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Introduction 

 Allanite [CaREEAl2Fe2+Si3O11O(OH)], one of the epidote-group minerals, is known as a 

characteristic accessory mineral in various rocks, such as granites, granodiorites, monzonites, 

syenites, limestone, skarns and occasionally volcanic rocks (Deer et al. 1986; Gaines et al. 

1997; Gieré and Sorensen 2004). Although allanite is considered a rare mineral in volcanic 

rocks, it has been described in rhyolitic tuffs, ashes, obsidian, and andesites (e.g., Duggan 1976; 

Hildreth 1979; Brooks et al. 1981; Mitropoulos 1987; Chesner and Ettlinger 1989; Sakai and 

Kurokawa 2002). The crystal structure of allanite from a biotite-granite was first determined by 

Ueda (1955). Subsequently, crystal structures of unaltered and non-metamict allanites from 

granitic pegmatites have been refined (Dollase 1971; Kartashov et al. 2002; Hoshino et al. 

2005), but no crystal structure of allanite from a volcanic rock has yet to be reported.  

 In this paper we describe the chemical composition and crystal structure of allanite crystals 

from both welded rocks of the Youngest Toba Tuff, Sumatra, Indonesia (YTT; 74 Ka) and 

volcanic ash beds in Niigata, Japan (SK100-VAB; 1.6 Ma), and comparatively discuss their  

formations. 

 

Samples 

 The YTT sample (T-37A) was collected in the town of Prapat, inside the Toba caldera, near 

Manuscript
Click here to download Manuscript: manuscript.doc
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the shore of Lake Toba. It is a light pink, incipiently welded tuff (undeformed pumice fragments 

and glass shards) with a whole rock SiO2 content of 74.3 wt % (Chesner, personal 

communication). Phenocrysts consist of quartz, sanidine, andesine, biotite, amphibole, 

orthopyroxene, magnetite, ilmenite, fayalite, zircon and allanite. YTT allanite crystals were 

separated using heavy-liquid-separation techniques. Petrological and mineralogical descriptions 

of the Toba tuffs and other Toba allanite have been given by Chesner and Ettlinger (1989) and 

Chesner (1998). 

Samples of the SK100 ash beds were collected along the Shibamata route, Niigata, Japan, in 

the early Pleistocene Uonuma Formation (Yasui et al. 1983; Kurokawa et al. 2000). Pumice 

fragments in the SK100-VAB contain about 68 wt% SiO2 (Nagase and Kurokawa 1992) and 

consist of glass shards, andesine, biotite, orthopyroxene, augite, ilmenite, magnetite, hornblende, 

allanite, zircon, apatite and almandine (Kurokawa and Sakai 2001; Sakai and Kurokawa 2002; 

Kurokawa et al. 2004; Hoshino et al. 2007). Because the SK100-VAB has the low abundance of 

magnetic minerals, allanite was easily separated using a Frantz isodynamic magnetic separator.  

After separation, YTT and SK100-VAB allanite grains were embedded in epoxy resin and 

polished. In this study, the same allanite crystals were analyzed by EMPA and X-ray diffraction 

(Fig. 1).  
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Experimental methods 

Chemical composition 

 

 Chemical analyses of separated allanite grains were carried out at the Chemical 

Analysis Division, University of Tsukuba, using a JEOL JAX-8621 electron microprobe 

equipped with three wavelength-dispersion spectrometers (WDS). Qualitative analyses of 

allanites were made using 25 kV accelerating potential and 250 nA beam current. Qualitative 

analysis of fluorine and chlorine in allanite has been carried out using an accelerating voltage of 

15 kV and a probe current of 1000 nA and showed both elements to be below detection limits 

for EMPA in all analyzed crystals. Elements detected qualitatively were included in the 

quantitative analyses. Quantitative analyses for major elements in the allanites were performed 

using an accelerating voltage of 25 kV, a beam current of 10 nA, peak count times of 10 s, 

background count times of 5 s, and a beam diameter of 5 µm. Concentrations of the REE in the 

allanites were measured using an accelerating voltage of 25 kV with a beam current 50 nA, peak 

count times of 20 s, background count times of 10 s, and a beam diameter of 5 µm. X-ray 

intensities for La, Ce, Nd were determined using the Lα lines, whereas the intensities for Pr and 

Sm peaks were measured using Lβ lines. As REE standards, we used synthetic Ca-Al silicate 

glasses containing each REE, which are available from P & G Development Ltd. The chemical 
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composition of the standards is given in Table 1 of Hoshino et al. (2006). The following 

standards, excluding the REE, were used for quantitative analyses: SiO2 (SiKα), TiO2 (TiKα), 

Al2O3 (AlKα), Fe2O3 (FeKα), MnFe2O4 (MnKα), MgO (MgKα), CaSiO3 (CaKα) and ThO2 

(ThMα). All the data were corrected with a ZAF matrix-correction program. The chemical 

compositions of allanites in this study used for crystal structure refinement are presented in 

Table 1.  

 

Fourier-transform infrared spectroscopy 

  

The FTIR (Varian FTS3000) study was carried out using a SPECAC, Golden Gate ATR 

Mk II Attenuated Total Reflection (ATR) system, under a flow of N2 gas (prevention of 

influence of water vapor in the air), in order to confirm the presence and determine the content 

of (OH)- in allanite. The optical unit comprised a ZnSe lens, and the superior plate was equipped 

with a diamond ATR Mk II crystal. Under a stereomicroscope, the allanite fragments (about 

50-100 µm) were completely sifted out from the polished samples with a needle with constant 

reference to BSE photographs prepared ahead. In order to obtain bulk spectra of allanite, a 

fragment of allanite placed on the diamond plate was covered with aluminum foil (thickness 11 

µm) and pressurized by a sapphire anvil. Each absorbance spectrum of the about 10 µm-thick 
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allanite powder plate was measured in the region of 550-4000 cm-1 with 4 cm-1 resolution.  

 

Structure refinement 

 

 The allanites from the two samples (YTT and SK100-VAB) contain apatite and/or zircon 

inclusions that can be seen in BSE images (Fig. 1). Under a stereomicroscope, the allanite 

fragments devoid of these inclusions, having the chemical compositions determined by EMPA, 

were completely sifted out from the polished crystals using a needle with constant reference to 

BSE photographs prepared ahead (Fig. 1). X-ray diffraction intensities for these single-crystal 

allanites were collected with a four-circle automated diffractometer (Rigaku AFC7R) with 

graphite-monochromated MoK� radiation and rotating anode generator at the Center for 

Tsukuba Advanced Research Alliance, University of Tsukuba. For each allanite fragment, 25 

reflections in the range 8� � 2θ � 30� were collected, and the unit-cell dimensions (Table 2) 

were refined from the resultant setting angles using the least-squares technique. Intensity data 

were collected in the �-2� scan-mode at affixed scan-rate of 4.0� 2�/min. All reflections were 

measured within the range of 5� � 2θ � 60�. The reflection data were corrected for Lorentz and 

polarisation effects, averaged and reduced to structure factors; about 1350 unique reflections [F0 

� 4�(F0)] were observed. The SHELXL-97 (Sheldrick 1997) program was used throughout this 

work.  
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Results 

Chemical composition 

 

 The EMPA data demonstrate that Ce is predominant over other REE in all of the analyzed 

allanites, which were thus identified as allanite-(Ce) (Table 1). YTT and SK100 volcanic 

allanites have minimal variation in their chemical composition (Fig. 1 and Table 1). They are 

LREE-enriched with Ce2O3 up to 9.96 wt%, La2O3 up to 6.85 wt% and are abundant in other 

REE elements as well (Nd2O3 up to 3.74 wt%, Pr2O3 up to 1.43 wt%, Sm2O3 up to 0.66 wt%). 

YTT allanites have higher Mg, Ti and Th contents than SK100-VAB ones (Table 1).  

 

Fourier-transform infrared spectroscopy 

For the determination of H2O contents in YTT and SK100-VAB allanites unaltered and 

non-metamict allanite from the Daibosatsu granitic pegmatite, having an approximately 

homogeneous chemical composition (Hoshino et al. 2005), was collected as a standard for 

FTIR-ATR analysis. H2O content in the Daibosatsu allanite was determined as 1.47 wt% by a 

Thermogravimetry-Mass Spectrometry (TG-MS) analysis (Table 3). The obtained absorbance 

spectra of YTT, SK100-VAB and Daibosatsu allanites are average spectra of 5 allanite 

fragments, respectively. The vertical axis of their spectra was normalized on a full scale of 0 to 1 
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 7 

(Fig. 2).  

The Beer-Lambert law represents the linear relation between absorbance and sample 

thickness (concentration of the absorbing species) using the molar absorption coefficient 

(Libowitzky and Beran 2004). Thus, with respect to concentration only integrated 

measurements of the band area generally allowed accurate quantities for absorbance 

(Libowitzky and Beran 2004). The OH-stretching bands of YTT allanite (3343 cm-1) are shifted 

to significantly higher wavenumber compared to those of SK100-VAB (3125 cm-1) and 

Daibosatsu one (3124 cm-1) (Fig. 2). This shift may be due to dehydration of YTT allanite. The 

molar absorption coefficients of YTT and SK100-VAB allanites may be slightly different, but 

there is no detailed report concerning molar absorption coefficients of allanite. Therefore, it was 

assumed that the molar absorption coefficients of YTT, SK100-VAB and Daibosatsu allanites 

are almost identical. The H2O contents in the YTT and SK100-VAB allanites were determined 

by comparing the area ratio of the (OH)- absorbance spectra of the YTT and SK100-VAB ones 

with that of Daibosatsu allanite containing 1.47 wt% H2O. The measurement ranges of the 

integrated areas are as follows: (1) 3566-3121 cm-1 (OH peak) and 1145-1021cm-1 (reference 

Si-O peak) for the YTT, (2) 3498-2791cm-1 and 1118-1005 cm-1 for the SK100-VAB and (3) 

3498-2791cm-1 and 1118-1005 cm-1 for the Daibosatsu (Fig. 2 and Table 3). The Si-O peak 

commonly observed among these three samples was used as a reference peak in order to 
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mediate the small differences in thickness and amount among them. The area ratio was 

calculated as the ratio of the area of the OH bands to that of the Si-O stretching bands for each 

allanite. On the basis of the standard that the OH area ratio of Daibosatsu allanite containing 

1.47 wt% H2O is 2.43, H2O contents in YTT and SK100-VAB allanites were determined to be 

0.64 and 1.65 wt% H2O, respectively (Table 3).  

 

Structure refinement 

 

 The refined crystal structure data for YTT and SK100-VAB allanites include the following: 

final atomic coordinates, isotropic and anisotropic displacement parameters (Tables 4 and 5), 

selected interatomic distances (Table 6), and bond valence analyses (Table 7). Refined site 

occupancies of these allanites are shown in the footnotes of Tables 4 and 5. The crystal 

structures were refined in the space group P21/m, using the structural parameters provided by 

Dollase (1971). Based on the vast array of chemical composition data for epidote-group 

minerals, Armbruster et al. (2006) suggested the re-normalization of Si = 3 if Si is >3.05 apfu. 

Since the structural formula of the YTT allanite has Si = 3.04, we did not renormalize. 

Following the previous studies of epidote-group minerals (Dollase 1971; Kartashov et al. 2002; 

Hoshino et al. 2008: Bonazzi et al. 2009), the structure refinement of YTT allanite was done 

with Si assigned only to tetrahedral sites. According to Armbruster et al. (2006), if Si<3.00 apfu, 
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Al is incorporated into the Si3 site. Because SK100-VAB allanite contains 0.965 Si in Si3, 

0.035 Al was assigned to the site as well. 

 On the basis of the representative EMPA data (Table 1), (Ca+ Fe + Mn) were assigned to 

the A1 site, and (La + Ce + Pr + Nd + Sm + Th + Ca) to the A2 site (Tables 4 and 5). The 

smallest M2 octahedron has a strong preference for Al, whereas the occupancy of M1 and M3 

depends on competing ions, with the cations of larger ionic radii mainly ordered on the larger 

M3 octahedron (e.g., Bonazzi et al. 2009). According to Bonazzi and Menchetti (1994), M2 in 

annealed allanite shows a lesser Fe3+ incorporation, while M2 in untreated one is only occupied 

by Al. Therefore, occupancies of M1 and M2 sites in YTT and SK100-VAB allanite were 

refined independently without constraints on the following positions: Al vs. Fe (M1), Al vs. Fe 

(M2). However, the occupancies of Ti in M1 and (Fe + Mg) in M3 were assigned using the 

representative EMPA values (Tables 1 and 6). The result of structural refinement of YTT 

allanite suggests that a small amount of Fe 3+ is incorporated in M2 (Table 4). This incorporation 

corresponds to the crystal structures of annealed allanites refined by Bonazzi and Menchetti 

(1994) and Bonazzi et al. (2009).  

 

Discussion 

 A series of reactions including the oxidation of Fe2+ into Fe3+, the release of H2, and the 
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 10

concomitant replacement of OH- by O2-, would lead to the formation of an oxy-equivalent of 

allanite, namely oxyallanite. The reaction Fe2+ + OH- ↔ Fe3+ + O2- +1/2H2 is equivalent to the 

oxidation reaction observed in other hydrous Fe2+-bearing silicate minerals, such as mica and 

amphibole (Hogg and Meads 1975; Ferrow 1987; Popp et al. 1995). In contrast to micas and 

amphiboles, the (OH)- group in allanites is bonded to the A2 and M2 sites, where the A2 site is 

filled almost entirely with heterovalent cations (e.g., REE3+, Th4+, Ca2+), and M2 site with Al3+ 

(e.g., Dollase 1971). None of cations in these sites is involved in the oxidation reaction, but a 

small amount of Fe3+ is contained in the M2 site of YTT allanite (Table 4). Dollase (1973) 

heated natural allanites from a granitic pegmatite in air at different temperatures and analyzed 

Fe3+/Fetot of the run products with 57Fe Mössbauer spectroscopy. The Fe2+ contents decreased 

steadily above 400°C until the sample reached an almost complete oxidation state at about 

700°C (Dollase 1973). By heating single crystals of allanite from granite, Bonazzi and 

Menchetti (1994) verified that oxidation-dehydrogenation of allanite begins at about 600°C and 

is complete at about 700-725 °C. Bonazzi et al. (2009), annealing the allanite-subgroup minerals 

in Mn silicate rock from 400 to 900 °C, suggested that all their geometrical and structural 

variations mark the development of an oxidation-dehydration reaction. Structural data of YTT 

and SK100-VAB allanites have been compared with those of allanites in Dollase (1973) and 

Bonazzi and Menchetti (1994), because the allanite subgroup minerals in Bonazzi et al. (2009) 
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and the here studied allanites (YTT and SK100-VAB) have very different composition. Unit-cell 

parameters of allanite from the welded YTT are distinct from those of allanite from the  

unwelded SK100-VAB (Table 2) by a longer c-axis and a larger β value. This variation is similar 

to the results observed in the previous heating experiments of Dollase (1973), Bonazzi and 

Menchetti (1994) and Bonazzi et al. (2009). The parameters c and β of SK100-VAB allanite 

correspond to those of untreated allanite in Dollase (1973) and Bonazzi and Menchetti (1994), 

whereas those of the YTT allanite are comparable to those annealed to 680 °C (Dollase 1973) 

and 800 °C (Bonazzi and Menchetti 1994) (Fig. 3).  

 According to Bonazzi and Menchetti (1994), the loss of H compensating the oxidation of 

Fe2+ and Mn2+ is made evident by a dramatic lengthening of the donor-acceptor (O10-O4) 

distance. Moreover, most of the lengthening occurs between 600 and 725 °C in allanite (Fig. 5 

in Bonazzi and Menchetti 1994). The O10-O4 distance (3.176 Å) of YTT allanite is similar to 

that of the allanite annealed up to 800 °C (3.174 Å) in Bonazzi and Menchetti (1994), but these 

allanites have different chemical compositions. Based on the O10-O4 data and temperature of 

Bonazzi and Menchetti (1994), YTT allanite may have been annealed up to 800 °C. The 

eruption temperatures determined from Fe-Ti oxides for the entire compositional range of the 

YTT (68-77 wt% SiO2) vary between 701 and 780 °C (Chesner 1998), but a Fe-Ti oxide 

temperature was not determined for the YTT sample in this study (T-37A). Thus, it is possible 
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 12

that the YTT allanite remained at elevated temperatures (in the range suggested by Fig. 3) 

during the welding sufficiently long for the post-crystallization oxidation reaction process to 

take place. The loss of H coincident with the oxidation of both Fe2+ and Mn2+ is apparent from 

the lengthening of the donor-acceptor (O10-O4) distance (Bonazzi and Menchetti 1994), which 

is greater for YTT allanite than it is for SK100-VAB allanite (Table 6). Moreover, the bond 

valence sums of O4 (acceptor oxygen for H atom) and O10 (donor oxygen for H atom) are 

1.962 and 1.709 v.u. for YTT allanite and 1.754 and 1.271 v.u. for SK100-VAB allanite, 

respectively (Table 7). The differences in bond valence sum are 0.208 v.u. for O4 and 0.438 v.u. 

for O10, respectively, between YTT allanite and SK100-VAB allanite. These differences 

account for the observation that all of the M1-O4, M3-O4, A2-O10 and M2-O10 bond distances 

in YTT allanite shorten markedly compared to those in the SK100-VAB allanite to satisfy the 

bond-valence requirements of O4 and O10 (Tables 6 and 7). This shortening suggests that the 

bond valences of O10 and O4 are compensated by both oxidation of divalent cations and 

dehydration in the YTT allanite. Moreover, the difference from the ideal total bond valence 

value (4.00 v.u.) of O4 and O10 in YTT allanite (0.33 v.u.) is smaller than that in SK100-VAB 

(0.98 v.u.). These difference values are also broadly consistent with the corresponding 

differences in OH content between the YTT (OH: 0.40 apfu.) and SK100-VAB allanites (OH: 

1.00 apfu.) determined by FTIR- ATR (Tables 1 and 7). These refined crystal structures and 
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FTIR-ATR data imply that YTT allanite is basically similar to experimentally-produced 

oxyallanite, that is to say, YTT allanite is oxyallanite. 

 Based on chemical analyses of some allanite groups, Grew et al. (1991) proposed that the 

coupled substitution (Fe, Mg, Mn)2+ + (OH)-1 ↔ (Al, Fe)3+ + O2- is important for numerous 

chemical compositions of natural allanite, dissakisite and dollaseite. The presence of an 

oxyallanite in natural members of the epidote groups is difficult to verify because of both 

analytical uncertainties and the difficulty in quantitative measurement of H2O contents in 

microcrystals (Gieré and Sorensen 2004). The Fe3+ substitution (M3Fe2+ + O10OH- ↔ M3Fe3+ + 

O10O2- + 1/2H2) in oxyallanite has been achieved experimentally (Dollase 1973; Bonazzi and 

Menchetti 1994), but it has never been documented in nature (Armbruster et al. 2006). Chemical 

analyses, FTIR-ATR and crystal structure refinement of YTT allanites yielded the following 

crystal chemical formula: (Ca0.83Mn2+
0.06Fe2+

0.11)(La0.24Ce0.32Pr0.04Nd0.11Sm0.02Th0.04Ca0.21) 

(Al0.73Fe3+
0.19Ti0.08)(Al0.89Fe3+

0.11)(Fe2+
0.22Fe3+

0.62Mg0.16)(SiO4)Si2O7O1.6(OH)0.4. YTT allanite in 

this study corresponds to oxyallanite because above 50 % OH is released from the premineral. 

Therefore, this study proposes that natural oxyallanite may be detected by a combination of 

quantitative EMPA, FTIR-ATR, and crystal structure refinement and that oxyallanite might 

occur in silicic rocks that experienced welding at high temperatures (> 700 ºC).  
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Sample YTT d SK100-VABe

nb
5 5

SiO2 32.17 (59)c 31.50 (40)
TiO2   1.13 (3)   0.78 (1)
Al2O3 14.67 (22) 16.20 (23)
FeOf 17.22(12) 16.01 (12)
MnO   0.71 (12)   0.70 (9)
MgO   1.13 (31)   0.69 (7)
CaO 10.32 (3)  10.21 (23)
La2O3   6.85 (25)   6.40 (26)
Ce2O3   9.27 (41)   9.96 (10)
Pr2O3   1.14 (5)   1.43 (7)
Nd2O3   3.27 (7)   3.74 (1)
Sm2O3   0.64 (11)   0.66 (6)
ThO2   1.85 (13)   0.94 (5)
H2O (calc) -   1.59h

H2O (meas)   0.64g   1.65g 

Total 101.01 100.87

Si 3.024 (14) 2.965(10)
Ti 0.080 (1) 0.054(1)
Al 1.624 (9) 1.797(14)
Fe3+ 0.920 (8) 0.361(4)
Fe2+ 0.332 (8) 0.859(4)
Mn2+ 0.057 (8) 0.055 (8)
Mg 0.158 (5) 0.097 (2)
Ca 1.039 (4) 1.030 (5)
La 0.237 (4) 0.222 (9)
Ce 0.319 (7) 0.343 (5)
Pr 0.039 (1) 0.049 (3)
Nd 0.110 (1) 0.126 (2)
Sm 0.021 (2) 0.021 (2)
Th 0.040 (2) 0.020 (2)
Σ cations 8.000 8.000
OH 0.400 1.000

Table 1 Chemical composition (wt %) of 
single-crystal allanitesa

Formula proportions of cations

b n : number of analyzed points

a These single crystals were used for FTIR and 
structure refinement

h Calculated by stoichiometry

e Fe2+/Fe3+  of SK100-VAB
allanite was calculated based on 8 cations and 
12.5 atoms of oxygen

d Chemical formula of YTT allanite was 
calculated based on 8 cations. The propotions of 
Fe2+ and Fe3+ were determined by maintaining  
charge balance between cations and anions.

c  Number in parenthesis is standard deviation

f Total Fe as FeO for YTT and SK100-VAB 
allanite

g Amount of H2O was determined by FTIR-ATR

table 1
Click here to download table: Table1.xls



SK100-VAB

Largest diffraction peak 
and hole (e/Å3)

1.53, -1.52

ω =1/[σ2(Fo 2) + (0.0413P )2 + 
2.15P ] where P =(F o2 + 
2F c2)/3

Absorption correction Ψ scans

Observed reflections F0 >
4σ(F0) 

1348 1390 

5625

114.69(1) 
10.096(2) 

R int value (%) 3.00 

Space group P 21/m

1494Unique reflections 1857

4.26, -2.24

9.00 

542.0 

7.25
1.07Goodness of fit 1.03

μ (mm-1) 7.4
Weighting scheme ω=1/[σ2(Fo 2) + (0.0839P )2 + 

0.93P ] where P =(F o2 + 
2F c2)/3

4.25
11.71

Collected reflections

5.738(1) 

Crystal size (mm)

8.891(2) 

468.0(1) 
P 21/m
2
0.05×0.05×0.05 0.05×0.05×0.05 

472.4(2)

F(000) 543.2

c  (Å) 10.370(4) 
b  (Å)

Sample name

R  value (%) 3.64

2

R w value (%) 10.80 

β   (°) 115.66(3) 

4058

Z

Table 2 Details on data collection and structure refinement  of allanites 

Diffractometer
Wavelength

Rigaku AFC7R
MoK α radiation (λ=0.71069Å)

Temperature 296 K
Scan mode

a (Å) 8.898(4) 

ω-2θ  scans

YTT

V ( Å3)

5.679(3) 

table 2
Click here to download table: Table2.xls
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Click here to download high resolution image



3600 3200 2800 1400 1050 700

Wavenumber (cm
-1

)

A
b

s
o

rb
a

n
c
e

Daibosatsu

Fig. 2 FTIR-ATR spectra of the powdered allanites  from Youngest Toba welded tuff (YTT),
SK100 volcanic ash beds (SK100-VAB) and Daibosatsu granitic pegmatite. Dotted lines
represent base lines of measurement curves for OH and reference peaks, while dashed lines
show the integrated area of the absorbance peaks.
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