fined by the construct allow. Table 2 indicates that the num-
ber of total rules in our policy are fewer than in the targeted
policy for all three Internet servers. The number of rules
eliminated for Apache is particularly outstanding compared
with other servers. This is because Apache has simple be-
havior in the HTTP processing phase; Apache just gets re-
quests from clients and returns requested pages to them in
the HTTP processing phase, while various transactions are
performed in the initialization phase, such as loading mod-
ules, linking libraries, and reading configuration files.

Sendmail and Dovecot perform more transactions than
Apache in the protocol processing phase. For example,
Sendmail accesses mail queues, relays mail to other ma-
chines, and accesses the /proc directory to change its be-
havior based on the load average of the system in the SMTP
processing phase. As for Dovecot, because it is designed to
dynamically link libraries every time it authenticates clients,
it frequently accesses libraries even in the POP processing
phase. For these reasons, the number of rules eliminated for
Sendmail and Dovecot are fewer than for Apache.

This experimental result suggests that a highly mod-
ularized server such as Dovecot benefits less from our
scheme. To reduce the damage of remote attacks, Dove-
cot divides its functionalities into multiple processes. If we
extend our scheme to deal with application-specific phases,
monolithic (not-modularized) servers can be secured as in
Dovecot because the server process is given the access rights
required strictly in the current phase.

Table 3 shows the details of reduced access-control
rules classified by access vectors in our policy compared
with the existing SELinux policy. Many access vectors re-
lated to file transactions (read, getattr, search, write) are
eliminated in our policy. In addition, access vectors related
to preparation for establishing a connection (bind, listen,
connect) are also eliminated.

Table 4 shows the list of access vectors that are not re-
duced in our policy, which indicates that they are used after
the initialization of the server. These access vectors are rel-
atively easily determined from the role of the server because

Table 2 Comparison of allow rules.

Apache Sendmail Dovecot

targeted policy 127 149 171
our policy 67 108 130

eliminated rules 60 41 41
% of rules eliminated 47.2% 27.5% 24.0%
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Table 3 List of access vectors reduced in our policy.

Apache Sendmail Dovecot

targeted policy our policy targeted policy our policy targeted policy our policy

read 23 10 24 16 37 28
getattr 18 9 32 24 22 21
search 17 9 18 16 26 24
write 11 6 14 8 15 11
create 7 3 6 4 9 5

connect 3 1 4 3 4 3
unlink 2 1 1 1 1 1
bind 2 0 1 0 3 1

execute 2 0 3 2 5 4
node bind 2 0 1 0 1 0
add name 2 1 2 1 2 1

remove name 2 1 1 1 2 1
setattr 1 0 0 0 2 1
destroy 1 0 0 0 0 0

entrypoint 1 0 1 0 2 0
execmod 1 0 0 0 0 0

listen 1 0 1 0 2 0
name bind 1 0 1 0 1 0

net bind service 1 0 1 0 1 0
nlmsg read 1 0 0 0 1 1

use 1 0 1 0 2 1
lock 2 2 6 4 2 2

setopt 1 1 1 0 1 1
ioctl 0 0 3 1 0 0

noatsecure 0 0 1 1 1 0
rename 0 0 1 1 1 0

rlimitinh 0 0 1 1 1 0
sendto 0 0 1 1 2 1
siginh 0 0 1 1 1 0
chown 0 0 0 0 1 0

Table 4 List of access vectors not reduced in our policy.

Apache Sendmail Dovecot
recv msg 3 3 1
send msg 3 3 1
tcp recv 3 2 2
tcp send 3 2 2

name connect 2 1 0
sigchld 2 2 4
accept 1 1 2
append 1 0 0

fork 1 1 2
getopt 1 0 0
setgid 1 1 1
setuid 1 1 1

shutdown 1 0 0
unix write 1 0 0

signal 0 1 0
execute no trans 0 0 1

setrlimit 0 0 1
sys chroot 0 0 1

audit control 0 0 1
audit write 0 0 1
nlmsg relay 0 0 1

most of them are used for dealing with requests from clients.
We also wrote a security policy for performing all of

the transactions from the time the OS boots until the server
program is executed with the strict policy, selecting the dae-
mons necessary for the management of Internet servers. We

selected following daemons: acpid, anacron, apmd, atd, au-
ditd, autofs, cpuspeed, crond, haldaemon, iptables, kudzu,
messagebus, netfs, network, rhnsd, sshd, and syslog. As a
result, 126 types and 1219 rules are necessary for writing
the policy. Compared with Tables 1 and 2, these rules are
numerous. We do not have to write this policy at all in our
scheme.

5.2 Performance

We measured performance of HTTP, SMTP, and POP
servers running on SELinux and one with our module. We
used SPECweb2005, selecting an ecommerce application
for the HTTP server and SPECmail2001 for the SMTP and
POP servers as benchmark programs. We call the SELinux
with our module our system in this section.

Tables 5, 6, and 7 show the results. We can confirm that
our system has almost the same performance as SELinux,
although the performance of the POP server running on our
system is slightly worse than the HTTP and SMTP servers.

6. Related Work

Security models have two goals: preventing accidental or
malicious destruction of information or systems and control-
ling the release and propagation of that information. A se-
cure OS can accomplish both goals. For example, SELinux
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Table 5 HTTP server performance.

SELinux Our System
Request Type Response time (sec) Throughput (kbytes) Response time (sec) Throughput (kbytes)

index 1.652 161.7 1.652 161.7
search 1.794 177.1 1.794 177.1
browse 1.786 175.2 1.786 175.2

browse productline 1.837 177.8 1.838 177.8
productdetail 0.919 55.0 0.919 55.1
customize1 1.688 166.9 1.688 166.9
customize2 1.683 166.2 1.683 166.2
customize3 1.826 179.9 1.826 179.9

cart 0.794 76.4 0.799 77.0
login 0.482 44.9 0.501 46.7

shipping 0.457 42.8 0.456 42.8
billing 0.375 34.5 0.375 34.5
confirm 0.348 33.4 0.348 33.4

Total 1.438 138.2 1.443 (+0.35%) 138.7 (+0.36%)

Table 6 SMTP server response time.

Function SELinux (ms) Our system (ms)

SMTP Connect 77.45 79.14 (+2.2%)
SMTP Hello 88.06 89.66 (+1.8%)
SMTP Mail From 15.66 15.35 (−2.0%)
SMTP Rcpt To 19.79 19.23 (−2.8%)
SMTP Data 90.21 89.74 (−0.5%)
SMTP Quit 14.48 14.65 (+1.2%)

Table 7 POP server response time.

Function SELinux (ms) Our system (ms)

POP Connect 33.53 36.57 (+9.0%)
POP User ID 43.82 47.86 (+9.2%)
POP Password 702.05 702.50 (+0.1%)
POP Status 210.56 243.31 (+15.6%)
POP Retrieve 12.18 12.87 (+5.7%)
POP Delete 9.24 9.45 (+2.3%)
POP Quit 26.02 29.25 (+12.4%)

enforces a wide range of security policies including type
enforcement that accomplishes the former goal and multi-
level security [8] that accomplishes the latter. However,
its policy configuration is potentially error-prone because
its policy size is too large to be configured correctly by
hand. Researchers have explored techniques that can be
used more easily than secure OSes. Some ideas are pro-
posed for enforcing information flow policies with higher
assurance based on a programming language or an operat-
ing system approach.

Jif [15] is a programming language that provides static
checking of information flow using a decentralized label
model. Jif can track information flow at the level of indi-
vidual variables and perform most label checks at compile
time. The Asbestos operating system [5] controls informa-
tion flow by providing protection through its original label-
ing scheme, which allows data to be sanitized by individual
users. HiStar [28] was directly inspired by Asbestos, but dif-
fers in that it provides system-wide persistence.

Information flow policies are useful and important, but
not enough to completely ensure a system’s security. For
example, an attack aimed at destroying a system cannot be

prevented solely by information flow policies. In addition,
these approaches are difficult to use in real situations be-
cause Jif requires programmers to have specialized knowl-
edge about it, and Asbestos and HiStar require large modi-
fications of kernel code and user-level library code.

There are some secure OSes whose goal is to sim-
plify the policy description. AppArmor [17] is an applica-
tion security tool designed to provide an easy-to-use secu-
rity framework. AppArmor security policies completely de-
fine what system resources each application can access with
what privileges. Using a combination of static analysis and
learning-based tools, AppArmor security policies can be de-
fined much easier than SELinux. TOMOYO Linux [16] sim-
plifies the policy description by learning the behavior of tar-
get applications. By doing this, TOMOYO Linux automati-
cally generates almost 90% of security policies.

Although our scheme is currently implemented for
SELinux, it can be applied to AppArmor and TOMOYO
Linux; we can introduce the phases into these secure OSes.
If we use these OSes instead of SELinux, the policy descrip-
tion for the protocol processing phase would be simplified
compare with SELinux-based systems. For example, if our
scheme is based on TOMOYO Linux, the 90% of the secu-
rity policy would be automatically generated by TOMOYO
Linux; the administrator must write the policy for the re-
maing 10% for the protocol processing phase. Note that the
administrator does not have to write the policy for the ini-
tialization phase.

Unfortunately, few researchers are interested in simpli-
fying policy descriptions, while a lot of work on secure OSes
has been done to help analyze policy configuration [3], [7],
[12], [13], [20], [25], [27].

Jaeger et al. [13] presented the concept of an access
control space and developed a tool called Gokyo to analyze
it. An access control space represents the permission assign-
ment of a subject and contains all permissions divided into
subspaces (prohibited, permissible, and unknown spaces).
Gokyo computes the unknown subspace to show system ad-
ministrators the ambiguous region and enables them to re-
duce it.

Zanin and Mancini [27] present a formal framework
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called SELinux Access Control (SELAC) for analyzing an
arbitrary security policy configuration. They define seman-
tics for the constructs of the SELinux configuration lan-
guage and model the relationships occurring among sets of
configuration rules. By using SELAC formalism, it is pos-
sible to write algorithms for checking properties of given
configurations.

Hicks et al. [12] present the first logical specification
for modeling SELinux MLS policy and implement it in
an analysis tool called PALMS (for Policy Analysis using
Logic for MLS in SELinux). PALMS takes two policies in
SELinux MLS policy syntax and automatically determines
all the information flows allowed in the policies as well as
whether one policy is compliant with the other.

Lujo et al. [3] presented a way to eliminate a large
percentage of access-control policy misconfigurations be-
fore attempted accesses. They used a data-mining technique
called association rule mining and applied it to the history
of accesses to predict changes to access-control policies that
are likely to be consistent with a user’s intention.

Apol [25] is a graphical tool to analyze a SELinux pol-
icy developed by Tresys Technology. Some of the features
supported are the ability to browse and search policy com-
ponents, such as types, attributes, and roles, search through
type enforcement and other rules, and view file contexts
from a file system. Apol is also useful for our scheme. Even
if our scheme is applied, the administrator must write a se-
curity policy for the protocol processing phase. Apol helps
us analyze and write the policy for the protocol processing
phase.

Indeed, helping analyze policy configuration becomes
helpful for introducing secure OSes, but it cannot be the
fundamental solution for making policy configuration eas-
ier. Writing a policy is the first step for introducing secure
OSes and remains the biggest barrier to system administra-
tors trying to introduce secure OS. Our work differs from
these previous research in aiming at reducing the policy size
itself. Reducing policy size also helps analyze the policy be-
cause the simpler a policy becomes, the more easy its effect
on the system can be understood.

7. Conclusion

In this paper, we have proposed simplifying security policy
descriptions for Internet servers by exploiting phases. Con-
sidering that remote attackers never attack against a server
before they establish connections to it, we define the initial-
ization phase as the phase before it establishes any connec-
tions and the protocol processing phase as the phase after it
establishes connections. Access control by a secure OS is
enforced only in the protocol processing phase. Thus, we
can eliminate a policy description in the initialization phase.
We wrote policies for three kinds of Internet servers (HTTP,
SMTP, and POP servers) and our scheme was able to reduce
47.2%, 27.5%, and 24.0% of policy rules for each server re-
spectively, compared with an existing SELinux policy that
includes the initialization of the server.
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