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Abstract 

A major challenge in the development of functional thick tissues is the formation of 

vascular networks for oxygen and nutrient supply throughout the engineered tissue 

constructs. This study describes an electrochemical approach for fabrication of 

capillary-like structures, precisely aligned within micrometer distances, whose internal 

surfaces are covered with vascular endothelial cells. In this approach, an oligopeptide 

containing a cell adhesion domain (RGD) in the center and cysteine residues at both 

ends was designed. Cysteine has a thiol group that adsorbs onto a gold surface via a 

gold–thiolate bond. The cells attached to the gold surface via the oligopeptide were 

readily and noninvasively detached by applying a negative electrical potential and 

cleaving the gold–thiolate bond. This approach was applicable not only for a flat surface 

but also for various configurations, including cylindrical structures. By applying this 

approach to thin gold rods aligned in a spatially controlled manner in a perfusion culture 

device, human umbilical vein endothelial cells (HUVECs) were transferred onto the 

internal surface of capillary structures in collagen gel. In the subsequent perfusion 

culture, the HUVECs grew into the collagen gel and formed luminal structures, thereby 

forming vascular networks in vitro. 

 

*Abstract
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1. Introduction 

One of the major obstacles in engineering more complex and thick tissue 

constructs such as the liver, kidney, and lung is the need to fabricate vascular networks 

capable of delivering oxygen and nutrients throughout the tissues [1, 2]. Cells that are 

located more than a few hundred micrometers away from the nearest capillaries suffer 

from hypoxia and apoptosis [3, 4]. Thus, technologies for the fabrication of spatially 

controlled capillaries would be required to make significant progress in tissue 

engineering. Most approaches to engineering vascularized tissues have relied on 

neovascularization from the host after transplantation. Previous attempts have involved 

the use of growth factor-conjugated scaffolds and extracellular matrices and genetically 

modified cells as vascularization factors [5, 6]. In addition, recent approaches have 

demonstrated that in vitro co-cultures with endothelial cells lead to formation of 

capillary vessel networks in engineered tissues, and that such prevascularization 

improves the subsequent in vivo performance of the tissue constructs [7]. Although 

these studies have provided evidence that a part of the vessel network is anastomosed 

with the host vasculature, the anastomosis processes are generally considered to be too 

slow to maintain cellular survival: necrotic cell death occurs within minutes or hours, 

whereas the invasion and anastomosis of host vessels to prevascularized vessels requires 

*Manuscript
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days or months [8, 9]. In addition, drawbacks of the previous approaches are 

inhomogeneous distribution and inadequate vascular network connections in engineered 

tissues, and insufficient blood flow for the supply of oxygen and nutrients throughout 

larger tissue constructs. 

In this study, we propose a technology for the fabrication of the vascular network 

with a resolution of a few micrometers (Fig. 1). The key to this approach is the 

combination of electrochemical cell detachment and microscale technologies for 

uniform localization of endothelial cells on the inner surface of the capillaries. We 

previously reported that the cells attached to the gold surface via self-assembled 

alkanethiol monolayers were readily detached by applying a negative electrical potential 

[10]. In this study, as an alternative to alkanethiol, an oligopeptide was designed on the 

basis of the sequence of a natural extracellular matrix (Fig. 1A). By applying this cell 

detachment approach to thin gold rods aligned in a spatially controlled manner in a 

perfusion culture device, endothelial cells were transferred onto the surface of capillary 

structures (Fig. 1B). Although the structure is initially rough and primitive, angiogenesis 

from the surface with the endothelial cells eventually induces connections between the 

neighboring capillary structures in perfusion culture. This simple technique could 

potentially provide a fundamental tool for engineering surgically transplantable 
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vascularized tissues and organs. 

2. Materials and Methods 

2.1 Materials and reagents 

The materials used for the fabrication of culture substrates were as follows: glass 

wafers (#7740; diameter, 3 in.; thickness, 500 µm) from Corning, USA; glass rods 

(diameter, 600 μm; length, 3.2 cm) from Hirschmann Laborgeräte, Germany; L-cysteine 

from Wako Pure Chemicals Industries, Japan; and synthetic oligopeptide, 

CCRRGDWLC, from Sigma-Aldrich, Japan. The reagents used for cell culture were 

obtained from the following commercial sources: HUVEC (CC-2517A), endothelial 

basal medium-2 (EBM-2, CC-3156), and SingleQuots growth supplement (CC-3162) 

from Cambrex Bio Science, USA; collagen type I (Cellmatrix Type I-A) from Nitta 

Gelatin, Inc., Japan; Ham’s F12 medium from Invitrogen, Carlsbad, CA, USA; 

fluorescent diacetate (FDA) and ethidium bromide (EB) from Wako Pure Chemicals 

Industries, Osaka, Japan; phosphate buffer saline (PBS) solution from Invitrogen; 

phorbol 12-myristate 13-acetate (PMA) from Sigma-Aldrich. All other chemicals were 

purchased from Wako Pure Chemicals Industries, unless otherwise indicated. 

2.2 Design of the oligopeptide and modification on gold surface 

The oligopeptide CCRRGDWLC consists of an RGD domain in the center and 
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cysteine residues at both ends. RGD interacts with cell-surface integrins expressed on 

various cell types, including vascular endothelial cells [11, 12]. Cysteine has a thiol 

group that chemically adsorbs onto a gold surface via a gold–thiolate bond (Fig. 1A). 

Thus, the oligopeptide is designed such that it can be used for the adhesion of cells onto 

a gold surface. The modification process is very simple and does not require any organic 

chemistry. A gold surface was prepared by a sputter coating of a 1-nm layer of Cr and a 

40-nm layer of Au on a glass wafer. Then the wafer was cut into small pieces of 15 × 10 

mm. The gold substrate was modified by immersing into 1-mM aqueous solutions of the 

oligopeptide for 12 h at room temperature. The substrate was then rinsed with pure 

water and sterilized with 70% ethanol for cell culture. The amount of the chemically 

adsorbed oligopeptide was estimated using a quartz crystal microbalance (QCM, 

AFFINIX-QN; Initium, Tokyo, Japan) by determining the change in frequency before 

and after the adsorption. 

2.3 Cyclic voltammetry 

Cyclic voltammetry was employed to determine the reductive potential for 

desorption of the oligopeptide adsorbed on the gold surface. Immediately before cyclic 

voltammetry testing, an electrolyte solution containing 0.5 M KOH was deoxygenated 

by bubbling nitrogen gas for 20 min. The oligopeptide-modified gold substrate, a 
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Ag/AgCl reference electrode (#2080 A; Horiba, Tokyo, Japan), and a platinum auxiliary 

electrode were set in the electrolyte solution and connected to an electrochemical 

measurement system (AUTOLAB; Metrohm Autolab, The Netherlands). In this study, 

all potential values refer to those measured with respect to a Ag/AgCl electrode. A 

cyclic voltammogram was recorded at the scanning rate of 20 mV/s from 0 to –1.0 V. 

2.4 Cell preparation 

HUVECs were cultured in EBM-2 supplemented with SingleQuots growth 

supplement (vascular endothelial growth factor, fibroblast growth factor-B, and fetal 

bovine serum) at 37 °C and 5% CO2 in a humidified incubator. The medium was 

changed every other day. Each passage was conducted with a solution of 0.25% trypsin 

and 0.02% ethylenediamine tetraacetic acid (EDTA) after 3 to 4 days, when the cells 

were resuspended in fresh medium and diluted 1:3. Cells from passages 3 through 8 

were used for experiments. 

2.5 Detachment of cells along with electrochemical desorption of the oligopeptide 

The substrate modified with the oligopeptide was placed in a typical 35-mm dish, 

and HUVECs were seeded at a density of 1.5 × 10
5
 cells in 2-mL culture medium. The 

cells were cultured for 18 h at 37 °C and 5% CO2 in a humidified incubator. Then the 

substrate was washed with PBS and connected to a potentiostat (HA-151; 
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Hokuto-Denko, Japan). After applying a potential of –1.0 V for 1, 2, 3, 5, and 7 min, the 

substrate was washed gently and the remaining cells were counted under a phase 

contrast microscope (IX-71; Olympus Co., Japan). For comparison, the same 

experiments were conducted without the oligopeptide (cells attached directly to a gold 

surface) or by applying a potential of –0.5 V, which is smaller than that required for 

desorption of the oligopeptide. 

To transfer cells to the collagen gel using this approach, adherent cells on the 

substrate were covered with collagen solution. The collagen solution was previously 

prepared by mixing type I collagen (3.0 mg/mL), 10-fold concentrated Ham’s F12 

medium, and reconstitution buffer containing 0.05 N NaOH, 200 mM HEPES, and 

2.2% NaHCO3 at a ratio of 8:1:1 on ice. After gelation of the collagen, the gel layer was 

peeled off from the substrate after applying a potential of –1.0 V for 5 min. Cell 

viability after the detachment was evaluated with a live/dead fluorometric assay with 

FDA and EB [13]. 

2.6 Fabrication of capillary-like structures 

A thin gold rod was prepared by a sputter coating of layers of Cr and Au on a glass 

stick of 600-µm diameter. Similar to the glass wafer surface, the surface of the gold rod 

was modified with the oligopeptide. The modified gold rod was then rinsed with pure 
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water and sterilized with 70% ethanol. The gold rods were placed in a cell-nonadherent 

35-mm dish (Techno Plastic Products, Switzerland) and HUVECs were seeded at a 

density of 3.0 × 10
5
 cells in 2-mL culture medium. The cells were attached to the gold 

rods and grown to reach confluence for 3 to 4 days. 

The chamber for perfusion culture (Fig. 1B) was fabricated with a poly(methyl 

methacrylate) plate using computer-aided laser machining (Laser PRO C180; GCC, 

Taiwan). The volume of the chamber was 1.5 mL. The chamber had three pairs of holes 

of 800 μm in diameter at intervals of 500 μm for the guidance of the gold rods. The gold 

rods with cells were fixed in the chamber, and 1.5 mL of the collagen solution was then 

poured into the chamber. After the gelation of the collagen, the rods were carefully 

extracted by applying a potential of –1.0 V for 5 min. Then the chamber was connected 

to a microsyringe pump and culture medium was perfused at 10 µL/min. To accelerate 

spontaneous vascularization, PMA was added to the culture medium to give a final 

concentration of 20 ng/mL [14, 15]. 

2.7 Scanning electron microscopy   

To observe cells on the gold rods under a scanning electron microscope (SEM), the 

culture was washed with PBS thrice and fixed with a mixed solution of 2.5% 

glutaraldehyde and 2% formaldehyde in PBS for 1 h at room temperature. Then, the 
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culture was washed with PBS and fixed with 1% osmium tetroxide in PBS for 1 h at 

4 °C. The culture was washed with purified water and dehydrated with a graded ethanol 

series from 30% to 90% on ice and absolute ethanol substitution three times at room 

temperature. The solution was further substituted with 100% t-butanol, which was 

frozen at 4 °C and dried by vacuum freeze-drying. The cells were observed under a 

SEM (ED-SEM; JEOL, Japan) operated at 5 kV. 

3. Results and Discussion 

3.1 Electrical potential required for desorption of the oligopeptide 

The amount of oligopeptide adsorbed on the gold surface was estimated to be 8.7 ± 

1.4 ng/cm
2
 from three independent measurements with a QCM. This value corresponds 

to 159 pmol/cm
2
, which is high enough for the adhesion of cells (typical cases have 

required a maximum of ~20 pmol/cm
2
) [16]. Cyclic voltammetry showed that the peak 

potentials for reductive desorption of the oligopeptide and cysteine were approximately 

–0.86 V and –0.70 V, respectively (Fig. 2). The relationship between the molecular 

configurations and the peak potentials required for cleaving the gold–thiolate bonds has 

been previously discussed in detail in experiments involving self-assembled alkanethiol 

monolayers [17, 18]. The shape and potential of the peak are considered to be closely 

associated with a van der Waals interaction between the adsorbed molecules and the 
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steric structure of the molecules [19, 20]. As seen in Fig. 2, the peak for the oligopeptide 

is wider than that for cysteine, suggesting that the oligopeptide formed a relatively loose 

layer on the surface and had weak interactions with neighboring oligopeptides, probably 

because of its bulky structure. In general, the number of adsorbed molecules can be 

estimated from both the peak area in a cyclic voltammogram and by using a QCM. The 

amount of oligopeptide estimated by using a QCM was five times greater than that 

determined from the cyclic voltammogram. This fact suggests that the oligopeptide 

possibly forms intermolecular cross-links via disulfide binding, and a part of the thiol 

group bonds to the gold surface. Although the details of the surface chemistry are still 

unclear, on the basis of the results that the oligopeptide desorbed in the potential range 

of –0.8 to –1.0 V, –1.0 V was used for detachment of cells in the subsequent 

experiments. 

3.2 Change in HUVEC morphology during cell detachment 

HUVECs were readily attached via the oligopeptide and spreaded out on the gold 

surface (Fig. 3A). There was no significant difference in the number of cells attached 

onto the gold surface with or without modification with the oligopeptide (1.0 to 1.5 × 

10
4
 cells/cm

2
). At 18 h of culture, the cells attached onto the gold surface with the 

oligopeptide were detached by applying a potential of –1.0 V. Figures 3B–J show the 
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change in HUVEC morphology at 20-s intervals during the detachment. The cells were 

gradually detached from the adhesive ends and appeared bright and round after the 

application of the potential. These cells were identified to be detached after gentle 

pipetting (Fig. 3K). 

To quantitatively analyze the detachment, the number of cells that remained on the 

surface was counted at 1, 3, 5, and 7 min after the application of the potential (Fig. 4). 

When the oligopeptide and an electrical potential of –1.0 V were used, more than 90% 

of the cells detached from the surface within 7 min. On the other hand, the behavior of 

the cells was clearly different in the control experiments (conditions of no oligopeptide 

or application of a potential of –0.5 V, which is smaller than that required to cleave the 

gold–thiolate bond). These results suggest that cell detachment occurs mainly due to the 

electrically dependent desorption of the oligopeptide. 

There are a few reports regarding the electrochemical detachment of cells. A 

self-assembled monolayer with electroactive sites that respond to electrical potentials 

has been used for micropatterning of cells by detachment of cells from a selective 

region [21]. We have also previously shown that cells or cell sheets on the gold surface 

modified with alkanethiol could be detached by application of a potential [10]. To 

promote the adhesion of cells, the carboxyl terminal of alkanethiol has been coupled 
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with an RGD peptide through carbodiimide-mediated cross-linking. Multilayered 

polyelectrolyte films formed by layer-by-layer deposition have also been used to detach 

cell sheets [22]. In this approach, the application of the relatively large potential, –1.8 V, 

induces electrolysis of water and a local pH change, leading to the dissolution of the 

polyelectrolyte film and the detachment of cell sheets. An unsolved issue in these 

previous approaches is that molecules and other chemicals may be contained in the 

detached tissues and potentially could cause inflammatory responses in the body after 

transplantation. To alleviate this problem, we used an oligopeptide in this study. Since 

the oligopeptide contains an RGD sequence and spontaneously bonds to a gold surface, 

the culture surface could be prepared without the use of coupling agents, simply by 

immersing a gold-coated substrate in a peptide solution. This may be advantageous for 

the widespread use of this technology in biological and medical laboratories. 

3.3 Transfer of cells from the gold surface to collagen gel 

After the collagen solution was poured and gelated on HUVECs on the gold surface 

with or without modification with the oligopeptide, a potential of –1.0 V was applied 

for 5 min and the gel layer was peeled off. The cells that were attached to the gold 

surface with the oligopeptide were transferred to the gel, whereas in the case where the 

oligopeptide was not used only a few cells were transferred. Figures 5B and C show the 
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surface of the substrates after peeling off the gel when the oligopeptide was and was not 

used, respectively. We then evaluated the viability of the transferred cells in the gel by 

staining live cells with FDA (green) and dead cells with EB (red). Although the gelation 

may have trapped the cells in proximity to the electrode surface during the potential 

application, almost all the cells transferred were viable and few dead cells were 

observed in the gel (Fig. 5D). In the absence of the oligopeptide, only a small number of 

cells were transferred to the gel, some of which were dead cells (Fig. 5E). Figure 5F 

shows the cells cultured for 24 h after the transfer into the gel. The cells grew and 

formed connections with each other on the gel. These results show that this approach 

(using an electrochemical reaction) can be used to transfer cells to the collagen gel 

noninvasively. 

3.4 Fabrication of capillary-like structures in collagen gel 

We applied this approach for the fabrication of capillary-like structures by 

transferring cells from thin gold rods to the inner surface of capillaries in a collagen gel 

(Fig. 1B). The rods covered with HUVECs (Figs. 6A and B) were aligned in the 

chamber and a collagen solution was poured and allowed to form a gel. After applying a 

potential of –1.0 V for 5 min, the rods were carefully extracted from the chamber 

through guide holes, resulting in the formation of capillaries enveloped with HUVECs. 
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The capillaries were formed at ~500-µm intervals (Fig. 6C) and were 16 mm in length 

(Fig. 6D). 

The guide holes were then connected to silicone tubes and the culture medium 

containing PMA was perfused through the capillaries at a flow rate of 10 μL/min. 

Although the perfusion of culture medium was not necessarily required for oxygen 

supply in this experiment, when parenchymal cells such as hepatocytes are seeded in the 

collagen, a prompt initiation of culture medium flow will be required to satisfy their 

oxygen demand. Another approach was reported wherein a channel structure was 

constructed in a collagen gel and endothelial cells were then seeded into it to form a 

capillary-like structure. However, that approach required that the flow of culture 

medium was stopped for a while and the device was rotated to let cells attach to the 

inner surface of the channel, thereby making it difficult to stably supply oxygen to 

parenchymal cells [23]. 

The flow rate used in this study was relatively low in comparison with those 

observed in in vivo peripheral vessels. The shear stress caused by the flow was 

calculated to be 0.12 dyn/cm
2
 in this study, whereas it was 1–5 dyn/cm

2
 in the venules 

[24]. During the perfusion culture, the HUVECs were oriented in the direction of the 

stream at 6 h (Fig. 6F) and partly began to migrate into the collagen gel at 48 h at the 
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earliest (Fig. 6G). The formation of luminal structures in the collagen gel was dependent 

on the time and position. In a representative case, the HUVECs began to sprout at 4 

days of perfusion culture, and reached the neighboring channels and bridged them with 

a luminal structure at ~7 days (Fig. 6J). 

PMA was required for the induction of sprouting and formation of luminal 

structures. Although the culture medium contained vascular endothelial growth factor 

and fibroblast growth factor-B, capillary formation was not observed in a highly 

reproducible manner, which was in contrast to that observed in the case of the medium 

supplemented with PMA. PMA is a potent promoter of tumor development and 

progression and activates the signal transduction enzyme protein kinase C because of its 

structural similarity to one of the natural activators, diacylglycerol [25, 26]. Although 

PMA is currently employed in phase-I clinical trials for the treatment of patients with 

hematologic cancer or bone marrow disorder [27], its use should be avoided to prevent 

the development of its clinical side effects. Because HUVECs are known to form 

capillaries in a collagen gel when cultured in medium containing the abovementioned 

growth factors, optimization of the concentrations of these growth factors or their 

embedment in the collagen gel may lead to the development of a more suitable approach, 

which will eliminate the need for PMA. 
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4. Conclusion 

This study demonstrated an electrochemical technique to fabricate capillaries whose 

internal surface was covered with vascular endothelial cells in collagen gel. In this 

approach, HUVECs were attached to a gold surface via an oligopeptide. The cells were 

detached by applying a negative potential that reductively cleaved the gold–thiolate 

bonds. This technique allowed for detachment of more than 90% of the attached cells 

within 7 min of applying the negative potential, and could be used to detach cells not 

only from flat surfaces but also from thin rods. To fabricate the capillaries, a gold rod 

enveloped with HUVECs was inserted into a collagen gel. The rod was then extracted 

by applying a potential of –1.0 V, resulting in the formation of a capillary, which was 

enveloped with endothelial cells, in the collagen gel. During the subsequent perfusion 

culture, luminal structures were formed from the HUVECs lining the capillary and they 

bridged the neighboring capillaries to each other. This approach has potential for 

engineering vascularized tissues capable of delivering oxygen and nutrients to the entire 

tissue construct. 
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Figure Captions 

Figure 1. Cell detachment along with reductive desorption of the oligopeptide. (A) The 

oligopeptide CCRRGDWLC was chemically adsorbed onto a gold surface at both 

terminals via a gold–thiolate bond. Cells attached to the surface were detached during 

the reductive desorption of the oligopeptide. (B) Thin gold rods enveloped with cells 

were aligned in a spatially controlled manner in a chamber. By applying a potential and 

extracting the rods from the collagen gel, the cells were transferred onto the surface of 

capillaries. The device was connected to a microsyringe pump for perfusion of culture 

medium. The capillaries connect with each other to form luminal structures. 

 

Figure 2. Cyclic voltammogram obtained during the reductive desorption of the 

oligopeptide. The current peaks for the oligopeptide (○) and L-cysteine (●) were –0.86 

V and –0.71 V, respectively. Cyclic voltammograms were recorded at a scanning rate of 

20 mV/s with respect to a Ag/AgCl reference electrode. The working electrode area was 

1.0 cm
2
. 

 

Figure 3. Detachment of HUVECs from the gold surface. (A) Cells were readily 

attached to the gold surface modified with the oligopeptide during culturing for 12 h. 

Captions



(B)–(J) The change in cell morphology during the application of the electrical potential 

was observed at 20-s intervals. The cells were gradually detached from the adhesive 

ends and appeared bright and round after the application of the potential. (K) The cells 

were withdrawn into a micropipette and found to be detached. 

 

Figure 4. Change in the number of HUVECs remaining on the gold surfaces. 

Approximately 90% of cells were detached within 7 min along with the desorption of 

the oligopeptide (●). Few cells detached from the surface in the absence of the 

oligopeptide (i.e., cells were directly attached to a gold surface [○] and a potential of 

–0.5 V, which is smaller than that required to cleave the gold–thiolate bond [□]). The 

error bars indicate SD calculated from nine independent experiments for each plot. 

 

Figure 5. Transfer of HUVECs to a collagen gel. Cells that attached to the gold surface 

modified with the oligopeptide (A) were transferred to a collagen gel, and few cells 

remained on the surface after potential application and peeling off the gel (B). Most of 

the cells remained attached on the gold surface that was not modified with the peptide 

even after the same potential was applied and the gel was peeled off (C). The cells 

transferred to the gel were viable, and few cells that were attached onto the surface 



modified with the peptide died (D), whereas only few cells that were attached onto the 

surface without peptide modification were transferred to the gel (E). The transferred 

cells grew and spread out on the gel at 1 day of culture (F). 

 

Figure 6. Fabrication of capillary-like structures in collagen gel and formation of 

vascular networks. HUVECs were attached to the gold rod via the oligopeptide and 

grown to reach confluence at 3 days of culture (A, B). The capillaries were formed at ~ 

500-µm intervals in a collagen gel (C). HUVECs were transferred throughout the 

capillaries (16-mm length) from the inlet to the outlet (D). The transferred HUVECs (E) 

oriented in the direction of the stream at 6 h of perfusion culture (F). HUVECs began to 

partly migrate into the collagen gel as early as 48 h (G). For the most part, HUVECs 

grew to form a dense cell layer on the surface at 2 days (H), and began to migrate into 

the collagen gel at ~4 days (I). At ~7 days, the luminal structures extended to the 

neighboring channels and bridged them (J). 
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