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Abstract

In this study, we apply the local ensemble transform
Kalman filter (LETKF) to the Nonhydrostatic Icosahedral
Atmospheric Model (NICAM) to develop the NICAM-
LETKF. In addition, an algorithm to adaptively estimate
the inflation parameter and the observational errors is in-
troduced to the LETKF. The feasibility and stability of the
NICAM-LETKF are investigated under the perfect model
scenario.

According to the results, we confirm that the converged
analysis errors of the NICAM-LETKF are smaller than the
observational errors, and the magnitude and distribution of
the root mean square errors (RMSEs) are comparable to
those of the ensemble spreads. In our experiments, we find
that the inflation parameter is optimally tuned and the
observational errors are close to the true value.

It is concluded that the NICAM-LETKF works appropri-
ately and stably under the perfect model scenario even if
the inflation parameter and the observational errors are
adaptively estimated within the LETKF.

1. Introduction

Data assimilation is one of the most important tech-
niques in numerical weather predictions. It is important for
the data assimilation to draw information from the obser-
vations as much as possible. Evensen (1994) suggested an
ensemble Kalman filter (EnKF), which approximates the
covariance matrix of the Kalman filter (KF; Kalman 1960)
by using the ensemble predictions. The EnKF can consider
the flow-depended covariance matrix, so the EnKF can
draw information which the observations have. There are a
number of studies about the EnKF with the Lorenz-96
system (Lorenz 1996), the regional models and other
models based on the primitive equations, e.g., the SPEEDY
model (Molteni 2003). Zhang et al. (2006) investigated the
EnKF with a nonhydrostatic regional model and gave
details on the dependence of EnKF performance on error
growth rate and scales. Hunt et al. (2007) developed the
LETKF, which has an important advantage in assimilating
the observations in each local patch. Due to this advantage,
the sampling errors are filtered, and the LETKF has a
higher performance for the implementation in parallel com-
puters. In Miyoshi et al. (2007), they removed local patches
of LETKF and applied the LETKF to AFES (AGCM (atmos-
pheric general circulation model) for the Earth Simulator;
Ohfuchi et al. 2004) with a T159L48 resolution, and they
investigated the stability of the LETKF without the local
patches. In the ensemble based KF, it is necessary to tune
the covariance or spread inflation parameter, which often
costs a lot. In Miyoshi (2005) the inflation parameter is esti-
mated adaptively by means of the scalar KF algorithm in
order to avoid the complicated tuning. The method,
however, did not work properly in the experiments with
the real observations because the observational errors are
not perfectly known, and the errors also influence the
accuracy of an analysis. Kalnay et al. (2007) and Li et al.
(2009) then reported the algorithms to adaptively estimate
not only the inflation parameter but also the observational

errors at a time within the LETKF.
On the other hand, a new type of ultra-high resolution

atmospheric general circulation model is developed by the
Center for Climate System Research, University of Tokyo
and Frontier Research Center for Global Change/Japan
Agency for Marine-Earth Science and Technology. The
new model is designed to perform cloud-resolving simula-
tions by directly calculating deep convection and meso-
scale circulation, which plays a key role not only in the
tropical circulations but also in the entire general circula-
tion of the atmosphere. As the model adopts the non-
hydrostatic equations and icosahedral grid structure, it is
called the Nonhydrostatic Icosahedral Atmospheric Model
(NICAM; Satoh et al. 2008). However, the assimilation
system for the NICAM has not been developed and the
optimum initial condition for the NICAM does not yet exist.

Therefore, in this study we apply the non-local patch
version of the LETKF by Miyoshi et al. (2007) to the
NICAM (referred to as NICAM-LETKF), and investigate the
feasibility and stability of the NICAM-LETKF with the
adaptive estimation of the inflation parameter and observa-
tional errors under the perfect model scenario. This is the
first test of the LETKF with a global non-hydrostatic
model, although the model should still behave hydro-
statically with the horizontal resolution of 224 km. In
Section 2, we describe our experimental design and original
program code. The algorithms of the adaptive estimation
for the inflation parameter and observational errors are
presented. In Section 3, we show our numerical results of
the assimilation experiments under the perfect model
scenario. Finally, the conclusion is summarized with discus-
sion in Section 4.

2. Experimental settings

In this study, the data assimilation experiments with
the NICAM-LETKF are implemented under the perfect
model scenario. The forecast model used is the NICAM
mentioned in Section 1. Its horizontal resolution is 224 km
(Glevel-5) and the number of vertical layers is 40. The prog-
nostic variables are pressure, temperature, horizontal wind
components, vertical wind and mixing ratio of water vapor,
cloud water and rain water. In the NICAM, the horizontal
wind is decomposed to three elements. So, the number of
the prognostic variables is 9. The model physics used in
this study are Louis’s surface layer, Mellor and Yamada
Level 2, Arakawa and Schubert’s cumulus parameteriza-
tion and third-order Runge-Kutta method for time integra-
tion.

The control run for the truth is generated with an initial
data by the JMA/GSM operational analysis on 12Z 30
December 2006, and integrated until 12Z 22 January 2007.
The hypothetical observations are generated by adding
prescribed observational error to the truth. The error
standard deviations are 1.0 hPa (pressure), 1.0 K (tempera-
ture), 1.0 m s‒1 (horizontal wind) and 0.5 g kg‒1 (mixing ratio
of water vapor). The observations cover 10% grid points of
the entire horizontal 2-dimensional grid space and cover
about 3.3% grid points of the entire 3-dimensional grid
space uniformly.

In this study, a Gaussian-like fifth order polynomial
function (Gaspari and Cohn 1999) is adopted for the hori-
zontal and vertical localization, by multiplying the function
to the diagonal elements of the inverse of the observational
covariance matrix. The localization scale is defined by the
one standard deviation. The horizontal localization scale is
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500 km, and the Gaussian-like function drops to zero at
about 1800 km from the analysis point. The vertical local-
ization scale in 30°N‒90°N and 30°S‒90°S is 4.0 grid points,
and that in 20°N‒20°S is 3.0 grid points. In the other region
the scale changes smoothly by a linear interpolation. The
Gaussian-like function drops to zero at about 10 grid points
to 15 grid points in the vertical. The NICAM-LETKF as-
similation cycle is every 6 hours, and the period of the ex-
perimental assimilation is from 12Z 1 January 2007 to 12Z
22 January 2007. The ensemble size is fixed to 40, and the
initial ensemble members are computed from the JMA op-
erational analysis integrated for 2 days by the NICAM. The
dates of the JMA operational analysis are chosen at random
to avoid the similar values.

In this study, four experiments are performed, and in all
experiments the multiple spread inflations are employed.
The details of each experiment are summarized in Table 1.
In the first experiment (Ex. 1), the spread inflation parame-
ter is fixed temporally. In detail, the spread inflation is 1%
in 30°N‒90°N and 30°S‒90°S, and is 3% in 20°N‒20°S. In the
other region the spread inflation changes smoothly by a
linear interpolation. In the second experiment (Ex. 2), the
spread inflation parameter is estimated adaptively, follow-
ing the method shown in Miyoshi (2005). In Miyoshi (2005),
an estimate of the covariance inflation parameter �o can be
obtained from

�o =
d
⊥

o‒ f do‒ f

trace (HPf H
⊥

) + trace (R)
‒ 1, (1)

where do‒f is the difference between the observation and
forecast ensemble mean, and Pf, R and H denote the forecast
error covariance, the observational error covariance and
the linear observational operator, respectively. The super-
script �, the subscript o and f denote the matrix transpose,
observation and forecast. The spread inflation parameter is
obtained from the covariance inflation parameter. In the
third and fourth experiments (Ex. 3 and Ex. 4), not only the
inflation parameter but also the observational errors are
estimated adaptively. The method of estimating the obser-
vational error is shown in Desroziers et al. (2005), and the
method for the covariance inflation parameter and the ob-
servational error is shown in Li et al. (2009). In Desroziers
et al. (2005), an estimate of the observational error variance
�2

o can be obtained from

�2
o = trace (do‒a d

⊥

o‒ f )/p, (2)

where do‒a is the difference between the observation and
analysis ensemble mean, and p and subscript a denote the
number of observations and analysis, respectively. In this
study, the estimation method is implemented for each ob-
servation variable. Li et al. (2009) estimated the inflation
parameter and the observational error variance adaptively
at each analysis time step. However, if the number of obser-
vations is not enough, a large sampling error is introduced.
Therefore, in Miyoshi (2005) and Li et al. (2009), they
assumed that �o and �2

o are the same as the observation, re-
spectively, to avoid this problem. They used a simple scalar
KF approach, which usually uses the postprocess model
output. By using this KF approach, the past information is
accumulated, and the inflation parameter and observa-
tional error variance gradually converge to the optimum
values while still allowing for time variations. The KF esti-
mation is often ruined by an unrealistically large sampling
error. So, to avoid this problem we impose reasonably wide
upper and lower limits in the observed inflation �o, e.g., 0.0
to 0.2, before applying the KF approach. In Ex. 3 and Ex. 4,
the initial specifications of the observational errors are 3.0
and 0.1 times the true value, respectively, for each variable.
At each analysis time, we evaluate the analysis error using
the RMSE between the true state and the analysis ensemble
mean and compute the ensemble spread.

3. Results

Figure 1 shows the time series of the analysis RMSEs
and ensemble spreads of 500 hPa geopotential height and
850 hPa temperature for Ex. 2. In the early period the

RMSEs decrease with time. The RMSEs are larger than the
ensemble spreads. About three days after the data assimila-
tion has been started, the RMSEs become comparable to the
ensemble spreads. The RMSE and ensemble spread in the
Tropics are larger than the other regions. This result shows
that the uncertainty in the Tropics is large in spite of the
perfect model experiments because the cumulus convection
is active. In the temperature field, the RMSE and ensemble
spread in the Southern Hemisphere are larger than that in
the Northern Hemisphere. Such a tendency dominates in
the lower troposphere, and there is no clear difference
between the Southern Hemisphere and the Northern Hemi-
sphere in the middle troposphere and above. This result
implies that the cause is in the land-ocean distribution
because the RMSE and ensemble spread are larger over the
ocean, particularly in the temperature field. Moreover, for
the other elements, e.g., SLP (Sea Level Pressure), wind
components and water vapor, the RMSEs are apparently
smaller than the observational errors. For example, the
analysis RMSEs of SLP in the Northern Hemisphere,
Southern Hemisphere, and Tropics are about 0.2 hPa, 0.2
hPa and 0.3 hPa, respectively.

To see the horizontal distribution of the analysis errors,
Fig. 2 illustrates the temporally averaged analysis RMSE
and ensemble spread of 500 hPa geopotential height for
Ex. 2, in which the inflation parameter is estimated and the
observational error is perfectly known. The shaded areas
show the analysis RMSE or ensemble spread, and the
contours show 500 hPa geopotential height. As shown in
both fields in Fig. 2, the analysis error distribution is com-
parable to that of the ensemble spread very much. Particu-
larly the peaks of the RMSE correspond to those of the
ensemble spread. The pattern represents the area which
indicates large uncertainty. For example, in the Tropics the
RMSE is very large along the ITCZ (The Intertropical
Convergence Zone) because of the active cumulus convec-
tion. Therefore, the ensemble spread becomes large by the
chaotic nature which originates by the uncertainty. The
result is consistent with that in Fig. 1. On the other hand,
over the east part of the North Pacific Ocean the westerly
jet is meandering, and there is a ridge along the West Coast.
In the upstream of the ridge, the RMSE is large, where an
extratropical cyclone is developing in the surface. More-
over, in the area with large RMSE, the ensemble spread is
also large as the RMSE. Therefore, it is confirmed that the
NICAM-LETKF captures the characteristics of the regional
analysis errors.

Figure 3 shows the time series of the analysis RMSEs of
the 500 hPa zonal wind in Exs. 1, 2, 3, and 4. In the early
stage the error level of Ex. 2 is the smallest, because only
the spread inflation parameter is estimated adaptively, and
the observational errors are perfectly known. Ten days
after the beginning of the assimilation, however, a clear
separation of the analysis RMSEs among the experiments
is not seen. In the Ex. 4 the long adjusting period is neces-
sary for the LETKF to converge. About ten days are needed
so that the Ex. 4 is adjusted by the NICAM-LETKF, but
eventually the RMSE in the Ex. 4 becomes comparable to
other experiments. In the other variables, similar results are
obtained (not shown).

Figure 4 shows the adaptively estimated observational
errors of pressure in the lowest layer of the NICAM in Exs.
3 and 4. The experiments start from the wrong observa-
tional error with 3.0 (Ex. 3) and 0.1 (Ex. 4) times the true
value. In Ex. 3 the estimated observational error gradually
decreases by assimilating data iteratively, and then the
error converges to the true value. In Ex. 4 the estimated
error becomes larger than the initial value in the early
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Table 1. Configuration of each experiment.

inf. param. obs. error (init.)

Ex. 1
Ex. 2
Ex. 3
Ex. 4

Constant (1‒3%)
Adaptive
Adaptive
Adaptive

True (‒)
True (‒)

Adaptive (3.0 times)
Adaptive (0.1 times)
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period. Then, the error converges to the true value such as
in the case of the Ex. 3. About 18 days after the beginning
of the assimilation, both of the estimated observational
errors already become very close to the true value though
the observational errors are not known. The estimated ob-
servational errors are slightly larger than the truth even
though the initial observational error is very small in the
case of the Ex. 4. Hence, it is confirmed that the algorithm
which estimates the observational error adaptively works
very well. In the other variables, similar results are
obtained (not shown). As a result, we can get a good
analysis by estimating the observational errors adaptively
though the errors are not well known.

According to Figs. 3 and 4, it seems that the NICAM-
LETKF has small sensitivity to the observational errors
because in the early assimilation period the RMSE of the
Ex. 3 is comparable to the RMSE of the Ex. 2 although the
estimated observational errors are overestimated. This
result is discussed in Section. 4.

4. Conclusion and discussion

In this study we developed the LETKF and applied it to
a nonhydrostatic and realistic global atmospheric model
called NICAM. In addition, an algorithm which estimates
not only the inflation parameter but also the observational
errors adaptively was introduced to the NICAM-LETKF.
We conducted three kinds of experiments to investigate the
feasibility and stability of the NICAM-LETKF under the
perfect model scenario: 1) the inflation parameter is fixed
temporally (Ex. 1), 2) the inflation parameter is adaptively
estimated, and the observational errors levels are perfectly
specified (Ex. 2), and 3) the inflation parameter and the
observational errors are adaptively estimated at a time
(Exs. 3 and 4). It is confirmed that the LETKF works appro-
priately for the nonhydrostatic global model, although the
model with the horizontal resolution of 224 km behaves

hydrostatically.
First, we demonstrated that the NICAM-LETKF works

stably without diverging, and the analysis errors become
smaller than the observational errors in all variables. In
addition, the magnitude and distribution of the analysis
RMSEs are temporally and spatially comparable to those of
the analysis ensemble spreads. The RMSEs are large in the
area with large uncertainty such as the ITCZ or the devel-
oping extratropical cyclone. In such areas, each ensemble
member spreads rapidly due to the strong chaotic nature,
resulting in the large ensemble spread. According to the
above result, the inflation parameter is tuned optimally in
the each grid point so that the analysis errors become the
smallest by adaptively estimating the parameter. These
results indicate that the NICAM-LETKF combined with the
adaptive estimation of the inflation parameter works ap-
propriately and stably, and the NICAM-LETKF can capture
the true analysis errors.

Second, in the case where the observational errors are
perfectly known, and the inflation parameter is adaptively
estimated (Ex. 2), the NICAM-LETKF converges fastest. On
the other hand, in the case where the inflation parameter
and observational errors are both estimated adaptively and
the initial observational errors are 0.1 times the true value
(Ex. 4), the NICAM-LETKF converges slowest. Since the
observational errors are generally not perfectly known, the
results are quite reasonable. In the early assimilation
period, the accuracy of the analysis mainly depends on the
inflation parameter and observational errors because the
number of assimilated observations is insufficient. It may
be important to note that the observational errors are over-
estimated by the present formulation, regardless of the
magnitude of the initial observational errors. The observa-
tional error variance is obtained from Eq. (2). In the Eq. (2),
it is assumed that there is no correlation between the
analysis error �xa and the forecast error �xf . Actually,
however, it is considered that there is a little correlation
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Fig. 1. Time series of the analysis RMSEs and ensemble spreads
of 500 hPa geopotential height (m) (top panel) and 850 hPa tem-
perature (K) (bottom panel) for the Ex. 2. Initial time is 12Z 1
Jan 2007. The red, blue, and yellow lines are for the Northern
Hemisphere (NH; 20°N‒90°N), the Southern Hemisphere (SH; 20
°S‒90°S), and Tropics (TR; 20°N‒20°S), respectively.

Fig. 2. Spatial distributions of the analysis RMSEs (top panel)
and ensemble spreads (bottom panel) of 500 hPa zonal wind
and 500 hPa geopotential height (contour) for the Ex. 2, tempo-
rally averaged for 1 day from 00Z 21 January 2007 to 18Z 21
January 2007.
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between the analysis error and the forecast error because
the analysis fields and forecast field is similar in the area
where the number of observations is not enough or the
ensemble spread is small. So, it is considered that the esti-
mated observational errors are overestimated. However,
this result should be investigated in detail as a future work.
In the latter half of the analysis period, there is no clear dif-
ference among the analysis RMSEs of the 4 experiments. It
is demonstrated that the observational errors sufficiently
converge to the true values, and the inflation parameter is
tuned optimally because the NICAM-LETKF assimilates
sufficient number of observations.

We discuss about the sensitivity of the NICAM-LETKF
to the observational error settings. The accuracy of the Exs.
2 and 3 is the same level in early period though the obser-
vational errors are overestimated in the Ex. 3. Therefore, it
seems that the NICAM-LETKF has small sensitivity to
them. However, the adaptive estimation algorithm might
have some advantages in the case such as assimilating real
observations. The inflation parameter can be estimated
appropriately only when the observational errors are ade-
quately known. In addition, when the observation instru-
ment is renewed and its observational error is changed, the
LETKF can estimate its error by the adaptive estimation
algorithm. Moreover, Li et al. (2009) mentioned the possibil-
ity of the estimation of the error cross-correlations in such
as satellite data.

In the assimilation with the real observations, the
method which estimates the inflation parameter does not
work properly because the observational errors are not per-
fectly known. Li et al. (2009) reported the algorithm to
adaptively estimate both the inflation parameter and the
observational errors using the simple Lorenz-96 system
and the SPEEDY model, which are based on the primitive
equations. In this study, we demonstrated that the algo-

rithm works appropriately even for the realistic nonhydro-
static global model of NICAM. However, it is not clarified
whether the NICAM-LETKF and the adaptive estimation
algorithm works stably in the experiments with the real
observations. It is suggested that this approach will suffer
more in the real observations because of the model errors
and the different sources of observations of similar vari-
ables. In Zhang et al. (2006), they tested the variance relaxa-
tion algorithm and reported that it is very effective and
prevents filter divergence, preserving the structure of the
local ensemble perturbations due to the error growth. It is
considered that these algorithms are useful to draw infor-
mation from the observations as much as possible even for
the experiments with the real observations. These should
be the subject of the future work.
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Fig. 3. Time series of the analysis RMSEs of 500 hPa zonal
wind (m s‒1) for the Exs. 1, 2, 3, and 4. The yellow, red, blue, and
green lines are for the Exs. 1, 2, 3, and 4, respectively. Initial
time is 12Z 1 Jan 2007.

Fig. 4. Time series of adaptively estimated observational error
of the pressure of the lowest layer of the NICAM. The blue and
green lines are for the Exs. 3 and 4, respectively. The true ob-
servational error is 1.0 hPa. Initial time is 12Z 1 Jan 2007.


