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1. Introduction

The Odderon is a Regge exchange carrying odd charge parity, C = −1 [1, 2], as compared
to its more well–known C = +1 partner, the Pomeron. It is a hypothetical excitation lying
on the C–odd glueball Regge trajectory (meaning that the relevant amplitudes go like sα(t)

in the Regge limit s À |t|) with a putative intercept α(0) ∼ 1, and is usually considered as
a separate entity from mesonic C–odd states like the vector meson (‘Reggeon’) trajectory.
While the Pomeron is responsible for the observed rise of the pp total cross section, the
Odderon should manifest itself in the differences between pp and pp̄ cross sections, as well
as in other exclusive reactions which involve C–odd exchanges [3–12]. However, it has
turned out be rather difficult to prove the existence of the Odderon unambiguously, partly
because the existing experimental data are not sufficient or accurate enough. The bulk of
the total cross section difference in pp and pp̄ collisions

∆σ(s) ≡ σpp̄(s)− σpp(s) , (1.1)

appears to be well described by the Reggeon exchange with an intercept αR(0) ∼ 0.5
(namely, ∆σ ∼ sαR(0)−1), leaving little room for the Odderon contribution. Other signa-
tures are inconclusive as well, except perhaps some positive indication from the differential
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elastic cross section dσ/dt for pp and pp̄ collisions performed at the CERN ISR. [See, [2]
for a comprehensive review.]

Describing the observed cross sections for pp and pp̄ collisions is not feasible using
perturbative QCD (pQCD) alone, as the dominant, soft processes involve large values of
the coupling constant. One is therefore led to use models in order to fit the data, and
indeed, for the Pomeron there exists a very rich and broad phenomenological analysis [13].
On the other hand, the Odderon accounts for a small fraction of the total cross section,
and therefore it is extremely sensitive to the details of various assumptions in the fitting
parameterizations. Clearly, guidance from first principle calculations is highly desirable in
order to better constrain and discriminate different models.

One possible way to approach the nonperturbative, strong coupling regime of gauge
theories is the AdS/CFT correspondence which relates weakly coupled type IIB superstring
theory on AdS5×S5 to strongly coupled N = 4 supersymmetric Yang–Mills (SYM) theory.
Of course, the SYM theory, being maximally supersymmetric, conformal and having non-
chiral particle multiplets, is in many aspects quite different from QCD. However, given the
fact that we almost completely lack any insight into the strongly coupled dynamics of QCD
from first principles, one can study the problem in this different setting and try to extract
universal features that QCD might possibly share.

In this paper, based on the AdS/CFT correspondence, we propose a coherent descrip-
tion of various C–odd exchanges inN = 4 SYM and calculate their respective contributions
to high energy baryon–baryon and baryon–antibaryon scattering. Previously, in [14] the
Odderon was identified on the string theory side with the fluctuations of the antisymmetric
Kalb–Ramond two–form, B, and its Regge intercept at strong coupling was derived. Here
we extend the work of [14] in several important directions. First, we point out that the
vector meson (Reggeon) exchange can be naturally accommodated in the strong coupling
formalism as different tensor components of the B–field which were not considered in [14],
thereby suggesting that the Odderon and the Reggeon are unified in ten–dimensions. This
interpretation naturally comes from an inspection of the corresponding N = 4 SYM op-
erator, and we shall determine its anomalous dimension as well as the Reggeon intercept.
Next we study the coupling of the different components of the B–field to “baryons” which
are on the string theory side represented by wrapped D–branes. As we shall emphasize
throughout this paper, the discussion of the Odderon would never be complete without
knowing how it couples to external objects. This is in fact a subtle but crucial problem
already in weak coupling perturbation theory, and even more so in the AdS/CFT context.

Our main calculations are performed in Section 3. We evaluate the forward baryon–
(anti)baryon scattering amplitude from the single Odderon exchange contribution using the
exact B–field propagator, and extract the leading contribution to the imaginary part which
is related to the total cross section difference. Interestingly, we shall find that the Odderon
exchange gives a larger cross section in baryon–baryon scattering than in baryon–antibaryon
scattering, namely, ∆σ < 0 at very high energies. This looks counterintuitive based on
our experience with ordinary flat space calculations—the exchange of fields described by
differential forms such as the B–field would imply ∆σ > 0, and this is indeed the case for
the Reggeon exchange. As we shall see, the extra overall minus sign in the Odderon case
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is essentially due to the warp factor of AdS5, and therefore represents one of the hallmarks
of gauge/gravity duality.

The emerging picture from our analysis is that the total cross section difference (1.1)
has two components; the Odderon which tends to give ∆σ < 0, and the Reggeon which
tends to give ∆σ > 0. In the final section, we shall interpret the existing experimental
data in view of our findings and discuss the possibility to observe a negative cross section
difference ∆σ < 0 in QCD at very large s. Actually, the possibility of having ∆σ < 0 at
large energies was discussed already in the very first paper on the Odderon [1], and more
recently in [9] on the basis of an extrapolation of phenomenological fits to the LHC energy
scale.

2. Odderon at weak and strong coupling

We will start this section by giving a short overview of the status of the Odderon within
pQCD. As mentioned already, one of the important aspects of the Odderon is its coupling
to external objects, so we recall how this issue arises in the weakly coupled problem. Then
in section 2.2 we discuss the Odderon in strongly coupled N = 4 SYM. We first describe
the argument behind the identification of the B–field with the Odderon, and then list the
Regge intercepts for all the relevant components of the ten–dimensional B–field. Then in
section 2.3 we discuss their physical interpretations in terms of the gauge invariant dual
operators in the N = 4 theory.

2.1 Odderon in weakly coupled QCD

The existence of the Odderon is predicted by pQCD. To lowest order, it is given by a
symmetric color singlet C–odd combination of three gluons in the t–channel. Higher or-
der corrections containing logarithms of energy (ln s)n can be resummed by the Bartels–
Kwiecinski–Praszalowicz (BKP) equation [15, 16] which describes the pairwise interaction
of three Reggeized gluons.

The BKP equation has attracted much attention because of its connection to integra-
bility. The equation was originally derived in momentum space, and it was later understood
that its Fourier transformed formulation in coordinate (impact parameter) space is, under
certain assumptions, identical to the eigenvalue problem of an exactly solvable spin–chain
model (namely the XXX Heisenberg spin s = 0 model) [17, 18]. So far, two exact solu-
tions of the BKP equation have been found; the Janik–Wosiek (JW) solution [19] (see,
also, [20]) with a Regge intercept1 slightly less than 1, jO(0) ≈ 1 − 0.2472αsNc

π , and the
Bartels–Lipatov–Vacca (BLV) solution [21] with jO = 1.

Apart from the difference in the intercept, these two solutions have markedly different
coordinate dependences which crucially determine their relevance in physical amplitudes.
The JW solution is constrained such that it vanishes when two of the three gluons sit at
the same point. This means that it does not couple to qq̄ states including a virtual photon

1For a reason to become clear later, henceforth we distinguish the intercept associated with the spin of

gauge theory operators jO from the one associated with the total cross section αO(0).
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in DIS. Though it in principle couples to three–quark states (like a proton), the constraint
of vanishing at equal points is incompatible with gauge invariant initial conditions [22].

On the other hand, the BLV solution does not have this constraint, and hence it
naturally couples to both qq̄ and qqq states in a gauge invariant way [22,23]. Nevertheless,
this solution is sometimes deemed ‘exceptional’ because its description in the integrability
framework turned out to be tricky: One has to extend the Hilbert space of eigenstates of the
spin–chain Hamiltonian so that it includes solutions which do not vanish at equal points.
However, physically there is no reason to expect that the Odderon amplitude vanishes at
equal points, and indeed the BKP equation does not a priori imply such a property. In
fact, this constraint was artificially imposed by hand by neglecting certain terms in the full
BKP Hamiltonian in order to establish the equivalence with the spin–chain Hamiltonian.
Therefore, the seemingly unusual status of the BLV solution is illusory, and one can fairly
conclude that it is the Odderon solution in perturbative QCD in the leading logarithmic
approximation. Note that, as was originally done in [21], the BLV solution can be explicitly
constructed in momentum space without any reference to integrability.

The above situation in perturbative QCD illustrates an important point when studying
the Odderon: It is one thing to derive the Odderon intercept, but it is quite another to
discuss how a given Odderon solution actually couples to external states. Whether it has
nonvanishing coupling depends on the quantum numbers and the internal structure of the
colliding hadrons. As we shall see, this problem appears also in the approach based on the
AdS/CFT correspondence.

Another point worth noting is that the BLV odderon amplitude is purely real. This is
most readily seen by the identification of the odderon amplitude as the imaginary part of
the eikonal amplitude made up of lightlike Wilson lines [22]

Aodderon ∼ Im trW . (2.1)

This implies, in particular, that in perturbation theory one cannot really address the issue of
the total cross section difference which, via the optical theorem, is related to the imaginary
part of the forward amplitude ImA(t = 0). In order to generate a nonzero imaginary part,
one has to have some nonperturbative inputs, and this is what we shall explore in the
following.

Before leaving this subsection, we should like to mention that there have been a lot of
activities in phenomenological applications [4–10] as well as theoretical extensions of the
BLV odderon treatment. The latter includes the corrections of next–to–leading logarithmic
terms and beyond [24,25], suggesting that the Odderon intercept will remain at jO(0) = 1
to all orders in (leading–twist) perturbation theory, and also non–linear effects from gluon
saturation [22,23,26–29] which tend to suppress the odderon amplitude.

2.2 Odderon in strongly coupled N = 4 SYM

In this and the next subsections we describe the nature of the Odderon in N = 4 supersym-
metric Yang–Mills (SYM) theory at strong coupling. Via the AdS/CFT correspondence,
the problem can be equivalently formulated in type–IIB superstring theory on the back-
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ground of AdS5 × S5 with the metric

ds2 = GmndXmdXn + Gαβdθαdθβ

= R2−2dx+dx− + d~x2
⊥ + dz2

z2
+ R2(dθ2 + sin2 θdΩ2

4) , (2.2)

where x± = 1√
2
(x0 ± x3), ~x⊥ = (x1, x2) and R is the common radius of AdS5 and S5. We

use the notation Xm = (xµ, z) for the AdS5 coordinates and θα = (θ ≡ θ1, θ2, θ3, θ4, θ5) for
the S5 coordinates.

In N = 4 SYM where the fermions belong to a real (namely, the adjoint) represen-
tation of the gauge group, C–conjugation is a rather uninteresting operation. However, if
one introduces charges (‘quarks’) in the fundamental representation living on some ‘flavor’
branes, one can define the C–conjugation with respect to these charges. Specifically, we
shall later introduce baryons, or D–branes which carry the NS-NS charges on their worldvol-
ume. The NS-NS antisymmetric B–field couples to the fundamental and anti-fundamental
charges with opposite signs, thus it can be identified as the Odderon in this context.2

More properly, the Odderon is the Reggeized B–field,3 which roughly means that it is
a coherent superposition of string excited states lying on a Regge trajectory starting from
the massless B–field. In flat ten–dimensional spacetime, this can be seen by inspection of
the Shapiro–Virasoro amplitude and takes the form

f(α′t)(1− e−iπα(t))sα(t) , (2.3)

where α(t) = 1+ α′t
2 . One recognizes the usual Regge behavior with the negative signature

factor, but importantly the prefactor f(α′t) has no pole at t = 0. This means that the
massless B–field decouples from the s–channel closed strings such as the dilaton (‘glueball’).
The fact that one nevertheless gets a nonzero amplitude with an imaginary part (2.3) is
due to the Reggeization of the B–field.

The analogous problem in the background of AdS5 × S5 is considerably more compli-
cated. Upon compactification on S5, the ten–dimensional B–field splits into the diagonal
modes

Bmn , (2.4)

with both indices along the AdS5 direction, and the off–diagonal modes

Bmα , (2.5)

with one of the indices along the S5 direction.4 Furthermore, each mode undergoes the

2If one is interested in colliding objects which carry the R-R charges, such as D1–branes and monopoles,

the R-R two–form would serve as the Odderon.
3The exchange of the bare (i.e., not Reggeized) B–field in high energy scattering was previously consid-

ered in [30].
4We ignore the modes Bαβ with both indices on S5 because they are irrelevant at high energy.
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Kaluza–Klein (KK) decomposition [31]

Bmn =
∞∑

k=0

B(k)
mn(X)Y (k)(Ω5) ,

Bmα =
∞∑

k=1

(
b(k)
m (X)Y (k)

α (Ω5) + d(k)
m (X)∇αY (k)(Ω5)

)
, (2.6)

where Y (k) and Y
(k)
α are the rank–k scalar and vector spherical harmonics on S5, respec-

tively. These harmonics are reviewed in Appendix A. Summation over different harmonics
with the same value of k is understood. By choosing the gauge ∇αBmα = 0, one can always
set d

(k)
m = 0 (see (A.14) ) which we shall subsequently do.
The Reggeization of the B–field has to be done for each KK mode by analyzing the

supergravity equation of motion [32]. For the diagonal modes (2.4), there are two equations
of motions for each value of k. Accordingly, there are two branches of the Regge intercepts.
They have been worked out in [14] with the results

jO = 1− M2
I

2
√

λ
, (I = 1, 2) (2.7)

where λ is the ’t Hooft coupling and the respective masses MI are given by

M1 = k , M2 = k + 4 . (k = 0, 1, 2. · · · ) (2.8)

Note that the lowest KK state M1 = k = 0 has jO = 1. In view of the finding of [25], it is
tempting to regard this mode as the fate of the BLV odderon at strong coupling. However,
in the gravity description this mode is pure gauge, and decouples from physical amplitudes.
We shall have more to say about this below.

The intercept for the off–diagonal mode Bmα ∼ bm can be determined as follows. The
relevant equation of motion is the massive Maxwell equation [31]

∇nfnm − M2

R2
bm = 0 , (2.9)

where fmn ≡ ∂mbn − ∂nbm and

M2 = (k + 1)(k + 3) . (k = 1, 2, 3, · · · ) (2.10)

Without the mass term, this is identical to the equation for the gauge boson (dual to the
R–current operator) considered in [33]. Thus the intercept can be immediately obtained
by making the following change in the result of [33]

j = 1− 1
2
√

λ
→ jR = 1− 1 + M2

2
√

λ
= 1− (k + 2)2

2
√

λ
, (2.11)

where the meaning of the subscript R will be explained shortly. Interestingly, despite the
difference in the equations of motion in AdS5, the spectrums of j in (2.7) and (2.11) are
overlapping except for the first few KK states. This might be due to the fact that these
modes originally come from a single field, namely the B–field, in ten dimensions.
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2.3 Correspondence with operators in gauge theory

The AdS/CFT correspondence identifies fields on the string theory side with local gauge
invariant operators on the field theory side. Now that we know the intercepts of various
KK excitations of the B–field, let us discuss to which operators in N = 4 SYM these states
correspond.

Mathematically, the Reggeization means that the spin of the B–field is analytically
continued to j 6= 1. Accordingly, the spin of the corresponding operator should also be
continued.5 In the case of the diagonal modes (2.4), the relation between the dimension of
the operator with spin j and the mass of the KK state was derived in [14]

∆(j) = 2 + 2

√√
λ

2
(
j − jO

)
= 2 + 2

√√
λ

2

(
j − 1 +

M2
I

2
√

λ

)
. (2.12)

Consider first the branch M1 = k which has a larger intercept and should therefore domi-
nate the cross section. One has

∆(1) = 2 + k . (2.13)

As already mentioned, the k = 0 mode is pure gauge and therefore does not correspond
to propagating physical degrees of freedom. Indeed there is no gauge–invariant, spin–1,
dimension–2 operator in N = 4 SYM. For k = 1, the corresponding gauge theory operator
is

tr
(
ψAσµνψ

B + 2iφABF+
µν

)
, (1 ≤ A,B ≤ 4) (2.14)

which belongs to the 6 representation of SU(4) and the (1,0) of the Lorentz SO(3, 1) group.
[F± denotes the self–dual/anti self–dual part of the field strength, belonging to (1, 0) and
(0, 1), and the trace is in the fundamental representation.] The operators with k ≥ 2
are multiplied by higher powers of scalars with appropriate SU(4) representations. These
operators are denoted as O(4)

k in Table 7 of [34].
Next, let us turn to the M2 = k + 4 branch. In this case ∆(1) = k + 6, and the

corresponding operators are given by

tr
(
F+

µνF
2
−φk

)
. (2.15)

These operators are denoted as O(16)
k in Table 7 of [34]. Note that for k = 0 this is a

gluonic operator which, at weak coupling, starts out with three gluons. Based on this
analogy, and also on the fact that the fields on the two branches I = 1, 2 can be treated on
the same footing in actual calculations, we shall collectively call the diagonal modes B

(k)
mn

the Odderon as in [14].
Finally, for the off–diagonal modes, one has instead [33]

∆(j) = 2 + 2

√√
λ

2
(
j − jR

)
= 2 + 2

√√
λ

2

(
j − 1 +

1 + M2

2
√

λ

)
. (2.16)

5This implies that the operators become nonlocal.
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Using M2 = (k + 1)(k + 3), one finds ∆(1) = k + 4. The corresponding operators are
denoted as O(10)

k−1 in Table 7 of [34] and read

tr
(
F+

µνψ̄Aσ̄νψBφk−1
)

. (2.17)

The lowest k = 1 mode is the 15 of SU(4) and the (1
2 , 1

2) of SO(3, 1). It looks like an
interpolating operator of vector mesons. Therefore we will refer to the off–diagonal modes
b
(k)
m as the Reggeon, whence the subscript in jR.

Concluding this section, we have identified all the possible C–odd exchanges originat-
ing from the ten–dimensional B–field and listed their respective Regge intercepts and the
corresponding operators in SYM. Anticipating the later developments, here we note the
following two caveats when applying the formal results of this section to actual scattering
processes: (i) Our experience with pQCD tells us that it may very well be that not all of
the KK modes actually couple to external hadrons. (ii) The formulas presented above for
the Regge “intercept” lead to the following behavior

A(s, b) ∼ sjO−1f(s, b) , (2.18)

of the scattering amplitude at fixed impact parameter b, with f being some function of b

and the energy s. In order to obtain the total cross section difference, one has to integrate
ImA(b) over b. If the function f had no energy dependence, then the cross section would
have the dependence sαO(0)−1 with αO(0) = jO. However, in certain cases the b–integration
can modify the s–dependence so that αO(0) 6= jO. In the next section, we shall see that
both of these caveats are indeed relevant.

3. Odderon exchange in baryon–baryon scattering at strong coupling

In this main section we calculate the Odderon exchange contribution to the baryon–
(anti)baryon scattering amplitude by representing baryons as D–branes. Ideally, the D–
brane amplitude should be exactly calculated (as can be done in flat space [35]) so that
various string exchanges are automatically included. However, in a curved background like
AdS5 × S5, such exact results are unavailable, and we must content ourselves with the
single Odderon exchange. Actually, in N = 4 SYM it is probably possible to go beyond
the single Odderon approximation [14] by including unitarity corrections in the form of
the graviton (Pomeron) eikonalization [36, 37]. We will comment on the issue of unitarity
corrections along with their relevance to QCD in the discussion section.

We first describe the D–brane solution of [38, 39] and investigate its coupling to the
various KK excitations of the B–field. It will turn out that the coupling to the Reggeon b

(k)
m

vanishes identically. We therefore focus only on the Odderon B
(k)
mn contribution, calculating

first the bare propagator in section 3.2 from which the Reggeized propagator is immediately
obtained. The latter is then used in section 3.3 to calculate the Reggeized amplitude whose
imaginary part determines the cross section difference. Our main result is displayed in
equation (3.33) which is an explicit analytical formula for the total cross section difference.
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3.1 Baryon–Odderon coupling

In the context of gauge/string duality, baryons can be realized as D–branes wrapping on
some compact manifold [40]. In the canonical example of the N = 4 SYM/type IIB
correspondence, they are D5–branes wrapping on S5. Among the different versions of
baryon configurations proposed in the literature, we employ here a particular BPS solution
constructed in [38,39].

Consider the embedding of a D5–brane in AdS5 × S5 using the coordinate mapping
β(ξ) = (xµ(ξ), z(ξ), θα(ξ)) where ξa = (x0, θα) are the coordinates parameterizing the
worldvolume of the D5–brane. The dynamics of the D5–brane is governed by the Born–
Infeld action plus the Chern–Simons term

S = T5

∫
d6ξ

{
−

√
−det(G̃ + B̃ + 2πα′F ) + 2πα′F ∧ c(4)

}
, (3.1)

where G̃ ≡ β∗G, B̃ ≡ β∗B and c(4) ≡ β∗C(4) are the pullbacks of the graviton, the B–field
and the R–R 4–form on the brane, respectively, and F is the two–form U(1) field strength
on the brane. The solution [38,39] which respects the BPS condition has S4 ⊂ S5 symmetry
and is extended in the z–direction along which there is an electric flux F0z = (∂θ/∂z)F0θ.
[Remember that θ ≡ θ1.] The embedding function z = z(θ) is given by

z(θ) =
rh sin θ

[
3
2(θ − sin θ cos θ)

] 1
3

, (3.2)

where rh = z(θ = 0) is an arbitrary length scale which we identify with the radius of the
baryon. As θ goes to π, z(θ) monotonously decreases to zero where the boundary of AdS5

is located. In order to obtain a finite baryon mass, one has to put a UV cutoff at small z,
or equivalently, in θ near π.

We shall be interested in the high energy collision of a baryon and a (anti-)baryon in
this D–brane representation, exchanging the B–field in the t–channel. Since the mass of a
baryon is of order Nc, high energy means that the center–of–mass energy

√
s is parametri-

cally of order Nc up to a boost factor. For a baryon moving in the ±x3 direction near the
speed of light v ≈ 1, it is convenient to take x± (instead of x0) as the ‘time’ coordinate on
the brane with the constraint x∓ ≈ 0. The coupling between the D–brane moving in the
+x3 direction and the B–field is

Sint =
1

VolS4

∫
dx+dθdΩ4

∂L
∂F+θ

B̃+θ

2πα′

=
n

2πα′VolS4

∫
dx+dθdΩ4

(
B+θ +

∂z

∂θ
B+z

)
, (3.3)

where VolS4 = 8π2

3 and n = ∂L
∂F+θ

is an integer which measures the string charge on the
D–brane. For a baryon (anti–baryon) we take n = Nc (n = −Nc).

The B–fields in (3.3) are decomposed into the KK modes as in (2.6). Then the issue
arises as to whether the dΩ4 integral of the spherical harmonics is nonvanishing. In Ap-
pendix A, we show that the integral of the θ–component of the vector spherical harmonics
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over S4 vanishes identically for all k,
∫

dΩ4 Y
(k)
θ (Ω5) = 0 . (3.4)

This means that the off–diagonal modes B
(k)
+θ (Reggeon) decouple from the the baryon

under consideration. On the other hand, for any k ≥ 0 at least one component of the
scalar harmonics Y (k) gives a nonvanishing value after the integration over S4, so the
diagonal modes B

(k)
+z (Odderon) do couple to our baryon. Therefore in the remainder of

this section we only consider the diagonal mode B+z. We shall return to the relevance of
the off–diagonal modes in the discussion section.

The full amplitude in impact parameter space for the exchange of the B–field is

iA±(s, b) = ±i2
(

Nc

2πα′VolS4

)2 ∑

k

∫
dx+dzdΩ4Y

(k)(Ω)

×
∫

dx′−dz′dΩ′4Y
(k)(Ω′)〈B(k)

+z (x+, 0, x⊥, z)B(k)
−′z′(0, x′−, x′⊥, z′)〉 , (3.5)

where the plus (minus) sign corresponds to baryon–baryon (baryon–antibaryon) scattering.
Our next task is now to calculate the propagator 〈B+zB−′z′〉.

3.2 Bare B–field propagator

The equation of motion for the components B
(k)
mn has been derived in [31] by dimensionally

reducing the type IIB supergravity equation of motion. Alternatively, one may perform the
dimensional reduction directly on the supergravity action taking into account the mixing
with the Ramond–Ramond (R-R) two–form. This yields, for a given value of k, [41]

S = −R5π3

2κ2

∑

I=1,2

∫
d5X

√
−G

( i

2
εmnlpq(aI

mn)∗∂la
I
pq + MI(aI

mn)∗amn
I

)
, (3.6)

where we have normalized the spherical harmonics as
∫

dΩ5|Y (k)|2 = π3 = VolS5 . The
complex fields a1,2 are certain linear combinations of the B–field and the R-R two–form [41],
such that the B–field can be written6

B(k)
mn =

1√
2(k + 2)

(
a1

mn + a1∗
mn + a2

mn + a2∗
mn

)
. (3.7)

The Kaluza–Klein masses MI are as in (2.8).
The propagator of the a(1,2) field satisfies the following equation (up to the prefactor

κ2/R5π3)

i

2
ε lpq
mn ∂lDpq,m′n′(X,X ′) + MDmn,m′n′(X, X ′)

= −i
δ(5)(X −X ′)√−G

(Gmm′Gnn′ −Gmn′Gnm′) , (3.8)

6Our normalization of the B–field differs from that in [41] by a factor of 2.
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where M is either M1 or M2. The solution was obtained in [42] and takes the form

Dmn,m′n′ = T 1
mn,m′n′(D(u) + 2H(u)) + T 2

mn,m′n′H
′(u) + T 3

mn,m′n′K(u)

= T 1
mnm′n′D(u)− ∂mVn,m′n′ + ∂nVm,m′n′ + T 3

mn,m′n′K(u) , (3.9)

where

T 1
mn,m′n′ = R4(∂m∂m′u∂n∂n′u− ∂m∂n′u∂n∂m′u) , (3.10)

T 2
mn,m′n′ = R4(∂m∂m′u∂nu∂n′u− ∂m∂n′u∂nu∂m′u

−∂n∂m′u∂mu∂n′u + ∂n∂n′u∂mu∂m′u) , (3.11)

T 3
mn,m′n′ = R5ε lpq

mn ∂l∂m′u∂p∂n′u∂qu , (3.12)

Vm,m′n′ = R4H(u)(∂m∂m′u∂n′u− ∂m∂n′u∂m′u) , (3.13)

and u is the chordal distance in AdS5

u =
(z − z′)2 + (x⊥ − x′⊥)2 − 2(x+ − x′+)(x− − x′−)

2zz′
. (3.14)

We shall focus on the (mn,m′n′) = (+z,−′z′) component. One can check that
T 3

+z,−′z′ = 0, and

T 1
+z,−′z′ =

R4

z2z′2

(
1 + v − z

z′
− z′

z

)
=

R4

zz′
∂z∂z′v , (3.15)

where

v =
(z − z′)2 + (x⊥ − x′⊥)2

2zz′
, (3.16)

is the chordal distance in H3. As for terms involving V , the first term −∂+Vz,−′z′ can be
neglected since we integrate the propagator over x+ (see (3.5)), while the other term is
given by

∂zV+,−′z′ = ∂z

(
H(u)
zz′

∂z′v

)
. (3.17)

The function D(u) satisfies the following equation

1
R2

(z2∂2
z − 3z∂z + z2∂2 + 4−M2)D(u) = iM

z5

R5
δ(5)(X −X ′) , (3.18)

and H(u), K(u) are given in terms of D(u)

H(u) = − 1
M2

(
2D(u) + (u + 1)D′(u)

)
, K(u) = − i

M
D′(u) . (3.19)

Let us define

R2

∫
dx+dx′−

zz′
D(u) = D(3)(v) . (3.20)
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Then

R2

∫
dx+dx′−

zz′
H(u) = − 1

M2
D(3)(v) , (3.21)

where we integrated by parts. From (3.18), one has

1
R2

(z2∂2
z − z∂z + z2∂2

⊥ + 1−M2)D(3) = iM
z3

R3
δ(z − z′)δ(2)(x⊥ − x′⊥) , (3.22)

and the solution can be conveniently written as

D(3)(v) =
−iM

4πR

e−Mξ

sinh ξ
, (3.23)

where ξ ≡ cosh−1(1 + v). Note that D(3) vanishes when M = 0, which explicitly shows
the decoupling of the mode M1 = k = 0. [The V terms become gauge artifacts.] In the
following we consider only the case M ≥ 1 and obtain

∫
dx+dx′−〈B(k)

+z (x, z)B(k)
−z (x′, z′)〉 =

∑

I

1
k + 2

κ2

R5π3
R2

×
[(

1− 1
M2

I

)
D(3)(v)∂z∂z′v − 1

M2
I

∂vD
(3)(v)∂zv∂z′v

]
. (3.24)

3.3 The total cross section difference

Equation (3.24) is the contribution from the bare B–field, and as such, the corresponding
amplitude A is purely real. In order to get an imaginary part, one has to Reggeize the
B–field by doing analytic continuation in j. This boils down to replacing [14]7

D(3)(v) → D
(3)
j (v) ≡ −iM

4πR

e−Mjξ

sinh ξ
, (3.25)

where

M2
j = M2 + 2

√
λ(j − 1) = 2

√
λ(j − jO) , (3.26)

and jO ≡ 1 − M2

2
√

λ
is the Odderon intercept (2.7). Let us consider the first term on the

right hand side of (3.24). Summing over odd values of j in the form of the contour integral,
as dictated by the presence of the odd signature factor in (2.3), one reaches the following
expression

∫
dj

4i

1− e−iπj

sinπj

(
α′s̃
4

)j−1 (
1 + v − z

z′
− z′

z

)
D

(3)
j (v)
zz′

. (3.27)

7Note that we do not replace M → Mj in the prefactor. This factor of M comes from the right hand

side of (3.22) and is clearly not associated with the pole of the t–channel propagator. Incidentally, Ref. [14]

leaves open the possibility that the M = 0 mode becomes physical after the analytic continuation. In our

approach this might correspond to replacing M → Mj also in the prefactor so that the coupling apparently

becomes nonvanishing. However, such a procedure is somewhat arbitrary, and induces uncertainties in the

subsequent calculations. Thus, although we think it is an interesting possibility, we do not pursue it in the

present paper.
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The j–integral goes around the positive real axis encircling poles at odd integers j =
1, 3, 5, · · · clockwise. In order to obtain the forward scattering amplitude A(s, t = 0) one
needs to take the Fourier transform of (3.27) with respect to b = x⊥ − x′⊥ and take the
limit t → 0.8 Using d2b = 2πzz′ sinh ξdξ, one obtains

2πzz′
∫ ∞

ξ0

dξ

∫
dj

4i

1− e−iπj

sinπj

(
zz′s
4
√

λ

)j−1 (
cosh ξ − z

z′
− z′

z

) −iMe−Mjξ

4πRzz′

≈ −iM

4R

√
π
√

λ

2τ3

1− e−iπjO

sinπjO
e(jO−1)τ

∫ ∞

ξ0

dξ

(
cosh ξ − z

z′
− z′

z

)
ξe−

√
λξ2

2τ , (3.28)

where ξ0 = | ln z/z′| and zz′s
4
√

λ
≡ eτ . Here we have deformed the contour so as to surround

the branch cut beginning at j = jO, and evaluated the j–integral using the saddle point
approximation which is valid when τ/

√
λ is large. The ξ integral then gives

−iM

8R

√
π

2τ
√

λ

1− e−iπjO

sinπjO
e(jO−1)τ

(
e

τ

2
√

λ

∫ ξ0+ τ√
λ

ξ0− τ√
λ

dξ e−
√

λξ2

2τ −
(

z

z′
+

z′

z

)
e−

√
λξ20
2τ

)
.

(3.29)

When τ/
√

λ is large, the first term in the brackets dominates. Noting also that typically ξ0

should be small since we are scattering objects of the same size, the limits of the Gaussian
integral can be extended to ±∞ and we obtain

−iMπ

8R
√

λ

1− e−iπjO

sinπjO

(
zz′s
4
√

λ

)αO(0)−1

, (3.30)

where

αO(0) = jO +
1

2
√

λ
= 1− M2 − 1

2
√

λ
. (3.31)

We now see explicitly that the intercept has shifted by a small amount after the b–
integration—a possibility we pointed out at the end of section 2.3. This is due to the
v ∼ b2 factor in T (1) which modifies the large–b behavior of the amplitude. Such a shift
would not occur if one had exchanged the transverse component of the B–field B±⊥. A
curious consequence of (3.31) is that the M1 = k = 1 mode has αO(0) = 1, the value
commonly associated with the phenomenological Odderon. At the moment we do not have
a deep understanding of this coincidence, especially in terms of the corresponding operator
(2.14).

Essentially the same shift occurs in the second term of (3.24). After some algebra, one
finds that the net effect of the second term is simply to replace the prefactor 1− 1

M2 with

8It is important to notice that the limit t → 0 has to be taken after the j–integration, which means that

the order of the j and ξ integrations in (3.28) cannot be interchanged in general. This is because in Regge

theory the amplitude is obtained by an analytic continuation from the region t À |s|.
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1 + 1
M2 . We thus find,

i

∫
d2bA±(s, b) ≈ ±i

(
Nc

2πα′VolS4

)2 ∑

I,k

MI

k + 2

(
1 +

1
M2

I

)∫
dzdΩ4Y

(k)(Ω5)

×
∫

dz′dΩ′4Y
(k)(Ω′5)

κ2

8R4π2
√

λ

1− e−iπjO

sinπjO

(
zz′s
4
√

λ

)αO(0)−1

= ± i
√

λπ

8(VolS4)2
∑

I,k

MI + 1
MI

k + 2

∫
dzdΩ4Y

(k)(Ω5)

×
∫

dz′dΩ′4Y
(k)(Ω′5)

1− e−iπjO

sinπjO

(
zz′s
4
√

λ

)αO(0)−1

. (3.32)

The difference between the total cross sections is then given by

∆σ = σBB̄ − σBB = 2
∫

d2b ImA−(s, b)− 2
∫

d2b ImA+(s, b)

= − π
√

λ

4(VolS4)2
∑

I,k

MI + 1
MI

k + 2

∫
dzdΩ4Y

(k)(Ω5)
∫

dz′dΩ′4Y
(k)(Ω′5)

(
zz′s
4
√

λ

)αO(0)−1

.

(3.33)

This is the main result of this paper. We remind the reader that the z–integrals are
bounded z ≤ rh, see (3.2).

4. Discussion

Surprisingly, the right hand side of (3.33) is negative, which means that the baryon–baryon
cross section is larger than the baryon–anti-baryon cross section. This immediately raises
both theoretical and practical questions.

Theoretically, one would expect the exchange of an antisymmetric field to generate a
repulsive force between like charges, as in the well–known cancellation of the attractive NS-
NS and repulsive R-R forces between parallel D–branes. However, in the above calculation
the B–field exchange effectively generates an attraction between like charges and repulsion
between opposite charges. The sign change can be traced back to the first term in equation
(3.10) where the z and z′ derivatives both act on the denominator of the chordal distance
u, resulting in the first two terms of (3.15). These are positive and dominate over the
(expected) negative contributions because of the b2 factor which is amplified by the b–
integration. Thus the attraction originates from a combined effect of the warp factor of
AdS5 and the particular component B±z we have used. Had we exchanged the transverse
component B±⊥, we would have obtained an opposite sign in the final result.

Practically, the available experimental data show that the total cross section is larger
in pp̄ collisions than in pp collisions. However, before comparing this fact with our result,
the following three remarks are in order:
(i) The dominance of the first term over the second term in (3.29) is safely claimed only
at very high energies, τ À

√
λ, where the small shift 1/2

√
λ in the intercept becomes
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noticeable. On the other hand the highest energy at which ∆σ has been measured is the
ISR energy

√
s = 53 GeV which is not that high. We would probably need to at least go

to the Tevatron
√

s = 2 TeV, or the LHC energies
√

s = 14 TeV.
(ii) Our result pertains to a particular choice of the D5–brane embedding which has no
dependence on S4. This means that the corresponding baryon is a singlet under the SO(5)
subgroup of the ‘flavor’ SO(6) ∼= SU(4) group. As we have seen, this has resulted in the
decoupling of the vector meson, or the Reggeon contribution which plays an important role
in QCD. By considering baryons which belong to a larger representation of the flavor group,
one should be able to find nonvanishing coupling to the Reggeon. In practice, this amounts
to adding electric fluxes in the S4 direction. The point is that, by a simple generalization
of the argument in a previous paragraph, one is guaranteed that the exchange of the
vector mode b± gives a normal sign. Therefore, in more realistic situations where both the
Odderon and the Reggeon couple, the sign of ∆σ is determined by a competition between
the two exchanges. The Reggeon has the intercepts9

αR(0) = 1− 9
2
√

λ
, 1− 16

2
√

λ
, · · · , (4.1)

and gives positive contributions to ∆σ, whereas the Odderon has the intercepts

αO(0) = 1, 1− 3
2
√

λ
, 1− 8

2
√

λ
, 1− 15

2
√

λ
, · · · . (4.2)

and gives negative contributions at very high energies. Which effect wins is likely to be-
come a quantitative question, rather than parametric.
(iii) We have not included unitarity corrections in our calculation. In N = 4 SYM
proper, strong unitarity corrections come from the eikonal exponentiation of the gravi-
ton (Pomeron) amplitude which is dominantly real [36, 37], and this could make any ‘pre-
dictions’ of the single Odderon approximation uncertain [14]. However, as far as unitarity
corrections are concerned, N = 4 SYM fares poorly as a model of QCD where the Pomeron
amplitude is dominantly imaginary. In contrast, the Odderon amplitude is dominantly real
both in QCD and N = 4 SYM, and in this sense the Odderon sector of the AdS/CFT cor-
respondence is closer to QCD than the Pomeron sector. Turning to phenomenology, in
practice there is no urgent need for unitarity corrections to the Odderon, since its inter-
cept αO ≤ 1 does not violate any constraints from unitarity. Indeed, most of the recent
phenomenological applications [3–11] are more or less based on models inspired by the
single Odderon exchange.10 In view of these circumstances, we retain the hope that the
qualitative features of the single Odderon exchange can survive and give useful information
to QCD.

Backed by these observations, we now come to the implications of our results to ex-
periments. The proton belongs to the 8 of the flavor SU(3) group which is not a singlet

9It is easy to see that the b–integral will not modify the intercept in the Reggeon case or in the transverse

case B±⊥ due to the absence of the v ∼ b2 factor in the tensorial part of the propagator.
10In perturbative QCD, unitarity corrections to the BLV Odderon have been included only in asymmetric

collisions where one of the hadrons is small and perturbative [22,23,28].
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under any subgroup of SU(3). Therefore, it should couple to both the Reggeon and the
Odderon. Then we find the following scenario rather compelling: The ISR data show that
∆σ > 0 in the hitherto explored energy regime. This is quite naturally attributed to the
αR(0) = 1 − 9/2

√
λ Reggeon, whereas in the Odderon sector there must be some can-

cellation of the sort mentioned above. However, the Reggeon contribution sαR(0)−1 dies
away quickly as the energy increases. On the other hand, we see that certain components
of the Odderon have much milder energy dependences. Then the Odderon contribution
inevitably takes over and ∆σ must turn negative. As mentioned in the introduction, the
possiblity of having ∆σ < 0 was already raised in [1], and more recently also in [9] on the
basis of an extrapolation of a purely phenomenological fit. It is quite remarkable that the
AdS/CFT correspondence allows for an analytical evaluation of the cross section difference
which leads to the same conclusion. Incidentally, it is amusing to notice that, if one uses√

λ = 7 ∼ 8 for the ‘t Hooft coupling which in QCD (Nc = 3) would correspond to a
typical strong coupling regime αs = 1 ∼ 2, one obtains αQCD

R (0) = 0.4 ∼ 0.5 in rough
accordance with the known phenomenological value. Note also that at the ISR energy
the same estimate gives τ/

√
λ ≈ 1, suggesting that the Odderon contribution is not yet

dominant in this regime.
Admittedly, the above scenario sidesteps many perils in naively translating the results

for N = 4 SYM to those for QCD. However, to the extent that we believe in the potential
of the AdS/CFT correspondence to shed light on the otherwise inaccessible regime of gauge
theories, we propose it as a very interesting and testable possibility that carries an imprint
of string theory in a curved background.

Unfortunately, experiments of both pp and pp̄ collisions at similar, and high energies
(beyond ISR) are lacking. pp̄ collisions are currently not planned in the ongoing program
at the LHC, while there are no pp data at the Tevatron. We hope this situation will change
in the future, as we expect that the question on the fate of the Odderon will most likely
be possible to answer only when data from new experiments are available. One possibility
is the planned pp collisions at RHIC at around

√
s = 500 GeV which, though not at very

high energy, would still be welcome.
There are several directions for further study. As suggested already, one can employ

more realistic baryon configurations (see, e.g., [43]) which have fluxes in various directions
and/or a nontrivial extension in the transverse direction. Then the modes b± and B±⊥ will
come into play. Moreover, the calculation should be extended to observables other than
the total cross section difference. There are a number of processes where the Odderon, or
more generally, the C–odd exchanges are involved [4–11], many of which concern the real
part of the amplitude. It would be interesting to revisit these studies with inputs from
the AdS/CFT correspondence. Finally, one would like to understand the difference in the
total cross sections in terms of the final states, especially in the Odderon exchange channel
where the relevant particle production mechanism must be such that it gives a negative
contribution to ∆σ. [See, e.g., [44, 45] for studies of final states with emphasis on the
difference between pp and pp̄ collisions.] This might be difficult to test in the total cross
section measurement since the Odderon contribution is a small fraction, but perhaps there
are ways to see it in less inclusive reactions.
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A. Spherical harmonics on S5

In this appendix we review the basics of the scalar and vector spherical harmonics which
appear in the decomposition (2.6). (See also [46].)

A.1 Scalar spherical harmonics

We parameterize the coordinates of S5 ∈ R6 as

y1 = cos θ ,

y2 = sin θ cos θ2 ,

y3 = sin θ sin θ2 cos θ3 ,

y4 = sin θ sin θ2 sin θ3 cos θ4 ,

y5 = sin θ sin θ2 sin θ3 sin θ4 cos θ5 ,

y6 = sin θ sin θ2 sin θ3 sin θ4 sin θ5 . (A.1)

The volume element is

dΩ5 = sin4 θ sin3 θ2 sin2 θ3 sin θ4dθdθ2dθ3dθ4dθ5 = sin4 θdθdΩ4 . (A.2)

The rank–k scalar spherical harmonics are defined as

Y (k) =
∑

Ci1,i2,..ikyi1yi2 · · · yik (A.3)

where indices i runs from 1 to 6 and the tensor C is totally symmetric and traceless with
respect to any pair of indices. They form a representation of SO(6). Using the Dynkin
label of SU(4) ∼= SO(6), it is

(0, k, 0) , (A.4)

whose dimension is

d =
(k + 3)(k + 2)2(k + 1)

12
. (A.5)

Because of the traceless condition, one has that
∫

S5

Y (k) = 0 . (A.6)
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For k = 1, there are six harmonics which are just the six coordinates y1, y2, .., y6. Note
that Y (1) ∝ y1 = cos θ is independent of the S4 coordinates, so it gives a nonzero value
after integration over S4 as in (3.3).

For k = 2, the allowed tensor is, for example,

Cij = δi1δj2 + δi2δj1 , (A.7)

which gives

Y (2) ∝ y1y2 . (A.8)

This vanishes upon integration over S4. Another possibility is

Cij = δi1δj1 − 1
6
δij , (A.9)

so that

Y (2) ∝ cos2 θ − 1
6

. (A.10)

This is nonzero after integrating over S4. For any value of k there is at least one spherical
harmonics which does not vanish after integrated over S4.

A.2 Vector spherical harmonics

The rank-k vector spherical harmonics are defined by

Y
(k)
i =

∑
Ci

i1,i2,..ik
yi1yi2 · · · yik (A.11)

with the conditions that

∂iYi = yiYi = 0 . (A.12)

Projecting on S5, one finds

Y (k)
α =

∂yi

∂θα
Y

(k)
i . (A.13)

Useful identities are

∇αY (k)
α = 0 , ∇2Y (k)

α = −(
k(k + 4)− 1

)
Y (k)

α . (A.14)

One sees that a vector of the form (A.11) is a direct product of the fundamental
representation of SO(6) and the totally symmetric rank–k tensor. Using the Dynkin label,
one has the decomposition

(0, 1, 0)⊗ (0, k, 0) = (0, k + 1, 0)⊕ (1, k − 1, 1)⊕ (0, k − 1, 0) . (A.15)

(1, k − 1, 1) is the rank–k vector spherical harmonics whose dimension is

d =
k(k + 2)2(k + 4)

3
. (A.16)
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For k = 1, d = 15 which is the number of the Killing vectors. The conditions (A.12)
become

yiCi
jy

j = Ci
i = 0 . (A.17)

The solution is, for example,

Ci
j = δi1δj2 − δi2δj1 , (A.18)

so that

Y (1)
α ∝ y2∂αy1 − y1∂αy2 . (A.19)

This is indeed a Killing vector. It is easy to show that
∫

S4

Y
(1)
θ = 0 , (A.20)

for all the 15 Killing vectors.
For k = 2, we have 64 harmonics which appears in the decomposition

6⊗ 20 = 50⊕ 64⊕ 6 . (A.21)

They can be constructed as follows. Starting from an arbitrary tensor Ai
jk which is sym-

metric and traceless in j and k, one has the decomposition

Ai
jk =

1
3

(
Ai

jk + Aj
ik + Ak

ij −
δij

4
Al

lk −
δik

4
Al

lj −
δjk

4
Al

li

)

+
1
3

(
2Ai

jk −Aj
ik −Ak

ij

)
− 1

15

(
δijA

l
lk + δikA

l
lj − 2δjkA

l
li

)

+
1
20

(
3δijA

l
lk + 3δikA

l
lj − δjkA

l
li

)
. (A.22)

The first line is totally symmetric and traceless in ijk, so this belongs to the k = 3 scalar
spherical harmonics (0, 3, 0). Projecting on S5, it becomes ∇αY (3). The last line is (0, 1, 0)
which becomes ∇αY (1) on S5.

The second line is the k = 2 vector spherical harmonics

Ci
jk =

1
3

(
2Ai

jk −Aj
ik −Ak

ij

)
− 1

15

(
δijA

l
lk + δikA

l
lj − 2δjkA

l
li

)
, (A.23)

constructed such that it satisfies (A.12) which reads

Ci
jky

iyjyk = 0, Ci
ijy

j = 0 . (A.24)

We are now ready to prove that
∫

S4

Y
(2)
θ = 0 . (A.25)
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Using the notation ya = y2,3,4,5,6, we have

Y
(2)
θ =

∂yi

∂θ
Ci

jky
jyk =

∂y1

∂θ
C1

jky
jyk +

∂ya

∂θ
Ca

jky
jyk

= − sin θC1
jky

jyk +
cos θ

sin θ
yaCa

jky
jyk =

(
− sin θ − cos2 θ

sin θ

)
C1

jky
jyk , (A.26)

where in the last equality we used the first condition of (A.24). The last term can be
written as

C1
jky

jyk = cos2 θC1
11 + 2 cos θ sin θC1

1aŷ
a + sin2 θC1

abŷ
aŷb , (A.27)

where we have denoted ya = sin θ ŷa. The first term is zero because C1
11 = 0 as is evident

from (A.23). The second term is k = 1 scalar spherical harmonics on S4, so it vanishes
after integrating over S4. The last term gives, after S4 integration,

∫
C1

abŷ
aŷb ∝ C1

abδab = C1
aa . (A.28)

However, this is zero because of the traceless condition C1
jj = C1

11 +C1
aa = 0. Thus we have

proven that the k = 2 vector spherical harmonics do not couple to the D–brane.
For the k = 3 vector spherical harmonics, we have similarly,

Y
(3)
θ ∼ C1

111 cos3 θ + 3 cos2 θ sin θC1
11aŷ

a + 3 cos θ sin2 θC1
1abŷ

aŷb + sin3 θC1
abcŷ

aŷbŷc .

The second and the fourth terms give zero after integrating over S4. The third term gives
C1

1aa . This is zero if C1
111 = 0 (because of the traceless condition C1

1jj = 0), in which case
the first term also vanishes. To see this is indeed the case, note that (A.12) reads

0 = Ci
jkly

iyjykyl = cos4 θC1
111 + cos3 θ sin θ(3C1

11a + Ca
111)ŷ

a + · · · . (A.29)

In order for this to hold identically, one must have that C1
111 = 0, 3C1

11a + Ca
111 = 0, and

so on.
The situation is similar for higher k values. First one has C1

1111··· = 0. After integrating
over S4, one gets terms like

C1
1aabbcc... , C1

111aabb... , (A.30)

for k odd, and

C1
aabbcc... , C1

11aabb... , (A.31)

for k even. These are all zero because, for instance,

C1
1aabbcc = −C1

111bbcc = C1
11111cc = −C1

1111111 = 0 . (A.32)

Thus we have proven that the integral (3.4) vanishes for all k.
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