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Abstract 

A combined method with dispersive liquid-liquid microextraction (DLLME) and electrothermal 

atomic absorption spectrometry (ETAAS) has been developed for determining gold(III).   

Dicyclohexylamine, a new extractant for gold(III), showed excellent performance in DLLME.  

Acetone was indispensable to the quantitative extraction of gold(III), contributing to decrease in 

hydration, decrease in the difference in the dielectric constants between the supernatant phase and 

the sedimented phase, and dissolution of a part of chloroform as an extraction solvent to the 

supernatant phase as well as improvement of dipersibility.  In DLLME using a mixture of 1.0 mL 

of acetone and 100 µL of chloroform containing 50 mmol L-1 of dicyclohexylamine, gold(III) could 

be extracted selectively and effectively from 8 mL of a sample solution in the presence of iron(III), 

cobalt(II), nickel(II), copper(II), palladium(II), and platinum(IV) at pH 1.  The extracted gold(III) 

was determinable by ETAAS; the detection limit was 0.002 µg L-1 (three times the standard 

deviation of the blank values, n=8) as a gold(III) concentration in 8 mL of sample solution.  The 

proposed method was applicable to the determination of gold in platinum metal and its alloy as well 

as effluent without any interference by the matrices. 

 

Keywords:  Gold(III); Homogeneous liquid-liquid extraction, Dispersive liquid-liquid 

microextraction; Dicyclohexylamine; Electrothermal atomic absorption spectrometry 
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1.  Introduction 

 Gold, which has important characteristics such as high ductility, corrosion resistance, low 

impedance, and catalytic properties, is widely utilized in the electronic, electroplating, 

fine-chemical, and jewelry industries [1].  Because it is precious, gold is carefully recovered after 

use through various techniques such as electrolysis and ion exchange [2,3]; however, complete 

recovery cannot be achieved, and a small amount of gold is lost through routes such as effluents.  

To estimate the amount of gold lost through an effluent, a method in which gold can be sensitively 

determined without any interference by the major ions generally contained in the effluent is 

necessary. 

 Other precious metals, including platinum, are also key materials for various industries 

[1].  With the expansion of its applications, such as in fuel cells, a growing demand for high-purity 

platinum is expected [4,5].  Because platinum metal contains significant impurities, including gold, 

an accurate and precise method of analysis is required. 

 For the determination of gold, electrothermal atomic absorption spectrometry (ETAAS) is 

a powerful tool [6]; however, the sensitivity is sometimes insufficient and the presence of matrices 

seriously interferes with the analyses of effluents, metals, and alloys.  Therefore, a separation and 

preconcentration technique is extensively applied to the ETAAS determination of gold [6].   

 Liquid-liquid extraction (LLE) is an effective method for the separation and 
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preconcentration of gold(III) [7-12].  Amine compounds, including n-trioctylamine [9], 

n-octylaniline [10], N-phenylbenzylamine [11], and N-n-octylaniline [12], are conveniently utilized 

for the extraction of gold(III) and other elements.  However, there are some problems with the use 

of LLE, including the large amounts of harmful organic solvents needed, the long extraction time 

required for quantitative extraction, and difficulty in the treatment of wastewater generated after 

extraction.   

 To overcome these problems, various types of LLE techniques have been proposed.  

Among them, microextraction techniques have been investigated intensely.  Homogeneous 

liquid-liquid extraction (HoLLE) based on a ternary solvent system [13-17] is one of the most 

useful microextraction techniques.  HoLLE utilizes the phase separation phenomenon from a 

homogeneous solution, and the analytes are rapidly and efficiently extracted into a separated phase.  

HoLLE is available for the separation and preconcentration of some elements [14-17], but there has 

been no report on the separation and preconcentration of gold(III).  Dispersive liquid-liquid 

microextraction (DLLME) [18] has also attracted attention recently [19-27].  In DLLME, as in 

HoLLE, an aqueous sample solution, a water-miscible organic solvent as the disperser solvent, and 

a water-immiscible organic solvent as the extraction solvent are used; however, the extraction 

solvent has only to disperse finely into solution.  In general, a mixture of disperser solvent and 

extraction solvent is swiftly injected using a microsyringe, and a gentle shaking is applied to extract 
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the analyte quantitatively into the dispersed extraction solvent.  The selection of a dispersive 

solvent which gives favorable dispersibility of the extraction solvent is important to achieve 

effective extraction of analyte [18-27].  DLLME is conveniently applicable to the separation and 

preconcentration of various elements prior to their ETAAS determination [19-27]; for gold(III), 

however, only DLLME using victoria blue R has been reported [25]. 

 In this work, we investigated a combined method with DLLME and ETAAS for 

determining gold(III).  For DLLME using acetone as a water-miscible organic solvent and 

chloroform as a water-immiscible organic solvent, we tested 11 kinds of amine compounds as 

extractants and found that dicyclohexylamine, which has not been used for the extraction of 

gold(III), was excellent.  It is noteworthy that DLLME using dicyclohexylamine has rather high 

selectivity; gold(III) could be determined by ETAAS without any interference even in the presence 

of large amounts of other elements.  In this paper, we report the results of investigations of the 

DLLME of gold(III) with amine compounds and discuss the role of acetone as a water-miscible 

organic solvent in the extraction of gold(III) with dicyclohexylamine.  The potential of ETAAS 

combined with DLLME using dicyclohexylamine is also demonstrated through the determination of 

gold in effluent, platinum metal, and platinum alloy. 

 

2.  Experimental 
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2.1  Apparatus 

 A Hitachi 180-80 polarized Zeeman atomic absorption spectrometer (flame- and 

electrothermal-type) was used to measure gold and other elements.  The pH measurement and 

ultrasonic irradiation were carried out using a Horiba F-22 pH meter and an AS ONE US-2 

ultrasonic cleaner (120 W, 38 kHz), respectively.  A Kubota Model 5400 centrifuge was used to 

form the sedimented phase. 

 

2.2  Reagents 

 Purified water obtained by a Simplicity UV (Millipore) was used for all experiments.  

Standard solutions of gold(III) and the other elements (1000 mg L-1) were purchased from Kanto 

Chemical.  Eleven kinds of amine compounds, ethylenediamine (guaranteed reagent grade, GR, 

Wako Pure Chemical Industries), diethylenetriamine (GR, Wako Pure Chemical Industries), 

N-butyldimethylamine (>98%, Tokyo Chemical Industry), triphenylamine (GR, Kanto Chemical), 

N-methyldiphenylamine (97%, Acros Organics), N-methylaniline (GR, Kanto Chemical), 

N-phenylbenzylamine (99%, Acros Organics), benzylamine (GR, Kanto Chemical), dibenzylamine 

(>97%, Tokyo Chemical Industry), cyclohexylamine (>99%, Tokyo Chemical Industry), and 

dicyclohexylamine (>99%, Tokyo Chemical Industry), were used as extractants without any further 
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purification (the structures are summarized in Fig. 1S in the Supplementary Material).  The other 

reagents, including chloroform, acetone, hydrochloric acid, and sodium hydroxide, were of GR or 

analytical reagent grade. 

 

2.3  Procedures 

2.3.1  Extraction behavior of gold(III) with some amine compounds 

 As a test solution, 0.1 mol L-1 hydrochloric acid spiked with gold(III) (4 mg L-1 or 10 µg 

L-1) was used.   

 For DLLME, the test solution (5 mL) was taken into a 10 mL glass centrifuge tube.  To 

the solution, a mixture of 0.90 mL of acetone and 90 µL of chloroform containing 50 or 200 mmol 

L-1 of amine compound was swiftly injected using a glass syringe equipped with a stainless needle.  

After the cloudy solution was gently shaken by hand for approximately 10 s, the solution was 

centrifuged at 3000 rpm for 8 min.  Gold in the supernatant phase was determined using flame 

atomic absorption spectrometry (FAAS) under the operating conditions shown in Table 1.  The 

extraction percentage was calculated based on the initial amount of gold in the test solution and the 

amount in the supernatant phase, which was calibrated using the supernatant phase spiked with an 

appropriate amount of gold(III) after the blank test. 

 For LLE, 1 mL of chloroform containing 1-200 mmol L-1 of amine compounds and 0-10 



 8 

mL of acetone was added to 50 mL of the test solution containing 4 mg L-1 of gold(III).  The 

solution was then stirred vigorously.  The concentration of gold(III) in the supernatant solution 

was measured using FAAS after centrifugation.  The extraction percentage was calculated in the 

same manner for DLLME. 

 

2.3.3  Determination of gold by ETAAS after DLLME using dicyclohexylamine 

 For the optimization of the extraction conditions, a purified water-based solution 

containing 10 µg L-1 or 0.2 µg L-1 of gold(III), in which the pH was adjusted using hydrochloric 

acid and/or sodium hydroxide solution, was used as a test solution.  Effluent samples, which were 

obtained from a jewelry factory, were digested with hydrochloric acid on heating [28] after filtration 

using a membrane filter (Nihon Millipore, Omnipore membrane, pore size of 0.45 µm).  The pH of 

the sample solutions was approximately 1.  For analyses of platinum metal and its alloy, 

approximately 0.1 g of a platinum metal (Pt, 99.95%) or platinum alloy (Pt, 94.82%; Cu, 5.16%) 

was dissolved in 20 mL of aqua regia on heating.  The solution was then diluted with 0.1 mol L-1 

hydrochloric acid.   

 To 8 mL of the test solution or the sample solution, a mixture of 1.0 mL of acetone and 

100 µL of chloroform containing 50 mmol L-1 of dicyclohexylamine was swiftly injected.  The 

cloudy solution was gently shaken, and ultrasonic irradiation was carried out for 5 min.  The 
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solution was then centrifuged. 

 Gold in the sedimented phase was determined using ETAAS under the operating 

conditions summarized in Table 1.  Solutions for the calibration curve were prepared using 8 mL 

of 0.1 mol L-1 hydrochloric acid spiked with appropriate amounts of gold(III).  A blank test was 

also carried out using 0.1 mol L-1 hydrochloric acid or the purified water-based solution after the 

treatment with hydrochloric acid or aqua regia.  To optimize the extraction conditions, gold in the 

supernatant phase was determined using ETAAS.  The extraction percentage was evaluated in a 

manner similar to that used for the extraction behavior of gold(III), as mentioned above. 

 

3.  Results and Discussion 

 

3.1  Extraction of gold(III) with some amine compounds 

 The extraction of gold(III) using 11 kinds of amine compounds was investigated using 

DLLME as well as LLE in order to select the appropriate amine compound for the extraction.  

Since the extraction of gold(III) with amine compounds has been carried out in the acidic region 

[9-12], 0.1 mol L-1 hydrochloric acid was used for the experiments.  As a water-miscible organic 

solvent, acetone was chosen because it has been widely utilized as a disperser solvent for DLLME 

[18,19,24,25]. 
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3.1.1  Comparison of extraction behavior of gold(III) by LLE and DLLME 

 The results of the extraction of gold(III) using a series of amine compounds by LLE, in 

which 50 mL of the test solution containing 4 mg L-1 of gold(III) and 1 mL of chloroform 

containing an amine compound were used without acetone, are shown in Fig. 1.  For 

N-methylaniline and N-phenylbenzylamine [11], gold(III) was quantitatively extracted.  

N-Methyldiphenylamine gave 57% of the extraction.  For the other amine compounds, however, 

less than 30% of gold(III) was extracted, and no extraction of gold (III) was observed for 

dicyclohexylamine.   

 The results for DLLME of gold(III) using the amine compounds are summarized in Fig. 1.  

For aromatic amines, including N-methylaniline and N-phenylbenzylamine [11], the extraction 

percentages decreased compared to those for LLE when a mixture of 0.9 mL of acetone and 90 µL 

of chloroform containing 200 mmol L-1 of the corresponding amine compound was added to 5 mL 

of the test solution.  In contrast, the extraction percentages were considerably improved with the 

use of N-butyldimethylamine, benzylamine, dibenzylamine, cyclohexylamine, and 

dicyclohexylamine.  From the results of DLLME, the extraction of gold(III) with dibenzylamine 

and dicyclohexylamine, which gave more than 80% of the extraction, was further investigated using 

5 mL of the test solution containing a much lower concentration of gold(III) (10 µg L-1).  The 
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extraction of gold(III) was almost 100% with the use of both 50 and 200 mmol L-1 of 

dicyclohexylamine in chloroform, whereas 50 and 200 mmol L-1 of dibenzylamine extracted 67% 

and 88% of gold(III), respectively.  These results indicate that dicyclohexylamine is an excellent 

extractant for DLLME of gold(III).  The molecular-structural characteristics, including bulkiness, 

the strong basicity (pKa = 10.4 [29]), and the high lipophilicity of dicyclohexylamine may 

contribute to the effective extraction of gold(III). 

 

3.1.2  Role of acetone on extraction of gold(III) with dicyclohexylamine 

 In DLLME, a water-miscible organic solvent is used to disperse the water-immiscible 

organic solvent as an extraction solvent [18-27].  The efficient dispersion of the extraction solvent 

accelerates the extraction of analytes.  In our experiments using acetone as a disperser solvent, 

however, the extraction efficiency in DLLME using amine compounds was not necessarily 

improved compared with that in LLE as shown in Fig. 1, which suggests that acetone may also have 

other functions in the extraction.  The role of acetone in the extraction of gold(III) with 

dicyclohexylamine was therefore examined using the LLE technique.   

 The effect of the stirring time on the extraction of gold(III) with dicyclohexylamine using 

0-10 mL of acetone is shown in Fig. 2.  In the absence of acetone, gold(III) was not extracted after 

stirring for 2 h; the extraction percentages retained almost 0% for at least 24 h.  In contrast, the 
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extractability was dramatically improved in the presence of acetone (Fig. 2).  When 1-10 mL of 

acetone was used, the solution became cloudy just after the stirring was started.  The extraction 

percentages increased as the amount of acetone added was increased.  In these cases, gold(III) was 

extracted after 1 min, and the extraction percentages were almost constant when further stirring was 

carried out (Fig. 2).  The extraction of gold(III) was also observed without dicyclohexylamine; the 

extraction percentages after stirring for 1 h were 0.4% for 4 mL of acetone, 3.1% for 8 mL, and 

11% for 10 mL.  On the other hand, 68% of gold(III) was extracted even when 1 mL of chloroform 

containing 200 mmol L-1 of dicyclohexylamine was slowly added to a mixture of 50 mL of 0.1 mol 

L-1 hydrochloric acid containing 4 mg L-1 of gold(III) and 10 mL of acetone and the mixture was 

allowed to stand statically for 260 h, whereas the extraction of gold(III) was not observed in the 

absence of acetone.  These results suggest that acetone is not merely the disperser.   

 It has been reported that in the extraction of some elements with aliphatic tertiary amines 

[30-32], the extraction percentages were considerably improved by the addition of water-miscible 

organic solvents, including methanol, ethanol, and acetone, which are generally utilized as disperser 

solvents in DLLME [18-27].  Such phenomena have been attributed to the decrease in hydration as 

the mole fraction of water decreased [30-32], resulting in the increased stability of negatively 

charged chloro-complexes in solution [31].  The enhancement of the extraction percentage is also 

discussed from the standpoint of the differences in the dielectric constants between the aqueous 
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phase and the organic phase [32].  The contents of water and the water-miscible organic solvent in 

the organic phase as well as that of the water-miscible organic solvent in the aqueous phase 

increased as the added amount of water-miscible organic solvent was increased.  The difference in 

the dielectric constants between the aqueous phase and the organic phase was therefore decreased.  

The decreases in hydration and in the differences in the dielectric constants resulted in the effective 

extraction of some elements [32].  In the case of the gold(III) extraction with dicyclohexylamine, 

acetone would play similar roles in addition to acting as a disperser solvent. 

 When the added amount of acetone increased, the volume of the sedimented phase 

increased due to the increase in the distribution of acetone and water to chloroform [32].  In our 

experiment, a similar tendency was observed, but all the volumes of the sedimented phases with 

various amounts of acetone were less than those of chloroform added.  These results indicate that 

the supernatant phase is a homogeneous ternary solvent mixture containing water, acetone, and 

chloroform; that is, acetone promotes the dissolution of chloroform into the supernatant phase.  

The dissolution of chloroform to the supernatant solution and the phase separation arise reversibly, 

and the separated chloroform is expected to extract gold(III) effectively.  Such an extraction, 

which is inherently similar to HoLLE [13-16], would also take place in DLLME of gold(III) with 

dicyclohexylamine.   

 The relationship between the distribution ratio of gold(III) (D) and the initial 
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concentration of dicyclohexylamine in chloroform ([DCHA]org) was examined in the presence of 

1-10 mL of acetone.  The D value was corrected based on the volume of the sedimented phase.  

As shown in Fig. 3, linear relationships between log D and log [DCHA]org were obtained under all 

amounts of acetone.  The slopes for 1 mL and 2 mL of acetone were 1.05 and 0.98, respectively.  

These results indicate that the dominant extracted species of gold(III) should be 1 : 1 for 

tetrachloroaurate(III) ion : protonated dicyclohexylamine under these conditions.  The extraction 

of gold(III) with dicyclohexylamine may obey the ion-pair mechanism, as it does with the other 

amine compounds [9-12].  However, the slope gradually decreased with an increase in the amount 

of acetone, which may have been caused, in part, by a dissociation of the extracted species 

occurring in the sedimented phase.  The variation of the dicyclohexylamine concentration in the 

sedimented phase and the extraction of gold(III) without dicyclohexylamine would also be possible 

reasons. 

 

3.2  Optimum conditions for DLLME of gold(III) with dicyclohexylamine 

 As mentioned above, dicyclohexylamine was useful as an extractant for the DLLME of 

gold(III).  We optimized the conditions for DLLME of gold(III) with dicyclohexylamine using 8 

mL of the test solution. 
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3.2.1  Water-miscible organic solvent 

 The influence of some water-miscible organic solvents, including acetone, acetonitrile, 

methanol, and acetic acid, was investigated.  As shown in Fig. 4, acetone was the most suitable of 

the investigated solvents in terms of effective extraction and ease of handling.  The extraction 

percentage of gold(III) increased with an increase in the amount of acetone used, whereas gold(III) 

was not extracted in the absence of acetone.  The quantitative extraction of gold(III) was achieved 

using 1.0 -1.5 mL of acetone.  Therefore, 1.0 mL of acetone was used in this method. 

 

3.2.2  Water-immiscible organic solvent as extraction solvent 

 Chloroform was a convenient extraction solvent in gold(III) extraction using 

dicyclohexylamine because of the easy dissolution of dicyclohexylamine and the efficient 

extraction of gold(III).  Figure 5 shows the effect of the volume of chloroform, which contained 

50 mmol L-1 of dicyclohexylamine, on both the extraction of gold(III) and the volume of the 

sedimented phase.  The extraction percentage of gold(III) increased with an increase in the volume 

of chloroform and reached approximately 100% when more than 100 µL of chloroform was used.  

Additionally, the volume of the sedimented phase increased with an increase in the volume of 

chloroform used, whereas each volume of the sedimented phase after the extraction scarcely varied.  

Due to the quantitative extraction of gold(III) and the high enrichment factor, 100 µL of chloroform 
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was used in this method. 

 

3.2.3  Dicyclohexylamine 

 When the extraction was carried out using a mixture of acetone and chloroform not 

containing dicyclohexylamine, 26 ± 2.8% (mean ± standard deviation, n=3) of gold(III) was 

extracted.  The extraction percentage increased with an increase in the concentration of 

dicyclohexylamine; more than 90% of gold(III) was extracted with the use of more than 30 mmol 

L-1 of dicyclohexylamine in chloroform.  In this method, 50 mmol L-1 of dicyclohexylamine was 

used. 

 

3.2.4  Extraction time 

 When a mixture of 1.0 mL of acetone and 100 µL of chloroform containing 50 mmol L-1 

dicyclohexylamine was injected, the extraction percentage of gold(III) was 66 ± 7.1% (n=3) without 

shaking due to the insufficient dispersibility of chloroform [19].  However, the extraction 

percentage of gold(III) was significantly improved to 95 ± 1.6% (n=3) when the mixture was gently 

shaken by hand for a few seconds.  In this method, ultrasonic irradiation was applied after the 

gentle shaking for just in case.  Since the irradiation time, ranging from 1 to 30 min, did not affect 

the extraction percentages, ultrasonic irradiation for 5 min was employed.  It may be possible to 
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omit the ultrasonic irradiation, depending on the sample. 

 

3.2.5  Extraction pH 

 The relationship between the extraction percentage of gold(III) and the pH or acidity of 

the test solution is shown in Fig. 6.  In the initial pH range of 1-3, gold(III) was quantitatively 

extracted.  The extraction percentage of gold(III) decreased with an increase in the concentration 

of hydrochloric acid in the range of 1-3 mol L-1, which might be due to the formation of 

tetrachloroauric acid (HAuCl4) and/or interference by chloride ions.  On the other hand, the 

extraction percentage also decreased with an increase in the initial pH in the range of 3-7.  In this 

range, the pH in the supernatant phase was significantly shifted to the basic region after the 

extraction, whereas the pH shift was slight or negligible at an initial pH below 3.  The insufficient 

extraction at an initial pH above 3 would be due to a lack of the protonated form of 

dicyclohexylamine as well as the ligand displacement of tetrachloroaurate(III) ion in the test 

solution.  In this method, the extraction was carried out using a sample solution adjusted to pH 1. 

 

3.2.6  Selectivity 

 The extraction of other elements, including iron(III), cobalt(II), nickel(II), copper(II), 

palladium(II), and platinum(IV), was also investigated at an initial pH range of 1-3 and an acid 
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concentration range of 1-3 mol L-1.  Iron(III), cobalt(II), nickel(II), and copper(II) were scarcely 

extracted under the conditions used for the investigation (the obtained results are shown in Fig. 2S 

in the Supplementary Material).  For palladium(II), the extraction was negligible at an initial pH 

below 1, whereas the formation of the precipitate was observed at an initial pH above 3 (Fig. 2S).  

Although the extraction percentage of platinum(IV) slightly increased with an increase in acidity in 

the test solution, platinum(IV) was not extracted at an initial pH of 1-3 (Fig. 2S).  These results 

indicate that DLLME using dicyclohexylamine is quite selective for gold(III).  It is known that the 

extractability of gold(III) is higher than those of palladium(II) and platinum(IV) in the ion-pair 

extraction of their chloro-complexes [33].  In our experiments, the selectivity might have been 

emphasized by the use of small amounts of dicyclohexylamine. 

 

3.3  Calibration curve and detection limit 

 The relationship between the absorbance of gold in the ETAAS measurement and the 

concentration of gold(III) was investigated.  A straight line (R2 = 0.996) was obtained with the use 

of 8 mL of the test solution containing 0.02-1.0 µg L-1 of gold(III).  The enrichment factor, which 

was calculated based on the slopes for the calibration curves with or without the extraction [25], 

was 60.  The detection limit, defined as three times the standard deviation for the procedural blank 

(n=8), was 0.002 µg L-1 of gold(III) in 8 mL of sample solution; this value was slightly lower than 
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the detection limit in the combined method with DLLME and ETAAS reported previously [25]. 

 

3.4  Interference 

 The effect of ions generally contained in various water samples on the extraction of 

gold(III) was investigated.  The concentration of the ions (1.1×107 µg L-1 of sodium, 4.1×105 µg 

L-1 of potassium, 1.3×106 µg L-1 of magnesium, 4.2×105 µg L-1 of calcium, 1.6×106 µg L-1 of 

phosphate, and 2.8×106 µg L-1 of sulfate) in the test solution used for the investigation was nearly 

equal to that in seawater [1].  More than 87% of gold(III) was extracted in the presence of large 

amounts of these ions (Table 1S in the Supplementary Material).  The obtained results indicate 

that the method proposed here is useful for determining gold(III) in various water samples, 

including effluents. 

 The effect of excessive amounts of platinum(IV) and copper(II), which were scarcely 

extracted at an initial pH of 1 (Fig. 2S), was also investigated.  Gold(III) was extracted at more 

than 92% in the presence of 2000 µg L-1 of platinum(IV) and copper(II) (Table 2S in the 

Supplementary Material).  These results indicate that the proposed method is also applicable to the 

determination of gold as an impurity in platinum metal and alloys containing platinum and copper. 

 

3.5  Application 
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 The method proposed here was applied to the determination of gold(III) in effluents.  

The obtained results are shown in Table 2.  In all of the effluent samples, gold(III) was precisely 

determined.  The gold(III) spiked to the effluent samples was quantitatively recovered, and no 

significant interference was observed. 

 The determination of gold in platinum metal and its alloy was also attempted.  As shown 

in Table 3, gold was determined in both samples, and satisfactory results were obtained in the 

recovery tests. 

 

4.  Conclusion 

 

 Dicyclohexylamine as an extractant for gold(III) showed excellent performance in 

DLLME using acetone as a disperser solvent and chloroform as an extraction solvent.  The results 

of the investigation using the LLE technique suggest that acetone used as a disperser solvent in 

DLLME also contributes to decrease in hydration, decrease in the difference in the dielectric 

constants between the supernatant phase and the sedimented phase, and dissolution of a part of 

chloroform as an extraction solvent to the supernatant phase.  The extraction of gold(III) in 

DLLME using dicyclohexylamine is, therefore, quite efficient.  Gold(III) can be selectively 

extracted from a sample solution at pH 1 even in the presence of other elements, such as iron(III), 
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cobalt(II), nickel(II), copper(II), palladium(II), and platinum(IV).  The combined method with 

DLLME and ETAAS can readily determine gold(III) at a sub-µg L-1 level using only 8 mL of the 

sample solution without interference by the matrices and can be applied to the determination of gold 

in platinum metal and its alloy as well as effluent.  The proposed method should be useful for the 

analyses of other water samples and the determination of gold in various materials, including metals, 

alloys, and salts. 
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Table 1  Operating conditions for FAAS and ETAAS 

Analytical wavelength (nm) 242.8 

Lamp current (mA) 10 

Slit width (nm) 1.3 

< FAAS >  

Flame conditions  

Air pressure (kPa) 160 

Acetylene pressure (kPa) 20 

< ETAAS >  

Cuvette Pyro-coated graphite tube 

Carrier gas (Ar) flow rate (mL min-1) 200 

Injection volume (µL) 10 

Atomizer program  

Dry (ºC, s) 80-120, 30 

Ash (ºC, s) 400, 30 

Atomize (ºC, s) 2700, 7 

Clean (ºC, s) 2800, 3 
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Table 2  Results for determination of gold(III) in effluent 

Sample a Au added 

(ng in 8 mL) 

Au found b 

(ng in 8 mL) 

Au concentration 

(µg L-1) 

Au recovery (%) 

Effluent 1 c - 2.3 ± 0.14 5.7  

 0.8 3.0 ± 0.06   98 

Effluent 2 c - 1.4 ± 0.07 3.4  

 0.8 2.1 ± 0.07   96 

Effluent 3 - 2.9 ± 0.12 0.36  

 0.8 3.7 ± 0.08  103 

a. Effluents were sampled at different time in the same day. 

b. Mean ± standard deviation (n=3). 

c. Effluent was diluted to 20 times with 0.1 mol L-1 hydrochloric acid after the digestion. 
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Table 3  Results for determination of gold in platinum metal and platinum alloy 

Sample Au added 

(ng in 8 mL) 

Au found a 

(ng in 8 mL) 

Au content 

(µg g-1) 

Au recovery (%) 

Pt metal - 0.76 ± 0.03 39.9  

 0.8 1.58 ± 0.03  104 

Pt alloy - 0.57 ± 0.02 28.1  

 0.8 1.36 ± 0.02   99 

a. Mean ± standard deviation (n=3). 
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Figure captions 

 

Fig. 1  Extraction of gold(III) with 11 kinds of amine compounds using normal LLE and DLLME 

techniques. 

Aqueous phase, 0.1 mol L-1 HCl containing 4 mg L-1 of Au(III); organic phase, chloroform 

containing 200 mmol L-1 of amine compound. 

LLE: 50 mL of aqueous phase and 1 mL of organic phase was stirred for 1 h. 

DLLME: 1 mL of the mixture of 0.90 mL of acetone and 90 µL of organic phase was injected 

swiftly to 5 mL of aqueous phase, and the cloudy solution was gently shaking for 10 s. 

 

Fig. 2  Extraction percentage of gold(III) as a function of stirring time on LLE. 

Aqueous phase, 50 mL of 0.1 mol L-1 HCl containing 4 mg L-1 of Au(III); organic phase, 1 mL of 

chloroform containing 200 mmol L-1 of amine compound.  Acetone, 10 mL (◆), 8 mL (◇), 1 mL 

(○), or not added (▲). 

 

Fig. 3  Relationship between the distribution ratio of gold(III) (D) and the initial concentration of 

dicyclohexylamine in chloroform ([DCHA]org) on LLE using various amounts of acetone. 

Aqueous phase, 50 mL of 0.1 mol L-1 HCl containing 4 mg L-1 of Au(III); organic phase, 1 mL of 
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chloroform containing 200 mmol L-1 of amine compound.  Acetone, 10 mL (◆), 8 mL (◇), 4 mL 

(■), 3 mL (□), 2 mL (●), 1 mL (○). 

 

Fig. 4  Effect of some disperser solvents on DLLME of gold(III) with dicyclohexylamine. 

Aqueous phase, 8 mL of 0.1 mol L-1 HCl containing 10 µg L-1 of Au(III); mixture solution, 1.0 mL 

of disperser solvent and 100 µL of chloroform containing 50 mmol L-1 of dicyclohexylamine; 

shaking, 10 s; ultrasonic irradiation, 5 min. 

The results were shown at mean ± standard deviation (n=3). 

 

Fig. 5  Effect of volume of chloroform on DLLME of gold(III) with dicyclohexylamine. 

Aqueous phase, 8 mL of 0.1 mol L-1 HCl containing 10 µg L-1 of Au(III); mixture solution, 1.0 mL 

of acetone and 50-250 µL of chloroform containing 50 mmol L-1 of dicyclohexylamine; shaking, 10 

s; ultrasonic irradiation, 5 min. 

The results were shown at mean ± standard deviation (n=3). 

 

Fig. 6  Effect of HCl concentration and pH on DLLME of gold(III) with dicyclohexylamine. 

Aqueous phase, 8 mL of 0.1 mol L-1 HCl containing 10 µg L-1 of Au(III); mixture solution, 1.0 mL 

of disperser solvent and 100 µL of chloroform containing 50 mmol L-1 of dicyclohexylamine; 
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shaking, 10 s; ultrasonic irradiation, 5 min. 

The extraction percentage was plotted as a function of the initial (◆) or final (◇) pH. 
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