
The Dynamics of R&D Network in the IT Industry

Nobuyuki Hanakia,b,∗, Ryo Nakajimac, Yoshiaki Ogurad
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Abstract

In this paper, we provide an empirical analysis of evolving networks of successful
R&D collaborations in the IT industry (consisting of firms that obtained patents in the
technological category of computers and communication) in the U.S. between 1985
and 1995. We first show that the R&D network has become more extensive, more
clustered, and more unequal in the sense that ‘stars’ have emerged in the network. We
then analyze the effect of the existing network structure in the process of new R&D
collaboration formation. We control for unobserved similarities among firms based on
the community structures within the network that the algorithm developed by Girvan
and Newman (2004) identifies and find a significant cyclic closure and preferential
attachment effect.
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1. Introduction

The interfirm positive spillover of research and development (R&D) activities is
widely accepted as an empirical stylized fact in the R&D literature. Existing empirical
studies have found that this spillover effect is stronger among companies in a tech-
nological or geographical neighborhood (Jaffe, 1986; Jaffe et al., 1993) and among
companies that invest in R&D sufficiently to maintain their absorptive capacity for ex-
ternal knowledge (Cohen and Levinthal, 1989). Furthermore, this spillover effect is
stronger among collaborating companies than among competing companies (Branstet-
ter and Sakakibara, 2002; Gomes-Casseres et al., 2006). These studies implicitly or
explicitly recognize that knowledge exchange among innovative companies is the key
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determinant of R&D spillovers. In response to the recent surge of R&D collabora-
tions in high-tech industries (Hagedoorn, 2002), many theorists have analyzed interfirm
knowledge spillovers through R&D collaborations in network settings by applying the
network formation theory (e.g., Goyal and Moraga-Gonzalez, 2001; Goyal and Joshi,
2003; Cowan and Jonard, 2004; Meagher and Rogers, 2004). There is ample evidence
that the positioning of companies in R&D collaboration networks substantially affects
their productivity in generating new knowledge, which is embodied in artifacts such as
patents and new products (e.g., Powell et al., 1996; Ahuja, 2000; Schilling and Phelps,
2007).

Given the importance of network architecture in innovation performance, it is rea-
sonable that innovative individuals and companies may want to form R&D collabo-
rations strategically to control knowledge spillovers. In fact, the importance of the
strategic formation of R&D alliances has been widely recognized in the literature.1 In
recent years, the theoretical analysis of network formation has been a lively area of
research, not only in the context of R&D (e.g., Goyal and Moraga-Gonzalez, 2001)
but also in other contexts; see Jackson (2006) for a review. These studies incorporate
individual incentives to derive strategically stable network architecture and to analyze
the efficiency characteristics of the network. However, empirical analyses of network
formation are relatively rare.

The determinants of R&D collaboration between companies have been thus far in-
vestigated by industrial organization economists. They have found that the company’s
“absorptive capacities” (Cohen and Levinthal, 1989), such as their R&D size and in-
tensity, significantly influence the likelihood of forming R&D alliances (e.g., Röller
et al., 1998; Hernán et al., 2003). While the characteristics of firms may explain the
types of companies that are likely to collaborate, they provide insufficient understand-
ing of how companies interact with each other. For example, if the number of pathways
for communication between companies increases, the enhanced flow of knowledge be-
comes attractive and, thus, any collaboration may stimulate further collaboration. This
suggests that the network structure that is in place influences how new collaboration
links are formed. However, existing empirical studies do not address this recursive and
inductive aspect of R&D network formation. Therefore, in this paper, we address the
following questions: How does collaboration between companies of one type influence
the actions of other types of company? What structural characteristics are more likely
to stimulate further R&D collaboration?

The goal of this paper is to study the endogenous development of R&D networks
in the U.S. Information and Technology industry (defined by the technological cate-
gories of the obtained patent, as explained in the next section) by showing how com-
panies have established new R&D collaborations with each other. Based on individual
firm-level data on R&D collaboration, which was constructed from the information on
granted patents, we estimate the conditional probability of new collaboration formation
between any pair of companies in the industry given the network structure observed in
the previous period. In particular, we estimate the impact on R&D collaboration for-
mation of certain kinds of network topology, such as cycles and stars.

1For a recent review of the theoretical literature, see, for example, Bloch (2005)
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Given the complexity of the subject, the empirical analysis of the formation of an
R&D network has been hampered by a scarcity of data of alliances among companies
and the members of such alliances. Existing empirical studies on this subject (e.g.,
Gulati and Gargiulo, 1999; Hagedoorn, 2002; Schilling and Phelps, 2007) have relied
on the “publicly reported alliance counting method” (Hagedoorn, 2002) for data collec-
tion; that is, information on announced interfirm R&D collaboration is collected from
various publications, such as newspapers, journal articles and books. Although such
literature-based data collection is extensive, the information is likely to be incomplete,
as only publicly announced alliances are included in the dataset.2

In this paper, we adopt a different approach. We collect information on interfirm
collaborations by using the NBER Patent Data File (Hall et al., 2001). Since the pi-
oneering work of Scherer (1965) and Schmookler (1966) appeared, patent data have
been used in a number of empirical studies of research collaboration among innovative
companies (e.g., Singh, 2005; Cantner and Graf, 2006).

The main reason for using the NBER patent data is that these data provide infor-
mation about all researchers who were involved in creating the innovation along with
information on the patenting company, its geographic location, and the types of tech-
nology involved. The names of the inventors are recorded along with the name of the
corporate assignee claiming each patent. We match the lists of inventors’ names across
different assignee companies to see if they are connected via common inventors. If
the same inventors work on a particular research project across two innovating com-
panies, we ascribe the project to an R&D partnership and identify those companies as
collaborators through the inventors. Longitudinal data on an evolving R&D network
are created by collecting annual snapshots of instantaneous networks.

In the process of identifying inventors, an identification error, often called the “Who
is Who” problem (Trajtenberg et al., 2006) cannot be avoided. The problem refers to
the possibility that the name of an individual associated with a patent may have been
inadvertently spelled differently or that two people may have the same name, leading
to inaccuracies in the identification process. We have deliberately used a computer
matching procedure (CMP) that was recently proposed by Trajtenberg et al. (2006) to
minimize errors in identifying inventors.

We start with an empirical examination of the macro-dynamic properties of R&D
network structures. Several interesting features of the R&D collaboration network are
identified. First, R&D networks have increased in size substantially over time. The
number of nodes has increased substantially and, at the same time, the number of links
per node has steadily grown. Second, networks have become increasingly connected,
and the giant connected component has emerged and expanded. Third, the average
distance between nodes has been stable, although network sizes have increased. Fourth,
two given connected nodes tend to be linked to a common third party. The tendency
to form local circles was significant in the 1990s. Given these findings, we can say
that the R&D network is an emerging “small world” (Watts and Strogatz, 1998). Our
final finding concerns the distribution of R&D collaborations. We find that networks

2Another problem is that the information on the termination of R&D collaborations is not usually pub-
lished systematically, particularly for licensing and customer–supplier relationships.
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have become more uneven. Our interpretation is that current R&D networks exhibit
a core–periphery structure in which connected companies are becoming increasingly
connected.

These findings have led us to develop a utility-based empirical model of joint R&D
collaboration formation. Although agents behave nonstrategically, the model enables
us to condense the issues of collaboration formation to the agents’ welfare. Although
our model is simple, it exhibits two mechanisms for joint collaboration: random and
network-based. Hence, this model is similar to that of Jackson and Rogers (2007).
Random collaboration occurs when a pair of companies meet uniformly at random and
collaborate with each other by chance, given that the characteristics of the pair are
controlled for. In network-based collaboration, the formation of new links depends on
the exiting network structures observed by companies in advance.

We argue that two structures are important in the context of the network-based
collaboration process. First, we focus on the cyclic structure. High search costs for
collaborating partners may promote the formation of R&D alliances involving inter-
mediate collaboration partners, which may lead to the formation of local neighborhood
collaboration chains. Second, we focus on the star structure. Indirect benefits from
spillovers may generate a positive feedback loop through which companies connect
with a handful of super-connected stars that then become increasingly connected. This
process is often called “preferential attachment” (Barabási and Albert, 1999). An em-
pirical model that incorporates these features is compatible with the macroeconomic
empirical findings described above.

To gain more insight into the circumstances under which R&D collaboration oc-
curs, we estimate an empirical model that controls for a number of company back-
ground characteristics. The estimation results show that similarities in the size of R&D
input have a non-monotonic impact on the probability of collaboration, which sug-
gests that companies whose scale of R&D activity is similar but not too similar tend to
collaborate. We find that there is a significant relationship between network structure
and R&D collaboration. Companies with many collaborators are likely to attract fur-
ther collaborations in the next period. This suggests significant preferential attachment
in collaboration formation. At the same time, we find evidence of significant cyclic
closure effects, which suggests that companies are willing to collaborate with other
companies that form part of a chain of common third-party collaborators within the
network.

There are at least two explanations for these empirical findings regarding the role
of network structure in R&D collaboration formation: the importance of referral in
the search for collaborating partners, and the effort made by firms to increase the ap-
propriability of the fruits of joint R&D projects. Referrals from current collaborators
reduce the cost of finding new and reliable collaborators. Because referrals are made
between firms that have collaborated before, this results in cyclic closure. In addition,
if a firm has collaborated with many others in the past, referrals can lead the firm to
attract more collaboration in the future. Finding a reliable partner is important for a
firm entering into joint R&D projects in order to increase the appropriability of the
fruits of the project by maximizing incoming knowledge spillovers while minimizing
outgoing knowledge spillovers (Cassiman and Veugelers, 2002). Outgoing spillovers
can also be reduced by forming a dense web of collaborations and strengthening the
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threat of joint punishments against deviators. Such considerations also enable firms
to find new partners in local circles. Unfortunately, we are unable to discriminate the
effect of these two mechanisms from our data.

Existing empirical analyses of network formation among firms (see, for example,
Gulati, 1995; Gulati and Gargiulo, 1999; Powell et al., 2005) have also found that
network-based mechanisms such as preferential attachment and cyclic closure are im-
portant. These studies, however, tend to overestimate the importance of such mech-
anism because of the lack of control for unobserved similarities among firms. In our
analysis, we control for unobserved similarities among firms by identifying the com-
munity structures in the existing network using the algorithm developed by Girvan
and Newman (2004). The result shows that the effect of the existing network struc-
ture remains statistically significant even after unobserved similarities among firms are
controlled for.

The rest of the paper is organized as follows. The data are described in Section
2. Section 3 is a discussion of the evolution of the structure of networks over time.
Section 4 is a description of the framework of our statistical analysis. The empirical
results are discussed in Section 5. Section 6 is the conclusion.

2. Network Data

The data used for this study are drawn from NBER patent data. We restrict our
attention to the subsample of companies that have obtained patents classified as “Com-
puters and Communications” by Hall et al. (2001).3 This technological category is
closely related to the R&D activities of the Information and Technology (IT) indus-
try, and we refer to the set of firms in our dataset as the IT industry for expositional
purposes.

The industry provides an interesting context for our study because companies in this
industry actively obtained patents for their intellectual property (Levin et al., 1987). It
is also noted by Hagedoorn (2002) and others that the IT industry has been one of
the most active industries in forming R&D alliances. In fact, the IT industry has had
the highest share of newly established R&D partnerships among high-tech industries
since the late 1980s. Thus, there are a sufficient number of R&D collaborations in this
industry.

We use data on patents at the U.S. Patent and Trademark Office that were registered
between 1985 and 1995. We choose 1985 as the initial year of our sample period
because the number of R&D collaborations established before 1985 is too small for a
meaningful analysis of R&D networks.

2.1. Network Construction

We use a schematic graph to represent an R&D network, which is a collection of
innovating companies (nodes) and a collection of joint collaborations (links) between

3According to the classification of Hall et al. (2001), this technological class includes the following
subcategories: Communications; Computer Hardware & Software; Computer Peripherals; and Information
Storage.
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Table 1: An example of the raw data.

Patent Assignee Researchers
P1 A1 R1, R2

P2 A2 R1, R3, R4

P3 A1 R1, R4

P4 A3 R2, R5

them. In what follows, network nodes consist of independent companies. Subsidiary
companies are not included as network nodes because the contribution of intrafirm
R&D collaboration is considered to differ from that of interfirm R&D collaboration.

To identify the parent–subsidiary relationship, we supplement the NBER patent
database with corporate and noncorporate name-matching results available from Bron-
wyn Hall’s Web page of The Patent Name-Matching Project.4 In addition, we have
supplemented our data with SDC Platinum, the Worldwide Mergers and Acquisitions
Database, issued by Thomson-Reuters. Among all the M&As since 1979 that are re-
ported in SDC Platinum, we select the cases in which the acquiring company obtains
all of the stock of the target company. We then consider those two companies to be in
a parent–subsidiary relationship and treat them as one company after the merger.

We follow Cantner and Graf (2006) in constructing the adjacency matrix corre-
sponding to the network graph illustrating R&D collaborations. Assuming that group-
based inventors are involved in joint R&D projects, a collaboration link is identified
between two companies if there is at least one common inventor listed in the patents
owned by the companies.

As noted in the Introduction, we have utilized the computer-matching procedure
(CMP) recently proposed by Trajtenberg et al. (2006) to identify inventors. The essence
of CMP is to adjust for possible spelling errors of inventors’ names on patents to avoid
identifying one inventor as two individuals and minimize the possibility of identifying
two inventors as the same person by utilizing other information such as addresses,
assignees, and patent classes.5 This is a much better identification method than using
exclusively last names, first names, and middle initials, which have so far been used in
constructing co-authorship networks.6 Identification methods that are similar to CMP
have been employed in several recent studies.7

The following example illustrates the methodology. Let us assume that four patents
are owned by three corporate assignees with five inventors, as shown in Table 1. The
table shows, for example, that patent P1, which is owned by assignee company A1,
was invented by two researchers, R1 and R2.

4http://www.econ.berkeley.edu/ bhhall/pat/namematch.html
5Appendix A summarizes the procedure, including the parameter values, used to construct data in this

paper. See also Nakajima et al. (2009) for an application of this methodology.
6See, for example, Newman (2004); Goyal et al. (2006)
7See, for example, McHale (2006); Schankerman et al. (2006); Marx et al. (2007); Hoisl (2007)
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Define an n × m matrix X , where n is the number of companies and m is the
number of researchers recorded in the dataset. By using the above example, we have:

X =

 1 1 0 1 0
1 0 1 1 0
0 1 0 0 1

 .

The adjacency matrix, Γ, which summarizes all the collaboration relationships between
the assignee companies, is thus given by:

Γ = XX ′ =

 3 2 1
2 3 0
1 0 2

 .

The ith diagonal element of Γ represents the total number of inventors involved in the
collaborative activities between company i and the other companies. The off-diagonal
element of Γ represents the number of inventors involved in the collaborative activities
between the two companies. Thus, the larger the value of the element, the more intense
the R&D collaboration between the two companies.

Like most existing studies of network formation, the following statistical analysis
does not utilize information about the intensity of the collaborative relationships. Thus,
we focus on the following unweighted adjacency matrix, G, the off-diagonal elements
of which are either zero or unity, as follows:

G =

 0 1 1
1 0 0
1 0 0

 .

An entry is unity if the corresponding entry of the weighted adjacency matrix, Γ, is
positive. The unweighted adjacency matrix indicates whether there is a collaborative
relationship between a pair of companies. Note that the diagonal elements of G are
zero because we do not consider intrafirm collaborations in our analysis.

To conduct a dynamic analysis of R&D alliance networks, we ‘slice’ the collab-
oration data into several snapshots. One issue is that although we know that a joint
research project existed in the year in which the patents were applied for, we have no
information about the start and end dates of the project. Given that R&D collabora-
tions typically last for more than a year, following previous studies (e.g., Schilling
and Phelps, 2007), we make the conservative assumption that R&D partnerships last
for three years.8 In other words, we assume that the network for year t includes all
R&D collaborations represented by patents applied for during years t−1 and t+1. By
using such a three-year window, we obtain information on 10 waves of instantaneous
networks between 1985 and 1995.9

8The three-year window may be justified by the data. For example, based on a survey of the top managers
of 52 companies in the biotechnology industry, supplemented by data from Bioscan, Deeds and Hill (1998)
found that R&D collaborations lasted for an average of 3.47 years.

9As explained above, because we use three-year moving windows, the network for 1985 is based on the
granted patents filed between 1984 and 1986.
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Given the way we identify networks, there is a risk of creating spurious collab-
oration links between two companies. This happens if researchers switch their jobs
and work for different companies. For example, if the inventor of a patent owned by
a company move to another company and patents a new invention there, our method
indicates a spurious link between companies that, in fact, did not collaborate.

Because there are no comprehensive databases that track the affiliations of re-
searchers, we are unable to avoid the errors arising because of inventor mobility. How-
ever, to some extent, this potential for error could be mitigated by using short spans
of years to construct the window for snapshooting networks. Given empirical evi-
dence that researchers typically stay at one company for several years,10 the three-
year window seems sufficiently short to control for the noise caused by job switching.
Furthermore, even if job switching does occur within the three-year period, it seems
unlikely that the job switcher, who is new to the research team, would be listed as
one of the inventors of a patent generated by an existing research project. Thus, our
network data may suggest negligible spurious links between before-job-switching and
after-job-switching companies.

Based on the method of network construction described above, we find that 6,746
companies applied for at least one patent, of which 3,315 companies (49.1 percent) had
at least one R&D collaboration link with other companies over the 10-year period from
1985 to 1995.

Figure 1 illustrates a small selection of these networks to highlight both the evolv-
ing topology of the R&D networks and the processes by which new links are added.
Each presented network shows the largest cluster of companies that are linked directly
or indirectly to each other through the chain of R&D collaborations. The figures reveal
that the network has grown over time. Detailed network statistics are analyzed in the
next section.

3. Dynamics of the R&D Network

We study the following network statistics. Let N be the set of independent compa-
nies in the R&D network for a given year. The number of companies, n, is defined as
n = |N |. Recall that the collection of all R&D collaborations is represented by the ad-
jacency matrix G; that is, for two companies i and j, Gij = 1 represents the existence
of an R&D partnership.

Let N(i) be the set of companies collaborating with company i. The total number
of collaborators working with company i is referred to as the degree of company i
and is defined as η(i) = |N(i)|. We refer to companies that have no collaborators as
isolated nodes. We term companies that have at least one collaborator as linked nodes.
Thus, η(i) = 0 if i is an isolated node, and η(i) ≥ 1 if i is a linked node. In what

10This can be inferred from the survey conducted by Almeida and Kogut (1999), which shows that 428
inventors switched jobs 335 times between 1974 and 1994. This suggests that each inventor averaged 1.82
jobs during this period and, thus, stayed with one company for an average of 11.05(= 20/1.82) years.
Additional support for our assumption comes from the employment tenure statistics available from the U.S.
Bureau of Labor Statistics. These data show that, for 1991, the median tenure of engineers was 6.7 years,
and that of mathematical and computer scientists was 4.2 years.
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(a) 1991 (b) 1993 (c) 1995

Figure 1: Evolution of IT R&D Networks

follows, we use the subscript l to denote a linked node. Thus, Gl ⊂ G denotes its
network. We use nl to denote the number of linked nodes. The proportion of all nodes
that are linked nodes is measured by nl/n.

The average degree of a network G is thus defined by η(G) =
∑

i∈N η(i)/n. There
is a path between companies i and j if there is a direct connection, Gij = 1, or if there
is a set of distinct intermediate collaborators k1, k2, · · · , km such that Gik1 = Gk1k2 =
· · · = Gkmj = 1. Two companies are connected if there is a path between them. A
connected component is a set of companies that are connected to each other. In this
section, we focus on the giant component of a network, which is the largest connected
component in the network, among connected components. The giant component is
denoted by Gg ⊂ G, and the number of member nodes is denoted by ng. We measure
the size of a giant component by the proportion of member companies that are linked
to the network, which is given by ng/nl.

We compute the clustering coefficient (Watts and Strogatz, 1998) of company i,
which is defined as:

Ci(G) =

∑
j∈N(i)

∑
k∈N(i) Gjk

ηi(ηi − 1)
.

We set Ci(G) = 0 if η(i) ≤ 1. This can be interpreted as the percentage of a com-
pany’s collaborators who are collaborating with each other. For a network G, we can
compute the average clustering coefficient, which is denoted by C(G). Let dij denote
the distance between two connected companies i and j in a network G, which is defined
by the length of the shortest path between them. For the largest connected component
of a network, Gg , we compute the average distance, which is defined by:11

d(Gg) =

∑
i∈Ng

∑
j∈Ng

dij

ng(ng − 1)
.

11The distance between two unconnected companies is not defined. Thus, when we compute the average
distance, we measure the average distance of the companies in the largest connected component of the
network G.
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We also compute a nodal centrality (Bonacich, 1987) measure which is defined as
follows:12

φi =
∑

j

(a + bφj)Gij ,

where a is a normalization scale factor such that
∑

i φ2
i = 1 and b is a decay factor that

scales down the relative weight of longer paths.13 As the above definition suggests,
the centrality of a node is recursively related to the sum of the centralities of the other
nodes to which it is connected. Thus, a node that is connected to many well-connected
nodes is assigned a high degree of centrality, whereas a node that is connected with
only a few poorly connected nodes is assigned a low degree of centrality. To capture
the heterogeneity of connectedness among the nodes, or the “core–periphery” structure
of the network, we compute the variance of nodal centrality Var(φi) to characterize the
network.

Table 2 reports the basic statistics that describe the structure of R&D collaboration
networks. It shows that the number of nodes has steadily increased, which suggests
that an increased number of companies have applied for patents (and later successfully
been granted those patents). This number more than doubled in the 10-year period
under study.

As for the patterns of connection between nodes, the reported fraction of linked
nodes, (nl/n), increased substantially from about 10 percent to about 25 percent in
10 years. The average degree, η(Gl), which is computed for the linked nodes, in-
creased significantly in the 1990s. This suggests that companies tend to collaborate
with more companies over time. The growth of the connected component, measured
by the fraction of the giant component, (ng/nl), expanded substantially in the 1990s
as well. In fact, in the 1980s, the giant component was only less than 10 percent of the
linked nodes but, by 1995, more than 50 percent of linked nodes were included in the
giant component. These observations indicate that companies are increasingly being
connected with more than half of all linked companies through collaboration chains.

The average distance between the nodes in the giant component is given by d(Gg).
The average distance shows an increasing trend in the 1980s and wide fluctuation in
1990 and 1991. However, it became rather stable between 4.5 and 5.0 after that. The
size of the giant component grew exponentially at a rate of above 20 percent in 1990.
Thus, in the 1990s, the average distance between nodes in the giant component grew
more slowly than did the logarithm of the number of nodes. Growth in the average
distance scales logarithmically with the network size represents evidence of a “small-
world” effect (Newman, 2003). The implication of a small-world network is that be-
cause many pairs of companies are connected by a few collaboration links, the spread
of information, or knowledge spillovers, is fast in the R&D network.

12Ballester et al. (2006) have recently demonstrated a relationship between Bonacich centrality measures
and the Nash equilibrium action of a player in a particular class of network games.

13Although the value of the decaying factor b can take any value between zero and unity, we follow the
common practice of setting b to 0.1 (e.g., Haynie, 2001). Using different values of b does not greatly affect
our results.
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Table 2: The evolution of the R&D collaboration network structure

year network linked node average giant average clustering variance
size fraction degree component distance coefficient nodal

fraction centrality
t n nl/n η(Gl) ng/nl d(Gg) C(Gl) Var(φ)

1985 1503 0.12 1.42 0.07 2.79 0.11 0.26
1986 1640 0.13 1.31 0.07 2.79 0.05 0.27
1987 1791 0.14 1.38 0.12 4.03 0.10 0.33
1988 1919 0.15 1.42 0.12 4.41 0.03 0.38
1989 2059 0.15 1.33 0.13 4.41 0.02 0.39
1990 2183 0.16 1.38 0.08 3.54 0.06 0.37
1991 2282 0.16 1.50 0.33 6.02 0.06 0.47
1992 2413 0.18 1.54 0.34 4.79 0.05 0.60
1993 2672 0.19 1.65 0.36 4.63 0.08 0.72
1994 3015 0.21 1.88 0.47 4.90 0.10 0.80
1995 3318 0.25 2.09 0.52 4.58 0.12 0.86

Gl represents the network of linked nodes.
Gg represents the network of the giant connected component.

The degree of interconnectedness of collaboration is measured by the clustering co-
efficient. We report the clustering coefficient of the linked node, C(Gl). The clustering
coefficients reported in Table 2 are computed for linked nodes. The clustering coeffi-
cients are much higher than expected when connections are made randomly among
the existing nodes in the network.14 Generally, the clustering coefficient is high and
has exhibited an increasing trend since 1992. This suggests that companies tend to
collaborate with other companies that are located in their local circle.

The R&D network has two features that characterize the small-world network
(Watts and Strogatz, 1998): (i) relatively short distances between nodes in the giant
component, and (ii) a large clustering coefficient. This has been observed in various
social networks, such as collaborations among economists (Goyal et al., 2006) and
researchers in other fields (Newman, 2004). Deroian et al. (2007) shows similar prop-
erties for the R&D partnership networks in the pharmaceutical industry as well. 15

The variance of nodal centrality, Var(φ), increased substantially over the sample
period (last column of Table 2). A low variance of centrality implies that the relative
positions of nodes are similar to each other, whereas a high variance of centrality im-
plies that there are small numbers of super-connected ‘center’ companies and, at the
same time, large numbers of ‘peripheral’ companies with fewer connections. Thus, as

14The clustering coefficients of random graphs with the same number of linked nodes are less than 0.006
for the whole sampling period from 1985 to 1990, one order of magnitude lower than what is reported.

15Deroian et al. (2007) constructs their partnership network for 1985-2005 on the basis of the SDC Plat-
inum database. They also report the decline of inter-firm alliances after 2000.
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collaborations have become more common, a few star companies have emerged in the
network.

In summary, the key empirical regularities of the R&D network are as follows.
First, the R&D network has become more extensive. The numbers of both nodes and
links have increased substantially. Second, innovative companies are becoming in-
creasingly connected through R&D collaborations, and distances between them are
shortening. Third, R&D alliances have become locally clustered, and companies tend
to connect in local dense neighborhood circles. Fourth, the R&D network has devel-
oped unevenly, and a core–periphery structure has emerged.

4. Empirical Strategy

In this section, we turn to a statistical analysis of R&D collaboration. Although
one could allow for new link formation, dissolution, and reformation of dissolved links
at the same time, a dynamic model incorporating such simultaneous decision making
about multiple choices is too complicated, as each decision may reflects varying con-
sideration of firms. Thus, we focus on newly established collaborations and formulate
the conditional probability of link formation between companies that have not collab-
orated before. In other words, we ignore company decisions about the maintenance
and abolition of existing links as well as the recreation of links that have existed in the
past. Given our interest in analyzing expanding R&D networks, conditioning on the
formation of new links suits our purpose and simplifies the estimation of the structural
parameters.

The mechanism underlying the formation of new R&D collaboration is consid-
ered to be a random matching process similar to that proposed by Jackson and Rogers
(2007). Let us assume that companies that have never collaborated meet with each
other and decide simultaneously whether to collaborate. Two types of matching pro-
cesses are considered. First, matching occurs randomly at each date. Under the random
matching process, the willingness of companies to collaborate may be affected by their
exogenous attributes, such as the congruence of their research interests. However, when
these characteristics have been controlled for, the chance of joint collaboration can be
considered to be purely random and independent of the network architecture. We refer
to such a process as collaboration through random matching. Second, matching occurs
on a particular topology of the existing network. For example, companies may benefit
from searching locally for potential collaborators and may collaborate with their neigh-
bors in the current network. The network-matching process illustrates how the existing
network structure influences the formation of R&D links. Such a process is referred to
as collaboration through network-based matching.

In terms of the standard random-utility framework, the model of collaboration for-
mation through random or network-based matching can be written as follows. Let us
assume that companies i and j have not collaborated with each other before period t.
Let uij(t) be the latent utility of company i derived from initiating collaboration with
company j at time t. We assume that the potential utility derived from the collabora-
tion, uij , is represented by the following linear function of observed and unobserved
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terms:

uij(t) = α + βWij(t − 1) +
∑

k

ρkdk−1
ij (t − 1) + εij(t − 1), (1)

where Wij(t − 1) represent the lagged background characteristics of individual com-
panies and pairs of companies. To be precise, this can be expressed as Wij(t − 1) =
[Xi(t − 1) Xj(t − 1) Zij(t − 1)]. Thus, βWij(t − 1) = β1Xi(t − 1) + β2Xj(t −
1) + β3Zij(t − 1). The individual firm-specific variables, Xi(t − 1) and Xj(t − 1),
are the lagged background characteristics of companies i and j respectively. The term
Zij(t − 1) represents lagged pair-specific common attributes. These exogenous vari-
ables determine the systematic part of the random-matching collaboration mechanism.
The idiosyncratic part is represented by an unobserved random error term, εij(t − 1),
which is assumed to be independent across pairs of companies and over time. The pos-
sibility that the random error terms are correlated is discussed later. For simplicity, we
assume that the error has a logistic distribution.

In the latent-utility model described above, the network-based collaboration mech-
anism is represented by the term

∑
k ρkdk−1

ij (t−1). We define dk−1
ij (t−1) as a dummy

variable that takes a value of unity if the shortest distance between i and j is equal to
k − 1 at period t − 1 and is zero otherwise. If ρk > 0, the company obtains a positive
benefit by forming a cycle of length k. Thus, the parameter ρk measures the degree to
which there is a tendency to form the kth cyclic closure; this is henceforth termed the
cyclic closure preference. If the cyclic closure preference is significant, the scope for
new collaborations is restricted to a local chain of existing collaborations.

We allow another mechanism for network-based collaboration. Given the existence
of knowledge spillovers through interfirm collaborations, companies may be more will-
ing to make alliances with companies that have more collaborators and, thus, provide
more knowledge spillovers. Firms’ preference to be connected with other firms that
have many connections is referred to as “preferential attachment” following Barabási
and Albert (1999). Let us assume that the utility derived by company i from collab-
orating with company j is proportional to the potential partner’s number of existing
collaborators. Noting that the number of collaborators of company j at time t − 1 is
given by the degree, ηj(t − 1), a simple variant of Equation (1) is given by:

uij(t) = α + βWij(t − 1) + ληj(t − 1) +
∑

k

ρkdk−1
ij (t − 1) + εij(t − 1). (2)

Although the structural model of R&D collaboration is simple, it exhibits the macro-
dynamic features described in the previous section. Intuitive explanations are as fol-
lows. Network-based collaboration, arising either because of a preference for cyclic
closure or a preferential attachment, may generate a feedback loop that facilitates fur-
ther collaborations. For example, an increase in R&D collaboration shortens the link
between any pair of companies and, thus, promotes further links between other com-
panies through the cyclic closure preference. Similarly, the preferential attachment
mechanism implies that an increase in the number of collaborations provides a conduit
for information, such as knowledge and skills, from collaborators and, thus, stimu-
lates further collaboration. These positive feedback mechanisms may generate a self-
organizing expansion of R&D links over time. The small-world effect may be a product
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of preferential attachment because the prevalence of hubs can serve as a ‘shortcut’ that
brings many nodes into close proximity. It is apparent that local clustering in the R&D
network is a product of the cyclic closure preference. The emerging core–periphery
structure may be driven by preferential attachment. This increases collaboration with
center nodes, which become increasingly connected, and leaves peripheral nodes rela-
tively detached.

Without loss of generality, the utility derived from not collaborating can be normal-
ized to zero. Thus, if uij(t) > 0, company i is willing to collaborate with company
j at time t. Using Equation(2) to represent utility, the corresponding probability of
collaboration is

Prob(uij(t) > 0) = F

[
α + βWij(t − 1) + ληj(t − 1) +

∑
k

ρkdk−1
ij (t − 1)

]
, (3)

where F is the logistic cumulative distribution function. Given this specification, the
model assumes that a company’s current collaboration decisions are affected by indi-
vidual and joint background characteristics and existing network structures from the
previous period.

We assume that both collaborators must mutually decide to collaborate for R&D
collaboration to take place. That is, R&D collaboration only occurs if two companies
are willing and agree to collaborate with each other at the same time. Let Gij(t) denote
the R&D collaboration between company i and company j at time t. The conditional
probability that companies i and j initiate collaboration at time t, given that they have
not collaborated before, is given by

Prob(Gij(t) = 1|Gij(s) = 0; s < t) = Prob(uij(t) > 0) · Prob(uji(t) > 0). (4)

Equality follows from the assumption that εij(t − 1) and εji(t − 1) are independent.
Given the above specification, the likelihood of collaboration for all possible pairs

of companies, which is defined by

L(θ; t) =
∏
i<j

Prob(Gij(t) = 1|Gij(s) = 0; s < t), (5)

can be written as

L(θ; t) =
∏
i ̸=j

Prob(uij > 0). (6)

This equation follows because uij and uji are symmetric. Equation (3) implies that the
overall sample log-likelihood function is given by

ℓ(θ) =
∑

t

∑
i ̸=j

lnF

[
α + βWij(t − 1) + ληj(t − 1) +

∑
k

ρkdk−1
ij (t − 1)

]
. (7)

The structural parameter θ = (α, β, λ, ρk) is estimated from the log-likelihood func-
tion. Because F is the logistic cumulative distribution function, the standard logistic
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regression method is used for the estimation. Note that the product relates to all pos-
sible pairs of (i, j) such that i ̸= j. Hence, the observation unit for the log-likelihood
function is each pair of companies, (i, j), not the individual companies, i or j. For
maximum likelihood estimation, the sample size, N , refers to all possible pairs of
companies.

As a final note regarding the statistical model, we discuss the identification of some
structural parameters. It transpires that β1 and β2, which relate to individual-specific
characteristics, cannot be separately identified from the data. The simple reason is
that because these parameters are symmetric in the log-likelihood function, any two
sets of symmetric values of (β1, β2), such as (b1, b2) and (b2, b1), yield the same log-
likelihood value for Equation (7). Thus, in the following empirical analysis, we simply
report β = (β1 + β2)/2. The parameter β can be interpreted as the average effect on
link formation of a company’s and its collaborator’s background characteristics.

5. Empirical Results

5.1. Estimation Sample

As previously reported, the main dataset used for estimation is constructed from
the NBER patent data. In addition, we use the S&P’s COMPUSTAT database to sup-
plement detailed information about individual companies.

Two datasets are considered in the following estimation. First, we collect the data
of all IT companies, defined by the technological categories of patents, that applied for
at least one patent in each year of the observation period. Second, we use the subsam-
ples of the IT companies that are listed on the stock markets of NYSE, NASDAQ or
AMEX. The first dataset covers substantially more companies than the second one, but
it does not contain detailed information on the firm characteristics because COMPUS-
TAT information is not available for companies that are not listed on the stock markets.
In what follows, we call the former the full set of companies’ data, and call the latter as
the market-listed companies’ data.

Both datasets contain the information about a pair of companies (i j) across time
t. The dependent variable Gij(t) is a dummy variable that takes one if a new link is
observed between company i and j in year t. As explained in the model section, since
we focus on newly established collaborations, we only collect pairs of companies that
had never collaborated before for both datasets. 16 Hence, once companies collaborate,
they are excluded from the estimation samples for subsequent periods. The data also
contain a set of independent variables Wij(t − 1), which are the lagged background
characteristics of individual companies and pairs of companies. In what follows, a time
index is omitted for notational convenience.

We categorize the control variables Wij into three groups. The first group is a set
of variables that measures the “absorptive capacity” (Cohen and Levinthal, 1989) of
innovating companies, which has been shown to affect companies’ R&D cooperation
decisions in previous studies. We consider both the research size and research quality

16To check for collaborations prior to the sample period 1985–1995, we tracked back to 1975.
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to measure the absorptive capacity. As for the “size” of research, we use the R&D
expenditure, which is available from the COMPUSTAT database for the market-listed
companies. On the other hand, the variable is not available for non-marketed-listed
companies, which account for the majority of the full set of companies’ data. There-
fore, we instead use the number of patents for which the company applied in a given
year as a proxy for the company’s R&D size. This variable is available for the full set of
companies. As for the “quality” of research, we take the sum of the cumulative num-
ber of patents applied by the company and the cumulative number of patent citation
referred to by other companies. For these two variables, we aggregate the information
over the past 10 years. This variable, constructed from the NBER patent database, is
available for both market-listed and non-market-listed companies; thus, it is included
in both the market-listed companies’ data and the full set of companies’ data. It is
noteworthy that these research size and quality variables are included in the form of
the natural logarithm in the regressions.

The second group is related to similarity between two companies, which is defined
in terms of technology, R&D size, and location. First, regarding technological similar-
ity, we essentially treat the research areas of two companies as similar if the companies
applied for patents in similar technological fields. Following Jaffe (1986), we measure
technological similarity, denoted by TSij , by using an uncentered correlation of patent
application subcategories between companies i and j.17 The second similarity has to
do with research size. The similarly, denoted by RSij , is given by the inverse of the
absolute difference in a measure of absorptive capacity.18 Finally, locational similar-
ity is considered as many previous studies have stressed that geographical origin is an
important factor in collaboration decisions. We define the locational similarity mea-
sure, denoted by LSij , to be equal to one if the companies’ headquarters locate in the
same state and zero otherwise. For the market-listed companies’ data, the headquarters
information is available from COMPUSTAT data. For the full set of companies’ data
that include both market-listed and non-market-listed companies, we impute the state
of the headquarters by the state that appears most frequently as inventors’ addresses
which are available from the NBER patent data.

The third and the most important group of variables is related to network structure.
As shown in the previous section, this includes the cyclic closure structure variables

17To be precise, the correlation coefficient, TSij , is defined as:

TSij ≡
fiCf ′

j

[(fiCf ′
i)(fjCf ′

j)]
1/2

,

where fi is a row vector of the number of patent applications in each technological subcategory taken out
by company i and C is the citation probability matrix for each technological subcategory computed from all
U.S. patent citation data from 1981 to 1999. We use the citation probability matrix, rather than the identity
matrix, as the weight so that our similarity measure reflects the similarities between technological categories.

18The researsh size similarity is defined by

RSij =
1

1 + |Ri − Rj |
,

where Ri and Rj are the research size measures of companies i and j, respectively. This similarity measure
is inspired by the “social distance” measure that was proposed by Akerlof (1997).
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Table 3: Definitions of Controlled Variables

Variable Name Description
Absorptive Capacity Variables:
RD Total R&D expenditure in millions of U.S. dollars in the last period.
NPATENT The number of patent applications in the last period.
CUMPATENT The cumulative number of patent applications by the last period.
CITED The cumulative number of cited patents by the last period.

Similarity Variables:
TS Technological similarity, defined by the uncentered correlation of patent ap-

plication subcategories.
RS Research size similarity, defined by the inverse of the difference in R&D

size.
LS Locational similarity, defined to be one if the states of the companies’head-

quarters coincide.
Network Variables:
dk−1 A dummy variable that takes one if the shortest distance between a pair of

companies is k − 1 in the last period.
η The number of collaborations in the last period.

and the star structure variable, which represent a firm’s preference to form a cyclic
closure and a preferential attachment tendency, respectively. To capture the kth cyclic
closure preference effect, we compute the shortest (geodesic) path between innovating
companies in the R&D collaboration network and construct a dummy variable, dk−1

ij ,
which is equal to unity if the shortest distance between companies i and j is k − 1 and
zero otherwise. For convenience, we include up to the sixth (k = 6) cyclic closure
preference because of the rarity of network closures to more than the fifth degree. To
capture the preferential attachment effect, we include the natural log of the nodal degree
of R&D collaborations, which is denoted by log(ηi) for company i. To account for the
likelihood contribution of network formation between companies i and j, the degree
variables of both companies, (log(ηi) log(ηj)), are included. Yet, as already noted,
because the effects of own-company and partner characteristics cannot be separately
identified simultaneously, the average of the preferential attachment effect of its own
and that of the partner company is reported.

Table 3 presents the definitions of the control variables for the two datasets. In
addition to the variables explained above, we include trend variables with a base year
of 1985. Table 4 presents the descriptive statistics of the dependent and independent
variables used in our analysis.

5.2. Baseline Estimation Results

Table 5 reports the estimation results. Column (1) presents the estimates for the
market-listed companies’ data while column (2) presents the estimates for the full set
of companies’ data. The robust standard error of each estimated coefficient is reported
in parentheses.

We find that the estimated coefficients of most variables have the expected signs.
The estimates of the absorptive-capacity-related variables, log(RD), log(NPATENT )
and log(CUMPATENT + CITED), show that the variable representing research
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Table 4: Summary Statistics

Market-listed Full set of
Companies Companies

Dependent Variable:
G 0.0010 0.0002

(0.0310) (0.0125)
Research Size:
log(RD) 3.6364

(2.1399)
log(NPATENT ) 3.2323

(1.6556)
Research Quality:
log(CUMPATENT + CITED) 5.3496 4.6677

(2.2283) (1.9123)
Technological Similarity:
TS 0.1738 0.3291

(0.1845) (0.2233)
Research Size Similarity:
RS 0.3805 0.4512

(0.2110) (0.2155)
Locational Similarity:
LS 0.1068 0.0035

(0.3089) (0.0591)
Cyclic Closure:
third degree (k = 3) 0.0044 0.0010

(0.0658) (0.0316)
fourth degree (k = 4) 0.0068 0.0022

(0.0821) (0.0465)
fifth degree (k = 5) 0.0055 0.0027

(0.0740) (0.0523)
sixth degree (k = 6) 0.0038 0.0022

(0.0615) (0.0473)
Nodal Degree :
log(η) 0.3925 0.3003

(0.6603) (0.5039)
Sample Size 185619 5494790

size and research quality has positive and statistically significant effects on collabora-
tion formation. This evidence is found consistently in both the market-listed compa-
nies’ data (column (1)) and the full set of companies data (column (2)). Given these
facts, we conclude that the absorptive capacity is an important factor that facilitates
R&D collaboration between companies.

As for similarity-related variables, we find that technological similarity, TS, is
negative and statistically significant in column (1), although the effect is not statistically
significant in column (2). This suggests that, at least for market-listed companies,
innovative synergy would not arise very easily if two companies had similar research
areas, and such companies would collaborate less often than those that do not share
research fields. However, it is consistently shown in both columns (1) and (2) that
the research size similarity, RS, has a significant positive impact on collaboration.
Interestingly, the relationship between similarity and collaboration is non-monotonic.
Seeing from the negative estimates of the quadratic term of the research size similarity,
it can be interpreted that companies may interact with other companies that are similar,
but not too similar, in research capacity.

It is also shown that the locational similarity, LS, has a statistically significant ef-
fect on collaboration. This finding is robust for the results of both columns (1) and (2).
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Table 5: Baseline Regression Results

Market-listed Full set of
Companies Companies

(1) (2)
CONSTANT −11.7681∗∗∗ −12.7136∗∗∗

(0.7349) (0.4257)
Research Size:
log(RD) 0.2203∗∗∗

(0.0704)
log(NPATENT ) 0.2848∗∗∗

(0.0414)
Research Quality:
log(CUMPATENT + CITED) 0.2078∗∗∗ 0.1831∗∗∗

(0.0754) (0.0304)
Technological Similarity:
TS −2.5537∗∗ −0.0949

(1.0037) (0.5486)
TS2 1.9821 0.0611

(1.4185) (0.6526)
Research Size Similarity:
RS 6.2846∗∗∗ 4.9020∗∗∗

(1.7398) (1.1125)
RS2 −4.6214∗∗∗ −4.8361∗∗∗

(1.6377) (1.0481)
Locational Similarity:
LS 0.8560∗∗∗ 0.8439∗∗∗

(0.1817) (0.2576)
TREND 0.0222 0.0567∗∗∗

(0.0359) (0.0165)
Cyclic Closure Effect ρ:

third degree ρ3 2.5991∗∗∗ 3.4289∗∗∗

(0.2489) (0.1440)
fourth degree ρ4 2.1358∗∗∗ 2.4342∗∗∗

(0.2439) (0.1475)
fifth degree ρ5 2.2072∗∗∗ 1.7809∗∗∗

(0.2869) (0.1892)
sixth degree ρ6 1.2148∗∗ 1.8651∗∗∗

(0.5245) (0.2156)
Preferential Attachment Effect λ:
log(η) 0.4946∗∗∗ 0.3790∗∗∗

(0.1533) (0.0721)
Log-likelihood −1090.4146 −7150.1950
Sample Size 185619 5494790

These findings suggest that companies with headquarters in the same state are more
likely to collaborate with each other. It is noteworthy, however, that the locational sim-
ilarity variable in our analysis only measures the proximity of company headquarters
on the state level. Therefore, it may be more appropriate to focus attention on the prox-
imity of company research units or business establishments. Thus, further investigation
with a focus on location will be necessary.

The estimates of the network variables indicate that the cyclic closure effects, ρk,
are positive and statistically significant for all k at the one percent significance level.
This evidence is consistently found in columns (1) and (2). Furthermore, the triadic
closure effect ρ3 has the largest effect among other cyclic closure effects. This sug-
gests that companies that have mutual third-party collaborators in their network neigh-
borhood tend to establish a new R&D collaboration. The mechanism seem to work
consistently, irrespective of whether or not they are listed on the stock market.

We consider at least two reasons that R&D collaborations are more likely to be un-
dertaken between companies that have mutual third-party collaborators. First, previous
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collaborators may play a referral role for new collaborators. Companies would proba-
bly gain by reducing any uncertainty about whether a potential partner would behave
opportunistically. 19 Given such uncertainty, companies may want to use preexisting
collaboration as conduits of information about the reliability of potential partners, and
thus, they would prefer to establish “secure” relationships with known local partners in
their close circle rather than begin relationships with new collaborators with unknown
behavior.20 Second, it may be motivated by the appropriability of the fruits of joint
R&D, about which companies might be seriously concerned when starting joint R&D
projects (Cassiman and Veugelers, 2002). To prevent collaborators from appropriat-
ing the technology generated by joint R&D projects for their own interests against the
interests of others, collaborating firms must be able to punish deviators.21 The exis-
tence of an indirect link through mutual collaborators may enhance the effectiveness of
penalties and improve the appropriability of the fruits of joint R&D projects.22

We also find in Table 5 that the preferential attachment effect, λ, is positive and
statistically significant at the one percent level in columns (1) and (2). This finding
reinforces our argument that the attractiveness of collaboration is determined by the
resources and capabilities that a potential partner possesses. It has been argued that
collaboration ties are key vehicles through which companies obtain access to exter-
nal knowledge, including technical breakthroughs and new insights to problems and
failures (e.g., Powell et al., 1996). Our estimation results confirm that access to the
resources of potential partners may promote R&D collaboration. In addition, compa-
nies that have knowledge repositories from previous collaborations are likely to attract
more collaborators and, thus, more opportunities for collaboration. However, it is also
possible that companies’ unobserved capabilities for R&D collaboration are captured
by the preferential-attachment variable.

The results presented above clearly indicate that two types of mechanisms may ex-
plain R&D collaboration formation between IT companies. First, companies decide
to establish a new R&D collaboration with each other because of their cyclic closure
preference or preferential attachment predisposition. Such a collaboration mechanism
is considered as structural or endogenous. Secondly, companies collaborate “contextu-

19For example, a potential collaborator may free-ride by limiting contributions to a collaboration and/or
may take advantage of a close relationship to use resources or information in ways that may damage their
interests.

20The same idea is found in Gulati and Gargiulo (1999).
21For example, if two companies are collaborating on an R&D project and this is the only connection

between them, then the only way to penalize malicious technology diverters is to expel them from current
collaborations and exclude them from future ones. However, if these two companies are connected not only
directly but also indirectly through mutual third-party collaborators, it is possible for deviators to be punished
by all other collaborators who are aware of such behavior; deviators could be punished by being ostracized
from the alliance comprising third-party collaborators.

22A similar sanctioning logic has been widely proposed by several sociologists (e.g., Coleman, 1990;
Putnam, 1992; Walker et al., 1997), who hypothesize that such punishments are more easily enforced among
agents belonging to a closely knit network. In the literature of economics, Spagnolo (1999) uses a repeated-
game framework to analyze transfers of trust from social to production relationships that facilitate coop-
eration in production and shows that the amount of credible punishment, as embodied in social capital,
strengthens cooperation. Lippert and Spagnolo (2004) provides rigorous support for the sanctioning role of
network closure by using a game-theoretic model of networks of relational contracts.
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ally” with each other even without taking into account the generated network structure.
For example, as shown in estimation results, companies with similar research size, or
companies that are located in the same state, will collaborate with each other. Such col-
laboration due to characteristic similarities is considered contextual or exogenous. The
distinction between the structural and contextual mechanisms is important. Whereas
the structural effect generates an additional mechanism that facilitates further collabo-
rations with others, the contextual effect does not.

To disentangle these effects, we decompose the collaboration probability into two
components: (i) the structural effect, which arises because of cyclic closure preferences
or preferential attachment, and (ii) the contextual effect, which arises because of non-
structural factors. Figure 2 presents the results of the decomposition for the market-
listed companies’ data (a) and the full set of companies’ data (b). The height of each
bar graph represents the average predicted probability that a new R&D collaboration
is established between two companies that never collaborated before and is computed
with the parameter estimates presented above. For figures (a) and (b), we present the
predicted probabilities with up to d = 5 network distances. The structural part of
the collaboration probability between companies with d network distance is computed
by the probability that is attributable to the cyclic closure preference with (d + 1)
degree after controlling for the effect of similarity-related variables so that the effect is
zero. The contextual part is given by the residual part of the probability that cannot be
explained by the structural part.

The figures show that, for the market-listed companies’ data (a), the structural ef-
fect on collaboration formation exceeds the contextual effect, while the magnitude rela-
tionship is reversed for the full set of companies’ data (b). It thus can be said the R&D
collaboration formation of market-listed companies is driven, for the most part, by the
structural mechanism that facilitates further collaboration formation in a self-fulfilling
manner. In contrast, the structural mechanism is less important than the contextual
mechanism for non-market-listed companies.

In summary, we have established three main findings. First, a company’s absorp-
tive capacities are important determinants of R&D collaboration. Second, companies
with similar, but not too similar, research capacity are highly likely to collaborate with
each other. Third, network-based collaboration is significant. Companies with more
collaborators are more likely to collaborate with each other. Furthermore, companies
that are closer in the existing R&D network are more likely to collaborate with each
other.

5.3. Controlling for Unobserved Common Factors

Although evidence of a strong cyclic closure preference is found, there may be an
omitted-variables problem. If there are unobserved common shocks that affect the deci-
sions of a group of companies, the effect of those omitted factors might be incorporated
into the cyclic closure preference effect. For example, let us assume that a company’s
research managers formerly worked for a nearby company. The two companies may be
more likely to collaborate in R&D activities because of this personal association.23 If

23See Saxenian (1994) for anecdotal evidence in this regard.
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Figure 2: Decomposition of the Collaboration Probability into Structural and Contextual Effects

the predisposition of research managers is not observed by researchers, the effect may
be mistakenly attributed to a cyclic closure preference.

To address this problem, we modify the model to incorporate a group-specific un-
observed factor. The primary assumption underlying this specification is that such
common factors, which are unobservable to researchers, affect all companies in the
same group. Let us assume that company i and company j both belong to group g.
Then, the utility function is

uij(t) = α + βWij(t − 1) + ληj(t − 1) +∑
k

ρkdk−1
ij (t − 1) + δg(t − 1) + εij(t − 1), (8)

where δg(t − 1) is a fixed effect that is common to companies i and j belonging to
group g; other companies probably also belong to the group. The fixed effect, δg , if not
taken into account, causes the overall error term, δg + εij , to be correlated between the
companies in group g.

The omitted group-specific factor can arise from the endogenous group forma-
tion of companies based on unobserved characteristics. Companies are likely to sort
themselves into groups in which members share common unobserved characteristics.
Hence, the group structure should capture hidden sorting across companies and their
shared attributes. We employ a simple strategy to identify hidden group structures.
In other words, each group is identified by a “community structure”, as referred to by
Girvan and Newman (2004). Essentially, a community is a subset of nodes within a net-
work such that connections between them are deeper than connections to other nodes
in the network.24 Our group identification strategy relies on the assumption that com-
panies are densely connected with each other because they share common unobserved

24Girvan and Newman’s community detection algorithm is based on the idea of the “betweenness” of
links in the network, in which this betweenness is a measure that emphasizes links between communities.
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group-level attributes. Using the algorithm proposed by Girvan and Newman (2004),
we identify 161 and 48 communities for the all companies’ dataset and market-listed
companies’ dataset, respectively, in the sample period between 1985 and 1995. The
fixed effect term δg is assigned to each pair of companies i and j if both companies
belong to group g.

Table 6: Community Fixed Effects Regression Estimation Results

Market-listed Full set of
Companies Companies

(3) (4)
Research Size:
log(RD) 0.2245∗∗∗

(0.0755)
log(NPATENT ) 0.2731∗∗∗

(0.0381)
Research Quality:
log(CUMPATENT + CITED) 0.2215∗∗∗ 0.1882∗∗∗

(0.0679) (0.0255)
Technological Similarity:
TS −2.6361∗∗ −0.1885

(1.1783) (0.4959)
TS2 1.7260 0.0470

(2.0805) (0.5643)
Research Size Similarity:
RS 5.9228∗∗∗ 4.9421∗∗∗

(1.6811) (1.4123)
RS2 −4.2508∗∗∗ −5.2924∗∗∗

(1.6148) (1.2646)
Locational Similarity:
LS 0.8541∗∗∗ 0.2633

(0.1848) (1.0602)
TREND 0.0372 0.0750∗∗∗

(0.0402) (0.0200)
Cyclic Closure Effect ρ:
third degree ρ3 2.5944∗∗∗ 3.2356∗∗∗

(0.2717) (0.1622)
fourth degree ρ4 2.1589∗∗∗ 2.3347∗∗∗

(0.2599) (0.1552)
fifth degree ρ5 2.2452∗∗∗ 1.7691∗∗∗

(0.2816) (0.2100)
sixth degree ρ6 1.2261∗∗ 1.8549∗∗∗

(0.5216) (0.1851)
Preferential Attachment Effect λ:
log(η) 0.4463∗∗∗ 0.3863∗∗∗

(0.1548) (0.0577)
Log-likelihood -1049.9447 —
Sample Size 185228 10% bootstrap

They propose using a modularity index to determine the number of communities. The modularity index
measures the difference between the proportion of edges in the network that connect nodes within the same
community and the expected value of the proportion of edges that have the same community division but in
which the connections between nodes are random. We use the community structure that provides the highest
modularity.
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Given the utility specification by Equation (8), the log-likelihood function for new
collaboration links is derived analogously to Equation (7). Because the cumulative
distribution function of the error term is assumed to be logistic, the fixed effects logit
estimator is used to estimate the model.

Table 6 reports the estimation results for the fixed effects model. Column (4)
presents the estimates for the market-listed companies’ dataset. We use the same vari-
able specification as that used for the baseline estimation. For the data of market-listed
companies, 6 community-specific fixed effects are included in the estimation.25

We also tried the same fixed effects estimation to the full set of companies’ data.
However, because of the immense sample size (N = 5, 494, 790) and the lack of
machine power, the estimation could not be implemented. We, thus, instead used 10%
bootstrapped samples of the original sample and estimated the fixed effects model for
the subsample. We repeated this subsample estimation procedure for 50 times with the
subsample being bootstrapped each round and computed the average of the parameter
estimate. Column (4) in Table 6 reports the bootstrap estimates, and the bootstrap
estimates of the standard errors are shown in parentheses. 26

It is shown that the coefficients of most of the variables are similar to those from
the baseline specification but less precisely estimated. The qualitative results are the
same as before with one exception: the variables measuring locational similarity are
not significant for the full set of companies’ data.

The estimated effects of the network variables are statistically significant and have
the predicted signs. The effect of preferential attachment remains positive and signif-
icant. The point estimates are similar to those from the baseline specification. Hence,
the inclusion of group-specific effects does not negate these network effects. This
suggests that closure preference is not primarily driven by unobserved group charac-
teristics. Furthermore, triadic closure preference continues to have the strongest effect.
Thus, provided we are allowed to assume that most of the omitted variables only vary at
the community level, our results suggest evidence of positive triadic closure preference.

6. Conclusion

In this paper, we have studied the evolution of successful R&D collaboration in the
U.S. IT industry between 1985 and 1995 by using information on patents granted in the
U.S. The descriptive statistics on R&D networks provide insights into how networks
have evolved. Put simply, collaboration has become more extensive, more locally clus-
tered, connected over shorter distances, and increasingly unequal. Considering the laws
that guide these macrodynamic features, through regression analysis, we found, having
controlled for as many company characteristics as possible, that the choice of collab-
oration partners is significantly affected by cyclic closure preference and preferential

25The fixed effects of communities in which no collaboration links are observed are dropped from the
estimation sample. To estimate the fixed effects model, within-group variation in the response variable is
required.

26We employ the subsampling bootstrap method proposed by Politis and Romano (1994). In the subsam-
pling bootstrap procedure, resampling should be implemented without replacement. For details, see Theorem
2.1 in Politis and Romano (1994) and Politis et al. (1999).
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attachment preference. Our results support the following two hypotheses relating to
interfirm collaboration formation: (1) the local partner search hypothesis, according
to which the connected get more interconnected; and (2) the accumulation advantage
hypothesis, according to which the connected get more connected.

Our paper makes a unique contribution to the literature on R&D alliances by mea-
suring the impact of existing collaboration structures on the formation of new collab-
orations and by explaining how the collaboration network emerges. Although many
previous studies have analyzed interfirm collaboration structures that can enhance in-
novation, none has explained how the collaboration network can be systematically
structured among companies that are uncoordinated ex ante. Our findings suggest that
firms search for reliable collaboration partners through referrals from previous collab-
orators. The results also suggest that companies attempt to form dense webs of local
collaborators to increase the threat of joint punishment to minimize the risk of mali-
cious behavior by their collaboration partners. However, our results do not identify the
separate roles of these factors in explaining the behavior of firms. More theoretical
work is needed to identify the different dynamic structural effects produced by firms’
networking strategies.

By focusing on the formation of new collaborations, we did not analyze the pat-
terns and determinants of the dissolution of existing collaborations. The question of
how companies decide to terminate existing partnerships and start new ones was not
examined. We have based our empirical framework on rather myopic and adaptive
agents making decision about with whom to make a new link. Forward-looking agents
can be considered in a more dynamic context. In such a set-up, there is possible endo-
geneity between a firm’s current position in the network and its future decision about
the termination of existing links or the creation of new links. Future research on both
the creation and dissolution of ties must also address this endogeneity issue as well to
gain a full understanding of the dynamics of networks.

Although we have information on the intensity of collaboration measured by the
number of researchers common to both companies, we did not utilize it in our analysis.
We have treated all links as homogeneous and abstracted from the strength of ties and
their types. The strength and types of ties, however, are known to play important roles
in information flows (See Granovetter (1973) for an example from the labor market).
The manner in which the strength and type of existing links will affect the creation
and termination of ties needs to be examined. The dynamics of the strength of the ties
will need to be examined as well. The first step to answer such questions is to estab-
lish a framework for analyzing the dynamics of weighted, as opposed to unweighted,
networks. We leave this important and interesting task to future research.
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Appendix A. Computerized Matching Process

The essence of the computerized matching process (CMP) proposed by Trajtenberg
et al. (2006) is to adjust for possible spelling errors in inventors’ names listed in patents
in order to avoid identifying an inventor as two different inventors while minimizing
the possibilities of identifying two different inventors as the same person by utilizing
other information such as addresses, assignees, and patent classes.

The former is done by converting the last name and first name of the listed inventors
into “soundex” codes following the rule described in Trajtenberg et al. (2006, p. 17,
Table 3.1). This conversion allows us to group inventors whose names are spelled
in a similar manner into one depending on the numbers assigned to them. We then
utilize other information to distinguish inventors with the same “soundex” code. The
information we employ in matching inventors are (1) full address, (2) self-citations, (3)
shared collaborators, (4) middle names, (5) surname modifier, (6) assignee, (7) city,
and (8) patent class. Each information gives a score to a pair of names (soundex code),
and depending on the total score obtained, we decide whether two inventors are the
same person or not. The name-matching criteria we have employed are summarized in
Table A. 1. While the criteria A follows Trajtenberg et al. (2006), the criteria B is more
stringent.

Now, let us describe the scoring procedure in more detail. When full street ad-
dresses are identical between the inventors listed in two different patents, the pair
obtains a score of 120. (It should be noted that the value of the score itself has no
significant meaning.) When a patent is citing an older patent applied for by the inven-
tor with a similar soundex code, then we consider that these two patents are applied for
by the same person (self-citation) and the pair of names obtains a score of 120. (There
are only 121 pairs of patents that satisfy this criterion.) In addition, if two patents are
each applied for by two or more inventors and one of them is identified individually,
then the remaining inventors are considered to have collaborated with the identified in-
ventor. If there is a pair of inventors (listed in both patents) who have similar soundex
codes, then we consider them to be one person who has collaborated repeatedly with
an already identified inventor (shared collaborators) and this inventor obtains a score
of 120.

If the pair of records share more than two letters from the middle name (full middle
name), a score of 100 is given, and if they share the same surname modifier, they
get a score of 50. In the case where two records share only the middle name initials,
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Criteria A Cutoff value
Identical Last name and First name, and non zero part of
soundex code is more than 5 digits

100

Identical Last name, and non zero part of soundex code is more
than 2 digits

120

Others 180

Criteria B Cutoff value
Identical Last, First, and middle name, and non zero part of
soundex code is more than 5 digits

100

Identical Last name, and non zero part of soundex code is more
than 2 digits

120

Others 180

Table A. 1: Matching criteria in CMP.

assignee, city, or patent classes, the score depends on whether such records are “rare”
or not. Namely, we assume, for example, that a city is “rare,” if the number of records
that share the same city is smaller than the cutoff value. The cutoff value is set to the
median of the frequency distribution of the city name. Otherwise, it is considered to be
“common.” If a pair of records shares either the middle name initials, assignee, or city,
it obtains a score of 100 if it is considered to be “rare” and 80 if it is “common”. In the
case of patent class, the pair obtains a score of 80 or 50, respectively. These scores are
summarized in Table A. 2

We also consider the cases in which we categorize the names to be “rare” or “com-
mon” as in Trajtenberg et al. (2006). Similarly to the cases of cities and assignees, a
name is considered to be “rare,” if it appears less frequently in the data than the median
of the frequency distribution. Furthermore, when a name is considered to be “rare”, the
likelihood that two records correspond to one inventor is higher. Therefore, less strict
criteria are set for other information. Namely, the middle name initials, assignee, city,
and patent class obtain a higher score (the one corresponding to “rare” cases) if they
are below the 75 percentile of the frequency distribution, instead of the median.

In total, we have considered four cases, depending on which matching criterion is
utilized and whether rareness of names are considered or not. The results of four cases
are summarized in Table A. 3. As the table shows, the four cases we have considered
do not differ substantially in terms of number of unique inventors identified. The pro-
cedure that uses criteria A and treats “rare” names differently (second row in the table)
identifies the least number of inventors, but the difference between the one that identi-
fies the highest number of inventors (the one uses criteria B and does not treat “rare”
names differently, reported in the third row in the table) is less than one percent of the
total number of inventors identified. Our analysis in based on the procedure that uses
criteria A and does not treat “rare” names differently (the base line case reported in the
first row, shown in bold face).
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score
Full Address 120
Self Citation 120
Shared Partners 120
Full middle name 100
Surname Modifier 50

“rare” “common”
Middle name initial 100 80
Assignee 100 80
City 100 80
Patent Class 80 50

Table A. 2: List of Scores in CMP.

“rareness” cutoff for city etc..
for rare names for common names No. of unique inventor

Criteria A 50 50 749,388
Criteria A 75 50 746,794
Criteria B 50 50 752,304
Criteria B 75 50 750,040

Table A. 3: The results of CMP for the U.S. inventors who successfully obtained patent between 1975-1999.
We have used the result of the first line in our analysis.
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