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Abstract. Assume given a three-dimensional bounded domain with an
unknown conductivity distribution inside. Further, suppose that the conductivity
consists of a known background and unknown anomalous regions (inclusions)
where conductivity values are unknown and different from the background. A
method is introduced in [Ide et al., Comm Pure Appl Math 60, 2007] for locating
inclusions approximately from noisy localized voltage-to-current measurements
performed at the boundary of the body. The method is based on the use of
complex geometrical optics solutions and hyperbolic geometry; numerical testing
is presented in the aforementioned paper for the two-dimensional case. This work
reports the results of computational implementation of the method in dimension
three, where both the simulation of data and the computerized inversion algorithm
are more complicated than in dimension two. Three new regularizing steps are
added to the algorithm, resulting in significantly better robustness against noise.
Numerical experiments are reported, suggesting that approximate location of the
inclusions can be reliably recovered from data with realistic level of measurement
noise. Potential applications of the results include early diagnosis of breast cancer,
underground contaminant detection and nondestructive testing.
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1. Introduction

Assume given a three-dimensional bounded domain with a strictly positive
conductivity distribution inside. Further, suppose that the conductivity consists of
a known background and possible anomalous regions (inclusions) where conductivity
values are unknown and different from the background. A method is introduced
in [43] for locating inclusions approximately from noisy local voltage-to-current
measurements performed at the boundary of the body. That method is based on the
use of complex geometrical optics solutions and hyperbolic geometry; one essentially
probes the unknown body with balls and decides, using boundary measurements
localized inside the ball, whether the ball intersects an inclusion or not. Numerical
testing is presented in [43] for the two-dimensional case. In this paper we explain
how to implement the method in a three-dimensional setting and demonstrate it on
simulated noisy data. Further, three new regularizing steps are added to the algorithm
described in [43], resulting in significantly better robustness against measurement
noise.

Our results can be seen as a new imaging method for three-dimensional electrical
impedance tomography (eit), applications of which include early diagnosis of breast
cancer, underground contaminant detection and nondestructive testing. See [28] for a
review of eit.
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Let Ω be a bounded open set with smooth boundary in R3 and consider the
following boundary value problem:{

∇ · (γ(x)∇v) = 0 in Ω,
v = f on ∂Ω.

(1.1)

We assume that γ ∈ L∞(Ω) and that γ(x) ≥ c0 > 0 almost everywhere in Ω. Define
the Dirichlet-to-Neumann (DN) map Λγ : H1/2(∂Ω) → H−1/2(∂Ω) by

Λγ : f → γ(x)
( ∂v

∂n

)∣∣∣
∂Ω

,

where v is the solution to (1.1) and n is the outer unit normal to ∂Ω. Here γ represents
the electric conductivity inside a physical body, v is the voltage potential, and the
linear operator Λγ models static voltage-to-current measurements at the boundary.

The inverse conductivity problem of Calderón [25] has two parts: uniqueness
and reconstruction. The uniqueness question is to find out whether γ is uniquely
determined by Λγ , and the reconstruction task is to calculate γ(x) given the knowledge
of Λγ . Since the reconstruction problem is severely ill-posed, in practical eit it is
important to design reconstruction algorithms that are robust against measurement
noise. Moreover, it is often enough to recover only some features of the conductivity,
such as location of inclusions, instead of the point values γ(x) for all x ∈ Ω.

We consider detection of inclusions in a three-dimensional body Ω from local
boundary measurements done on a fixed subset Γ ⊂ ∂Ω. Let a background
conductivity γ0(x) ∈ C∞(Ω) be given. Assume that Ω1 is an open set with piecewise
smooth boundary ∂Ω1 and that Ω1 ⊂ Ω. We consider conductivities of the form

γ(x) =
{

γ1(x), x ∈ Ω1,
γ0(x), x ∈ Ω0 := Ω \ Ω1,

with γ1(x) ∈ L∞(Ω) such that γ(x) ≥ c0 > 0 almost everywhere in Ω. Further, we
assume that γ1(x) − γ0(x) has a constant sign on Ω1, and for any p ∈ Ω1, there exist
constants C > 0 and ε > 0 such that C−1 < |γ1(x) − γ0(x)| < C if |x − p| < ε.

Define the associated Dirichlet-to-Neumann maps by

Λ0 : f → γ0

(∂u

∂n

)∣∣∣
∂Ω

, Λ : f → γ
( ∂v

∂n

)∣∣∣
∂Ω

,

where v is the solution to (1.1) and u solves equation (1.1) with γ replaced by γ0.
Now the problem is to find information about the inclusion set Ω1 from the knowledge
of Λ0f and Λf + cη, where f may range over a collection of functions supported on
Γ ⊂ ∂Ω. Here η is random measurement error modelled by white noise with unit
standard deviation, and c ≥ 0 is the noise amplitude.

Now Theorem 1.1 of [43] outlines how to detect inclusions from infinite presicion
data (i.e. c = 0) by probing with balls:

(i) Place the body Ω in the upper half space R3
+ so that ∂Ω has a positive distance

from {x ∈ R3 |xd = 0}.
(ii) Draw a ball B(0, R) such that (B(0, R) ∩ ∂Ω) ⊂ Γ.
(iii) For large τ > 0, compute I(τ) = 〈(Λ − Λ0)fτ , fτ 〉Γ.
(iv) If I(τ) → 0 as τ → ∞, we infer that B(0, R) does not intersect the inclusion.
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(v) If I(τ) → ∞ as τ → ∞, we infer that B(0, R) ∩ Ω1 6= ∅ and that γ1(x) > γ0(x)
inside the inclusion Ω1. If I(τ) → −∞ as τ → ∞, we infer that B(0, R)∩Ω1 6= ∅
and that γ1(x) < γ0(x) inside the inclusion.

The essential part of the above method is the choice of Dirichlet data fτ . In the
constant background case γ0 ≡ 1 the functions fτ take a particularly simple form, see
Section 2.2 below. For more general background conductivities we refer to [43] for the
construction of appropriate Dirichlet data.

In practical situations when c > 0 it is not possible to compute the limit τ → ∞
since the measurement noise will be multiplied by a factor that depends exponentially
on τ , and the Dirichlet data corresponding to large τ values is very oscillatory and
cannot be approximated by practical electrode measurements. Therefore, following
[43], the steps (iii), (iv) and (v) are replaced by

(iii)′ Take 0 < τ1 < τ2 and compute the corresponding inner products

I1 := 〈(Λ − Λ0)fτ1 , fτ1〉Γ and I2 := 〈(Λ − Λ0)fτ2 , fτ2〉Γ.

(iv)′ Use the noise level c > 0 to choose a threshold εT > 0 as explained in Section
3.2.3 below. If |I1| < εT or |I2| < εT, then we infer that B(0, R) does not intersect
the inclusion. Otherwise, continue to Step (v)′.

(v)′ If I1 ≥ I2 > 0 or I1 ≤ I2 < 0, we infer that B(0, R) does not intersect the
inclusion.

(vi)′ If I2 > I1 > 0, then we infer that B(0, R)∩Ω1 6= ∅ and that γ1(x) > γ0(x) inside
the inclusion Ω1. If I2 < I1 < 0, then we infer that B(0, R) ∩ Ω1 6= ∅ and that
γ1(x) < γ0(x) inside the inclusion.

Of course, steps (iii)′, (iv)′ and (v)′ give only approximate information whereas steps
(iii), (iv) and (v) hold exactly. However, the necessity of using the modified steps
is a consequence of the inherent ill-posedness of the inverse conductivity problem.
Note that our algorithm does not involve the solution of any direct problem, so it is
computationally effective.

We introduce the following additional techniques to improve the robustness of
inclusion detection:

(a) rotation of Dirichlet boundary conditions,
(b) restriction of probing depth, and
(c) stabilization of distance estimation process.

The process (a) enables us to reduce the effect of asymmetric distribution of Dirichlet
data to the accuracy of the distance estimation. The restriction of the probing depth
in (b) is employed in order to avoid inaccurate approximation of the distance in the
case that the distance from a center point to the inclusion is large. The third one, (c),
is to stabilize the inclusion detection algorithm in the case that measurement noise
results in large error in the inner product.

Let us review the relevant literature on the inverse conductivity problem. We
restrict our review to results in dimension three.

The first uniqueness result was given by Kohn and Vogelius [59] for piecewise
analytic conductivities. Uniqueness for infinitely smooth conductivities was proved by
Sylvester and Uhlmann in [75], and the smoothness requirement was later relaxed in
[1, 21, 27, 39, 70, 72, 74]. The above works assume measuring on the whole boundary;
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uniqueness proofs for local data are given in [24, 54, 56, 57, 71]. Curiously, [59] is still
the only result establishing global uniqueness in dimension three for a class containing
discontinuous conductivities.

Reconstruction of the full conductivity in 3D was discussed by Calderón for the
linearized problem in [25]; a numerical implementation in dimension three was done
in [20]. First theoretical reconstructions were given, independently, in [73] and [70].
Numerical reconstruction method based on [70] was discussed in [30] and implemented
in [18] and [20]. Practical reconstruction methods based on regularization and aiming
at full reconstruction in 3D are reported in [19, 38, 64, 65, 66, 67, 77, 78, 79, 80].

The study of detecting inclusions was initialized in [33, 34]. Important uniqueness
results include [2, 4, 5, 35, 53, 59]. Local measurements are known to yield information
about discontinuities in conductivity in the case of a bounded domain [44, 46, 49], an
infinite slab [47], and multilayered medium [48]. In the case of polyhedra, uniqueness
was established in [17, 57]. Characterization of inclusions using variants of the
factorization method has been described in [22, 41, 42, 62], and practical recovery of
inclusions is reported in [40, 37]. A numerical inclusion detection method is proposed
in [55]. Recovering medically relevant information from local boundary measurements
is discussed in [68, 69]. There is an extensive body of work aiming at the estimation of
the size of inclusion: [7, 8, 9, 60, 6, 3, 45, 63, 31]. For methods dedicated to detecting
small inhomogeneities, see [11, 13, 15, 26, 10, 12, 14, 16, 61].

The use of complex geometrical optics solutions for numerical detection of
inclusions was initiated (simultaneously and independently) in [23, 50] by probing
with half-planes using the enclosure method of Ikehata [46]. That approach was later
generalized to probing with cones in [51], with balls in [43], and with more general
shapes in [76]. The present work is the first three-dimensional implementation of a
detection method based on complex geometrical optics.

This paper is organized as follows. In Section 2 we test the method in the case of
layered medium, where the ground truth can be computed analytically for comparison.
Section 3 is devoted to a numerical study of detecting three-dimensional inclusions
from localized noisy eit data. In particular, Section 3.2 provides a discussion of the
three steps we take to add robustness of the method against noise. Finally, we conclude
our results in Section 4.

2. Layered medium

Let us consider a simple setting of material with one interface between two layers of
different conductivities. This case can be used to test our computer algorithms since
some functions that appear in this case can be computed analytically.

2.1. Geometry of the problem

We take Ω to be the square

Ω = {(x1, x2, x3) : −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 2} ⊂ R3,

and denote the bottom boundary of Ω by Γ:

Γ = {((x1, x2, x3) : −1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, x3 = 0)}.
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The voltage-to-current measurements are performed on a localized area in Γ. The
inclusion we assume in this problem is the layered area given by

Ω1 = {(x1, x2, x3) : −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, h ≤ x3 ≤ 2} ⊂ R3,

where h is the height of the interface from the bottom as shown in Fig. 1. Assume
the background conductivity γ0 = 1.0, the conductivity of inclusion γ1 = 4.0 and the
center point x0 = (−0.2, 0, 0). The goal of this test problem is to estimate the distance
from x0 to the inclusion using the localized voltage-to-current measurements.

2.2. Dirichlet data

An approximation of the voltage distribution used for determining inclusions, as
suggested in [43], is given by

uτ (x) '
√

y3

x3
e−τy1+iτy3 , (2.1)

where

y1 =
x2

1 + x2
2 + x2

3 − R2

(x1 + R)2 + x2
2 + x2

3

, y3 =
2x3R

(x1 + R)2 + x2
2 + x2

3

. (2.2)

We use fτ defined above as the Dirichlet data imposed on the localized boundary
B(x0, R) ∩ ∂Ω with truncation so that the support of the voltage is restricted inside
the ball, i.e.

fτ =
{

uτ , x ∈ B(x0, R) ∩ ∂Ω,
0, otherwise.

Examples of the Dirichlet data on Γ corresponding to different radii with τ = 2 and
2.5 are shown in Fig. 2. The figure illustrates the real part of fτ . The imaginary part
also behaves in a way similar to the corresponding real part, i.e. the voltage vanishes
to zero as a point on the localized boundary approaches to its edge. Although the
increase of τ results in higher fluctuation in the boundary voltage as seen in this figure
and as supposed from (2.1), the modified version of our algorithm, (iii)′, (iv)′ and
(v)′, avoids the situation and allows us to run the procedure even if τ ’s are not large
enough to see the limit value of the inner product in (iv). The asymmetric and non-
uniform distribution of the voltage, as shown also in Fig. 2, arises from the coordinate
transform in (2.2) and results in asymmetric performance of the inclusion detection
algorithm, i.e. the accuracy of the inclusion detection depends on the coordinate
system. In section 3 we provide an idea to solve this drawback.

2.3. Dirichlet-Neumann map for homogeneous conductivity

Let us consider the following Dirichlet problem with homogeneous conductivity: ∆u = 0 inΩ,
u = ϕmn(x1, x2) onΓ,
u = 0 on∂Ω\Γ,

where ϕmn(x1, x2) = sin{πm(x1 + 1)/2} sin{πn(x2 + 1)/2}. The functions ϕmn are
eigenfunctions of the DN map, i.e. Λ0ϕmn = λ

(0)
mnϕmn, where λ

(0)
mn are the eigenvalues

correspoinding to ϕmn given by

λ(0)
mn =

√
m2 + n2π(1 + e−2

√
m2+n2π)

2(1 − e−2
√

m2+n2π)
.
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2.4. Dirichlet-Neumann map for layered medium

Let us consider the following Dirichlet problem with layered conductivity: ∇ · (γ∇u) = 0 inΩ,
u = ϕmn(x1, x2) onΓ,
u = 0 on∂Ω\Γ,

where ϕmn(x1, x2) = sin{πm(x1 + 1)/2} sin{πn(x2 + 1)/2} and γ is the layered
conductivity with an interface at x3 = h as defined in subsection 2.1. The DN map of
ϕmn can be written as Λϕmn = λmnϕmn, where λmn are the eigenvalues of Γ given
by

λmn = α
(σ − 1)(e2α(h−2) + e−2αh) + (σ + 1)(e−4α + 1)
(σ − 1)(e2α(h−2) − e−2αh) − (σ + 1)(e−4α − 1)

, α =
√

m2 + n2

2
π.

2.5. Layered medium: numerical studies

This numerical test aims at evaluating the performance of the algorithm in the layered
medium case. The inner product in (iii)′ can be calculated, using the eigenvalues and
eigenvectors shown in the previous subsections, as

〈(Λ − Λ0)fτ , fτ 〉Γ =
∑
m,n

|amn|2(λmn − λ(0)
mn), (2.3)

where amn are the coefficients of the sine series expansion:

fτ (x1, x2) =
∑
m,n

amnϕmn(x1, x2).

We fix the height h and compute the inner product (2.3) for varying radius R with two
different parameters, τ1 and τ2. The inner product for a fixed radius approximately
determines whether the ball intersects with the intersection or not using the criterion
in (iv)′. The property in (iv)′ leads to an approximate distance between x0 and Ω1

by taking the maximum radius that satisfies I1 ≥ I2, i.e. the approximate distance is
the intersection of two graphs of the inner product drawn as functions of R for two
different τ ’s. Fig. 3 illustrates the graphs of the inner products using two different
parameters, τ1 = 2.0 and τ2 = 2.5. The left columns illustrate the geometry of the
problem domain and the inclusion, center columns are the plots of I1 and I2 computed
using the formula (2.3). In order to investigate the effect of noise in measurements,
we added white noise to Neumann data by replacing Λfτ to Λfτ + cη, where η is the
white noise of which standard deviation is 1 and c is noise amplitude satisfying

c = ‖η‖∞/‖Λfτ‖∞.

The images in the right columns of Fig. 3 are the plots of I1 and I2 computed with
noise, where noise amplitude c = 1.0 × 10−4. Such noise amplitude is attainable
by practical measurement devices; for example a signal-to-noise ratio of 95.5 dB is
reported in [29], corresponding to 1.7 × 10−5 in our notation.

3. Homogeneous background with inclusions

In this section the performance of the algorithm to detect inclusions is examined with
arbitrarily located inclusions. The goal is to partially recover the shape of the inclusion
using approximate distances from multiple center points to the inclusion.
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3.1. Geometry of the problem

Let us consider the same domain Ω as in section 2 and inclusions arbitrarily located
in Ω, where the conductivities of the background and the inclusion are 1 and 4,
respectively. We assume multiple probing balls centered below the bottom boundary at
x3 = −0.2 as shown in the left column of Fig. 5, where the centers are the points given
as 10×10 uniformly located grid points on the square (x1, x2) ∈ [−0.8, 0.8]×[−0.8, 0.8].
Let us denote the center points by x

(j)
0 (j = 1, . . . , J). The radius of each probing ball

is chosen so that the intersection of the ball and the boundary of the problem domain
is inside the bottom boundary, i.e. 0.2 < R ≤ Rmax(x

(j)
0 ), where Rmax(x

(j)
0 ) is the

distance from x
(j)
0 to the closest edge of the bottom boundary. The right column of

Fig. 5 shows the area defined as the union of the balls with maximum radii,

Qmax :=
J∪

j=1

(B(x(j)
0 , Rmax(x

(j)
0 )) ∩ Ω),

i.e. Qmax is the area where the probing is performed.
Let Rrec(x0) be the approximation of the distance from x0 to the inclusions

obtained by the algorithm given in section 1. If the largest ball does not intersect
with any of the inclusions, we employ the maximum radius Rmax(x0) as Rrec(x0).
Then the union of the balls with estimated radii, i.e.

Drec :=
J∪

j=1

(B(x(j)
0 , Rrec(x

(j)
0 )) ∩ Ω)

gives the area in which any inclusions do not exist.

3.2. Enhancements of inclusion detection

In the present study we incorporate three additional processes to enhance the
reconstruction algorithm.

3.2.1. Dirichlet data with rotation
The detection algorithm introduced in section 1 inheres the problem of asymmetry
of the Dirichlet data as discussed in subsection 2.2. Namely, the performance of the
inclusion detection varies depending on the coordinate system due to the asymmetric
transform in (2.2) even if the same probing ball is used. In order to address the
problem, we use multiple Dirichlet data per one ball defined as rotations with different
angles.

Let us assume a coordinate system (x′
1, x

′
2, x

′
3) originated at a given center point

x0 with a set of orthogonal bases, {e′1, e′2, e′3}, chosen so as to satisfy

Ω ⊂ {x = x′
1e

′
1 + x′

2e
′
2 + x′

3e
′
3 |x′

3 > 0}.

We define the rotation of the Dirichlet data with an angle θ as:

fτ (x; θ) = u(x′′
1 , x′′

2 , x′
3)|Γ , (3.1)

where (x′′
1 , x′′

2) are the rotated coordinate of (x′
1, x

′
2) about x′

3 axis with angle θ. Fig. 4
shows examples of the Dirichlet data corresponding to angles θ = 0, π/2, π and 3π/2,
where the probing ball is taken at x0 = (0.2, 0.4,−0.2) and R = 0.5.
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We define the reconstruction obtained using a rotation θ by

Drec(θ) :=
J∪

j=1

(B(x(j)
0 , Rrec(x

(j)
0 , θ)) ∩ Ω),

where Rrec(x
(j)
0 , θ) is the approximate distance from x

(j)
0 to the inclusion obtained

using the rotated Dirichlet data with angle θ. For the enhancement, we give multiple
angles θk (k = 1, . . . , K) and obtain approximate distances, nRrec(x

(j)
0 , θk), for each

center point. Then we define the reconstruction as the union of the balls with the
approximated distances by

Qrec :=
K∪

k=1

Drec(θk). (3.2)

3.2.2. Restriction of the maximum radius of probing balls
The numerical tests shown in subsection 2.5 indicates that the inclusion detection
algorithm is robust to noise if the distance to the inclusions is relatively small.
However, as shown in the results in the right columns of Fig. 3, the value of the
inner product is sensitive to the noise if the radius is relatively large and the noise
causes large error in the estimated distance.

In the numerical study of this section, we restrict the depth of the probing in
order to avoid the situation in which the noise results in large error in the estimated
distance. Let Rceil be the maximum radius of probing balls given as a user defined
parameter. We use 0.2 < R < max{Rmax(x

(j)
0 ), Rceil} as the range of the probing

balls.

3.2.3. Stabilization of distance estimation process
We assume that the Neumann data measured on the localized boundary contain noise
cη in the same way as in subsection 2.5. The inner product can be divided into the
ideal part and the error part as follows:

〈(Λfτ + cη) − Λ0fτ , fτ 〉Γ = 〈(Λ − Λ0)fτ , fτ 〉Γ + c〈η, fτ 〉Γ.

This equation implies that the error part, c〈η, fτ 〉Γ, can cause a fatal error in the
inner product, 〈(Λfτ + cη) − Λ0fτ , fτ 〉Γ, if the absolute value of the ideal part,
|〈(Λ − Λ0)fτ , fτ 〉Γ|, is smaller than or approximately equal to that of the error part,
|c〈η, fτ 〉Γ|. In such cases, the error affected by the noise in the measurements accounts
for the majority of the computed inner product and hence the approximate distance
obtained by the inclusion detection algorithm is not reliable.

Note that such a situation is the case when the ball does not intersect with the
inclusion, i.e. the inclusion detection algorithm is sensitive to noise if the distance
to the inclusion is larger than the radius of the ball. From this property, if the
error part dominates the computed inner product, the ball can be estimated to have
no intersection with the inclusion and the situation in which error dominates the
computed inner product can be avoided.

We incorporate the idea described above as the process prior to the inclusion
detection algorithm to avoid the use of the unreliable inner product. Assuming that
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the level of the noise part, |c〈η, fτ 〉Γ|, is given, we set a threshold, εT > 0, depending
on the level as follows:

εT = β|c〈η, fτ 〉Γ|, (3.3)
where β > 0 is a user defined parameter. If the computed inner product, 〈(Λfτ +
cη)−Λ0fτ 〉Γ is smaller than the threshold, we regard that the major part of the inner
product is error and determine that the ball does not contain any inclusions. This
process works as a stabilizer in the sense the infection of the measurement noise can
be eliminated. Note that the level of the noise part can be estimated from multiple
measurements if the noise distributes according to a certain probability model.

3.3. Inclusions: numerical studies 1 (Recovery of inclusions)

In the present numerical studies we assume two different inclusions: a square and
a sphere as shown in Fig. 6 (a) and 7 (a), where the square is in −0.5 < x1 <
−0.2, −0.9 < x2 < 0, 0.1 < x3 < 1.9 and the sphere is centered at (−0.6,−0.6, 0.4)
with radius 0.3, respectively. Each of the figures also illustrates the goal of the recovery,
i.e. the area that can be determined to be background if the accurate distances from
all the center points to the noise are obtained. Here we set the maximum radius of
the probing balls by Rceil = 0.6. We denote the area by Qbest.

Fig. 6 (b) and 7 (b) illustrate the recovered areas, Qrec in (3.2), obtained as
results of numerical simulations using the inclusion detection algorithm. Here, the
inner product, 〈(Λ − Λ0)fτ , fτ 〉Γ, is computed using the Dirichlet data given in (3.1)
with rotations θ = 0, π/2, π, 3π/2 and corresponding Neumann data obtained by finite
element method. The Neumann data in this numerical test does not contain noise
except for the error of finite element approximation. The stabilizer in 3.2.3 is not used
in this test since the Neumann data is not noisy. The relative error of the recovery for
each case is also shown on the figure, where the relative error is defined as following:

µ(Qbest\Qrec) + µ(Qrec\Qbest)
µ(Qbest)

· 100% (3.4)

and µ stands for the volume. These results show that the area can be recovered by
the inclusion detection algorithm within 5% error.

Fig. 6 (c–d) and 7 (c–d) are the results of the recovery using Neumann data with
noise, Λfτ + cη. The noise level, c, used in these figures are 1.0× 10−4 (see Fig. 6 (c)
and 7 (c)) and 1.0 × 10−3 (see Fig. 6 (d) and 7 (d)). The stabilizer given in 3.2.3 is
not used in these computations. These results illustrate that, although the recovery
is accurate around the inclusion, the area far from the inclusion contains large error.
The error is caused by the inaccurate computation of the inner product as discussed
in 3.2.3. The relative errors of the recoveries are 39.8% and 62.4% in the case of
c = 1.0 × 10−4 and are 63.7% and 80.2% in the case of c = 1.0 × 10−3.

Fig. 6 (e–f) and 7 (e–f) are the results of the reconstruction obtained with the
stabilizer proposed in 3.2.3. Here, we set εT = 5.0 × 10−4 as the threshold for the
stabilization in (3.3). These figures illustrate that the influence of the inaccurate
computations caused by the measurement noise is effectively removed by the stabilizer
and the areas that are far from the inclusion can be accurately recovered.

3.4. Inclusions: numerical studies 2 (Distance to spherical inclusion)

The purpose of this numerical test is to verify the effectiveness of our algorithm by
comparing with the method of small inhomogeneity detection proposed in [12]. We
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Table 1. Inclusion detection: estimated center of spherical inclusion

0% 0.5% 1.0%
z-coord.
of center

Estimated
z-coord.

Relative
error

Estimated
z-coord.

Relative
error

Estimated
z-coord.

Relative
error

0.15(D1) 0.144 3.8% 0.142 5.5% 0.139 7.3%
0.20(D2) 0.189 5.4% 0.172 14.1% 0.166 16.8%
0.25(D3) 0.226 9.6% 0.197 21.0% 0.194 22.6%

take the same cubic region as in section 2 and consider a problem to approximate the
center of an inclusion in order to compare the results with those described in [12]. We
assume three different spherical inclusions, D1, D2 and D3, with radius 0.1, where
the centers are at (0, 0, 0.15), (0, 0, 0.2) and (0, 0, 0.25), respectively. We also assume
that the radius of each inclusion is given and that the conductivity of the background
and the inclusions 1 and 2/3, respectively. Note that the geometry is the same as
the numerical tests in [12] except for its scale and complexity of the background
conductivity. We calculate an approximate z-coordinate of the center of the spherical
inclusion using the distance from x0 to the inclusion, where x0 = (0, 0,−0.2).

Tab. 1 shows the z-coordinates of the estimated centers of the spherical inclusions
together with their relative errors for different noise levels, 0%, 0.5% and 1.0%.
Although the results can not be simply compared to those in [12], our results indicate
that the relative errors are almost the same or smaller than in [12] and that reliable
results can be obtained especially when the distance from the boundary to inclusions
is small even if the measurements contain noise.

4. Conclusion

We have shown a method of three-dimensional electrical impedance tomography
for finding electrical inclusions in an object. The detection algorithm works using
electrical measurements performed on a localized boundary that enables partial
recovery of the shape of inclusions.

Our numerical experiments with simulated noisy data suggest that the method
can be used for extracting information about inclusions (located relatively close to
the boundary) in a reliable and robust way. Moreover, the Dirichlet data used in the
method can be approximated by a practical number of electrodes.

In addition to the requirement that the inclusions should be relatively close to
the boundary, it is also important that the inclusions are not too small. Namely,
according to the distinguishability analysis by David Isaacson [52], with a given noise
amplitude any inclusion smaller than a limit size does not contribute enough to the
measurements to be detectable.

Potential applications of the method include early diagnosis of breast cancer,
underground contaminant detection and nondestructive testing.
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Figure 1. Geometry of test problems with inclusion. h : height of the interface,
x0 = (−0.2, 0, 0) : center of probing balls
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Figure 2. Real part of Dirichlet data given at the bottom boundary. Left:
Geometry of test problems with probing sphere. Center: Real part of boundary
condition with τ = 2.0, Right: Real part of boundary condition with τ = 2.5.
White lines denote the boundary of the localized area in which the measurements
are performed.
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Figure 3. Left column: Geometry of layerd medium test problems. The problem
domain is [−1, 1]×[−1, 1]×[0, 2] and the inclusion is [−1, 1]×[−1, 1]×[h, 2], where
h = 0.2, 0.4, 0.6 and 0.8, respectively. The center of spheres used for probing, x0,
is fixed to (0, 0,−0.2) throughout this test. Solid line: I1 (τ1 = 2.0), dashed line:
I2 (τ2 = 2.5).
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Figure 4. Examples of Dirichlet data with rotation for θ = 0, π/2, π, 3π/2, where
x0 = (0.2, 0.4,−0.2) and R = 0.5.

Figure 5. Geometry of inclusion detection problem. Left: Center points of
probing spheres (x3 = −0.2). Right: Probing region that probing spheres reach
from the center points.
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(a) ideal recovery Qbest (b) Qrec without noise

(c) Qrec with 0.01% noise (d) Qrec with 0.1% noise

(e) Qrec with 0.01% noise (stabilized) (f) Qrec with 0.1% noise (stabilized)

Figure 6. Results of inclusion detection (a square inclusion). The percenteges
shown are relative errors of reconstructions as defined in formula (3.4). Compare
the middle row and the bottom row to see how our stabilization approach improves
the reconstruction significantly when the measurement data contains noise of
realistic amplitude.
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(a) ideal recovery Qbest (b) Qrec without noise

(c) Qrec with 0.01% noise (d) Qrec with 0.1% noise

(e) Qrec with 0.01% noise (stabilized) (f) Qrec with 0.1% noise (stabilized)

Figure 7. Results of inclusion detection (a spherical inclusion). The percenteges
shown are relative errors of reconstructions as defined in formula (3.4). Compare
the middle row and the bottom row to see how our stabilization approach improves
the reconstruction significantly when the measurement data contains noise of
realistic amplitude.


