Vol.0O No.0

IPSJ Journal

Regular Paper

Optimizing mv-BMC to mv-SAT Conversion

JEFFERSON OLIVEIRA ANDRADE!

Classical, 2-valued logics don’t express naturally systems with uncertainty or inconsistency. It has been
shown that multi-valued logics, specified over finite lattices, can be efficiently used to model and reason
about such systems.7)*8) For this date, all known approaches to solve the multi-valued symbolic model
checking problem use multi-valued decision diagrams (MDD) as a symbolic representation of the model.
As for BDDs, MDDs presents a space blow up bottleneck. In this report we describe our results on a
technique for using propositional SAT solvers instead of MDD symbolic manipulation procedures, i.e. to
use of bounded model checking (BMC), for solving the multi-valued model checking (MVMC) problem. By
using BMC, our procedure aims to avoid the space blow up of MDD, generates counterexamples faster and
generates counterexamples of minimal length.

This work extends and improves our previous work developed for the Advanced Systems Development
Research Project in 2006. A number of additions and improvements are described. We present the semantics
of a multi-valued extension of LTL as well as an extended notion of counterexample for the MVMC case
and a procedure to reduce an MVMC problem to a propositional satisfiability problem. Finaly we presente

1959

preliminary results from our multi-valued BMC prototype implementation.

1. Introduction

It is not uncommon, during software specifi-
cation, to find contradictory specifications or un-
certainty in requirements. Although most of the
current specification techniques and tools lack the
proper treatment of these problems, some work has
been made to address this problem. In the con-
text of automated system verification, the work of
Chechik?®!D and Easterbrook! is distinguished
for addressing the problem by employing model
checking!® over multi-valued logics'®!? to rea-
son about distinct viewpoints. Also, the work of
Kameyama, Nishizawa and others?®?® suggests a
direction for employing multi-valued logics to anal-
yse models in an even early stage of the develop-
ment.

To our knowledge, the most extensive study of
applying multi-valued logics to the model check-
ing problem is the work of Chechik, Easterbrook,
Gurfinken and others”'®. That work provided
strong theoretical results on applying multi-valued
decision diagrams (MDD) to the on multi-valued
symbolic model checking problem and, lead to
the development of a multi-valued symbolic model
checker, the xChek tool'?. On the present work
we propose to apply bounded model checking
(BMC)V? to the multi-valued model checking
problem. In the classical, 2-valued logic context,
BMC has been shown to be more efficient on find-

11 Department of Computer Science, Graduate School of Sys-
tems and Information Engineering, University of Tsukuba,
joandrade@logic.cs.tsukuba.ac. jp

ing counterexamples, generate counter-examples of
minimal length and sometimes speed up the veri-
fication, when compared to model checking using
BDD symbolic manipulation procedures. We ex-
pect these features to be preserved in the multi-
valued logic context as well.

During the execution of the previous Advanced
Systems Development Research Project course our
goal was to develop a tools capable of creating
models that incorporate uncertainty and disagree-
ment, and that provide the means to reason about
these models. Since this is not done naturally us-
ing 2-valued logics, we turned to the use of multi-
valued logics'®-'?. Applying model checking for
reasoning about the models was a natural develop-
ment.

On the current project we introduced a number
of improvements and expansions over the previous
one. The most significant are:

e We developed an original translation from
the multi-valued model checking problem
(MVMC) to multi-valued propositional satis-
fiability (mv-SAT) and from that to two-valued
propositional satisfiability (SAT).

e We have changed the underlying logic on
which we describe the models and specifi-
cations from Computational Temporal Logic
(CTL) to Linear-time Temporal Logic (LTL).
That allowed the development of a much more
solid theoretical foundation.

e We refined the specification language making
the syntax and semantics much more intuitive
and easy to use. The new language also made
much easier to employ symbolic model check-

2 IPSJ Journal 1959

ing optimizations during the “compilation” of
the model.

e The prototype was completely rebuild. For the
new implementation we have swapped from
the object oriented paradigm to the functional
one. Using the language F# we have achieved
a high performance implementation, but still
preserving the expressiveness of a functional
language and keeping focus on the algorithms.

e We implemented a package for storing LTL
and finite domain propositional formulas
(FDPL) as directed acyclic graphs (DAG).
This data structure made possible to eliminate
redundant sub-formulas on construction time
with a very small time overhead and a huge
(more than 2 orders of magnitude) improve-
ment on memory consumption.

The rest of this report is organized as follows.
Section 2 describes further motivations for this
work. Section 3 introduces multi-valued Kripke
structures (MVKS) and the semantics of mv-LTL
as well as multi-valued model checking. Sec-
tion 4 describes the nave approach to solving the
multi-valued model checking problem. It is also
in this section that we describe the direct trans-
lation from multi-valued model checking problem
to multi-valued propositional satisfiability. Sec-
tion 5 gives an overview of the new (rebuild from
scratch) version of our prototype implementation
for the multi-valued bounded model checker, as
well as some description of the algorithms used.
Section 6 introduces a motivational example and
gives some results from preliminary experiments
with a prototype implementation of our direct trans-
lation method. Section 7 discusses other attempts
to solve the multi-valued model checking problem
found in the literature and discuss our conclusions
and directions for future work.

2. Motivation

Large software systems development is still a
highly error prone process. According to NIST, er-
rors in software systems cost about 60 billions of
dollars every year, only in United States.>> These
errors are due, basically, to two causes:

(1) The systemis not correct, i.e., the system im-
plementation does not satisfy the specifica-
tion.

(2) The system is not adequate, i.e., the require-
ments had not been correctly understood
and/or represented by the software engineer.
One can say that the model created by the
engineer incorrectly reflects the system.

This has leaded to a substantial grow in the inter-

est in formal methods in the last few years. Formal
methods is a collection of mathematical techniques
for specifying and verifying complex hardware and
software systems.

As said, a very common problem on specifying
software systems is the fact that usually we find un-
certainty or disagreement about the requirements;
or even worse, we find requirements that are con-
tradictory. It would surely be very useful for a soft-
ware engineer in this situation to be able to include
this uncertainty on the system specification and also
create contradictory models and have automatic or
semi-automatic ways to refine these contradictory
models.

We believe that a tool that allows the creation of
models that incorporate uncertainty and disagree-
ment, and also allows the verification of these mod-
els against requirements will be extremely useful by
the average software engineer.

3. Multi-Valued Model Checking

Model checking can be summarized as an auto-
mated technique to verify temporal properties on fi-
nite systems.*! Standard model-checking usually
receives as input a system’s model described by
a Kripke structure (requirements) and a temporal
logic description of the system’s properties (spec-
ifications). The specification is verified against the
Kripke structure to see if it holds or not. If the spec-
ification does not hold, a counterexample is pro-
duced.

On the other hand, multi-valued model checking
receives as input a multi-valued Kripke structure
(MVKS), i.e. a multi-valued finite transition system
as an extension of the Kripke structure, and the de-
scription of the system’s properties. Then the spec-
ification is verified against MVKS. On this work,
from the range of the algebra of truth values and
temporal logics available, we will focus on Linear-
time Temporal Logic (LTL).

3.1 Boolean Algebra

In this paper, we take Boolean algebras as the
many-valued structure used as logical domains of
interpretation for formulas in multi-valued logics.
We do this in order to focus on algorithmic and
implementation issues. Extension to more general
structures are left for future work.

Definition 3.1 (Lattice). A lattice is a partially or-
dered set L = (L,C) such that, for any two ele-
ments z,y € L, the following elements exist:

e Their greatest lower bound (zMy), called meet.

+1 There is an increasing interest in model checking for infinite
systems, though.

Vol.0O No.0

e Their least upper bound (z U y), called join.
A lattice is called distributive if it satisfies the dis-
tributive laws z U (y M 2z) = (z Uy) M (z U z) and
xM(yUz)=(zMNy)U(xMz).
Definition 3.2 (Relative Pseudo-Complement). Let
L = (L,C) be alattice. If an element ¢ € L is the
greatest member of £ such that a M ¢ C b, then
we call ¢ the pseudo-complement of a relative to b,
denoted by a = b.
For finite distributive lattices the relative pseudo-
complement aways exists!®).
Definition 3.3 (Boolean Algebra). A Boolean Al-
gebra is a distributive lattice (L,C) with a max-
imum element T, a minimum element L, and a
unary operator ~, such that, for any x € L:
M~y =1 Law of Non-Contradiction
zU~x =T Law of the Excluded Middle
A finite Boolean Algebra has 2" elements for
some natural number n. For a 2% valued Boolean
Algebra, for example, we say it is an “order 4”
Boolean Algebra.
We henceforth assume that £ is a finite Boolean
Algebra.
3.2 Multi-Valued Kripke Structure
We define the concepts of multi-valued Kripke
structures and paths on a Kripke structure. The ex-
tension of the classical notion of Kripke structures
to the multi-valued one (MVKYS) is straightforward.
Note that some authors® !9 perform multi-valued
model checking on MVKS where the predicates
take values from an mv-algebra® !9, but they keep
the transition relation defined over 2-valued lattice
(order 2 Boolean algebra), while others consider
also mv-transition relations (for instance,””). On
this work, we follow the second, more general, ap-
proach.
Definition 3.4 (Multi-Valued Kripke Structure). A
Multi-Valued Kripke Structure (MVKS) is the tuple
M = (S,Sy, R, AP, L, O) with components de-
fined as follows:
e S'is a finite set of states.
e Sy C S, the set of initial states.
e R: Sx S — L is a function called mv-
transition relation.
e AP is a finite set of atomic propositions.
e [is an mv-algebra (in our case, finite Boolean
algebra), defined as (L, M, 1, ~, L, T).
e O:85x AP — L is a function that maps a
pair (s,a) € S x APtosome!l € L.
Definition 3.5 (Path on a Kripke structure). Let
M = (S,80, R, AP, L,O) be a MVKS. A path
is a mapping m : N — S. Note that, in MVKS,
any sequence of states is a path. Obviously, not all
sequences of states are useful.

Optimizing mv-BMC to mv-SAT Conversion 3

For a path 7, 77 denotes the j-th suffix (path),
that is, 7/ (i) = 7 (i + j) fori > 0.

When there is no confusion, we may also write a
path 7 as sg, s1, S2, . . ., having the intended mean-
ing that 7(0) = s, (1) = $1,7(2) = s2,.. ..
Definition 3.6 (Initialized path). We call a path 7
an initialized path iff 7(0) € Sy. We define the set
of paths TTy = {7 | 7(0) € Sp}.

3.3 Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) is a logic that
allows one to refer to the future'3!'? *! We slightly
extend the syntax of LTL formulas so that a lattice
value | € L becomes a formula. We call this exten-
sion mv-LTL.

Definition 3.7 (Syntax of mv-LTL). Let AP be a
set of atomic propositions. Let p € AP and [€ L.
The syntax of mv-LTL is defined as follows:
o, u=1]p
| =6 | dAY SV |6 —
X6 |Fo|Go|pUy| R

l € Lis called a truth value.

By convention, to simplify the use of parenthesis,
we assume that the unary connectives (—, X, F and
G) bind most tightly. Next come U, R, A, V and —,
in the order.

The meaning of the standard logical operators (—,
A, V, —) remains the same as in classical two-
valued logic. They assert about the current state.
The temporal operators (X, F, G, U and R) assert
about future states.

Informally, X states about the next state, i.e. X ¢
means “¢ holds at the next state”. F states about
sometime in future, i.e. F ¢ means “¢ holds at some
future state”. G expresses a permanent property of
the model, i.e. G ¢ means “¢ always holds”. U is G
with a limit, i.e. ¢ U 1) means “¢ holds at every state
until ¢ holds, and v holds at some future state.” R
is a dual of U.

We then give the semantics of an mv-LTL for-
mula with respect to an MVKS.

Definition 3.8 (Semantics of mv-LTL). Let M =
(S, S0, R, AP, L,O) be an MVKS. Let 7 =
50,51, S2, . .. be a path on M. Then, the seman-
tics of an mv-LTL formula is recursively defined by
the validity relation |= as follows:

(1) (rEl=lforlelL.

(2) (mp)=0(x(0),p), forp € AP.

(3) (rE=¢)= ~(7=9)

(4) (rE(ony))=(r=¢)T(r =)
(5) (rE(oVY))=(r o U(r).
(6) (rE(@—v)=(rkE¢)= (=)

*1 There is an extension of LTL, LTL with Past Operators
(PLTL), that allows to refer to the past as well.

4 IPSJ Journal 1959

() (mEX¢)= (! ¢).

(8) (mEFo)=lsor F 0.

(9) (TEG) =Tz o

(10) (v (bUw) = |_|i20<(7rl F o) n
EI‘I

T | ¢RY) = [ls((@ E ¢) U
(l_ljgi ™ = 1))

We say that ¢ is not valid along 7 if w |= ¢ is L
and that ¢ is valid along 7 if 7 |= ¢ is T. Other-
wise, for (7 |= ¢) = | we say that ¢ has validity
“l” along .

3.4 Multi-Valued Model Checking Problem

On two-valued LTL model checking the (univer-
sal) model checking problem is defined as the prob-
lem of verifying if a formula ¢ is valid for all ini-
tialized paths of a given model M."

Definition 3.9 (Model-Checking Problem). Given
a Kripke structure K = (S, Sy, AP, O), let Il =
{m|m(0) € Sp}. The (universal) model checking
problem, M |= ¢, in LTL is defined as

M 62 e, (7 = 9)
and also, according to the semantics of LTL the fol-
lowing equivalence holds.

ety (T = ¢) = 2(3rem, (7 F —0))

Then, in order to solve the universal model
checking problem for a given ¢ we show that the
existential model checking problem for —¢ has no
solution.

Following the 2-valued definition, we define the
multi-valued model checking problem as the prob-
lem of verifying, for a MVKS M, if for all initialized
paths 7, ™ |= ¢ is valid for a given specification ¢.
However, not all initialized paths are useful and it
is not the case that a path is either completely use-
ful or completely useless, therefore, we must refine
this intuition in some way. Namely, we should take
into account the degree of “usefulness” of a path 7.
Here we take essentially the same definition as>?.
Definition 3.10 (Weight of a Path). Let M =
(S, So, R, AP, L, O) be an MVKS, and 7 is a path
over M. We define the weight of 7 as an element
of the lattice £ by:

Weight(r) = [| R(w(i), m(i + 1)).
] i>0

If Weight(m) = T, it is a valid path. If
Weight(m) = L, itis an invalid (useless) path. Be-
sides these, there may be paths whose weights are
not L nor T.

We can now define the validity of an mv-LTL for-
mula relative to a MVKS M as follows.

Definition 3.11 (Multi-Valued Validity). Let M =

(11)

(S, So, R, AP, L, O) be an MVKS. The validity of
an mv-LTL formula ¢ is defined by:

(M o) = [] (~Weight(m)) U (r = ¢))

mwellp

Note that this definition coincides with the defi-
nition for two-valued validity given in® when L =
{L,T}. Note also that, if Weight(w) = L, then
such a path 7 does not affect the validity of a for-
mula.

The definition above gives the exact truth value
of an mv-LTL formula ¢ with respect to a MVKS
M, i.e. the exact degree of validity of ¢ w.r.t. M.
Rather than computing the exact degree of validity
of ¢, we may want to do more general queries. For
instance, we may want to know if (M = ¢) 31
for some lattice value [€ L. This kind of queries
can be reduced to an “exact” query since (M
¢) J listrue iff | = (M = ¢) is T, and this
is equivalent to M = (I — ¢). Hence we only
consider the standard specification, and our model
checking problem is whether M |= ¢ equals T or
not. Unfortumately this result does not generalize
to other relational operations.

3.5 The Notion of Counterexample

Next, we should consider what is a counterexam-
ple in this setting. What we want to do is to check if
M = ¢ is T. This is equivalent to check if for all
path 7 € I, the value ~ Weight(r) U (7 = ¢) is
T. Then a counterexample of this assertion is any
path 7 € Il such that ~ Weight(n) U (7 = ¢) T
T. If such a counterexample exists then M = ¢ is
not T.

Definition 3.12 (Counterexample). Let M =
(S, S0, R, AP, L,O) be a MVKS. Let ¢ be an mv-
LTL formula to be interpreted as an specification
over M. We call a path w € Il a counterexample
Sfor M |= ¢ iff

~Weight(m)U(r =¢)C T

When the lattice is Boolean algebra (or quasi-
Boolean algebra) we can take negation, so
-~ Weight(m) U (7 = ¢) T T is equivalent to
Weight(m) N (7 |= ~¢) 3 L. So, in the mv-BMV
algorithim we will first negate the specification for-
mula ¢, and look for some path such that the in-
equality above holds.

4. Strategies of Multi-Valued Model Check-
ing

As we stated in the introduction, our aim is to ex-
plore the possibility of using the BMC technique in
multi-valued model checking. For this purpose, the
most basic method is “slicing”, which essentially

Vol.0O No.0

converts one 2"-valued model checking problem to
n 2-valued ones, corresponding to each “bit” of a
lattice value.*!

Assuming that we can extend the two-valued
bounded model checking! to the multi-valued case,
we can do slicing in various stages:

e We slice the multi-valued model checking
problem (MVKS and mv-LTL formula) into n
2-valued model checking problems.

e We slice the multi-valued propositional for-
mula, obtained by translating the multi-valued
model checking problem, into n propositional
formulas. Or,

e We slice the multi-valued CNF, obtained from
the multi-valued propositional formula, into n
2-valued CNF.

We claim that the choice affects the efficiency of
mv-bounded model checking, since at each stage
we can employ different styles of optimizations. On
the following sections we compare the first two ap-
proaches indicated above.

4.1 Problem Slicing

What we proposed, as a first attempt, is to en-
code the logic values of a Boolean Algebra with
2™ values in a vector of n bits. A more interest-
ing interpretation arises when we think of a multi-
valued model as a structure representing the over-
laying of many different 2-valued models, each 2-
valued model corresponding to one layer of the fi-
nal model. We may think about each “bit” of the
logic value as a layer of the model. The idea of an
mv-model as a composition of standard model is il-
lustrated in Figure 1, where the transitions of the
model are labeled with 3-bit lattice values, indicat-
ing 3 composing layers.

Then we slice the model on its many layers and in
this way generate many 2-valued models, as show
in Figure 2.

One immediate consequence of this view is the
possibility to express different viewpoints in the
same composite model. Each viewpoint standing
for one layer in the model. Of course, combinations
of more than one layer are possible.

The definition of slicing for models (MVKS) and

specifications (mv-LTL formulas) is very straight-
forward.
Definition 4.1 (Model Slicing). Given a MVKS
M = (S, S0, R, AP, L, O), we say that the slice
index © of M 1is the (standard 2-valued) Kripke
structure M) = (S(i)7Séz),R(i),AP(i),O(i)> as
defined below:

*1 We recall that an element of 2™-valued Boolean Algebra is
represented by n bits.

Optimizing mv-BMC to mv-SAT Conversion 5

#111 #100

Fig. 1: Model with multiple viewpoints incorporated.

o S =g

° S(()ll) =50

o RO = {(s,) | bi(R(s,t)) = 1}

o AP(Z _ p(i) ‘p € AP}

o O (s p®) T, i b(O(s,p)) = 1

1, otherwise

Where b; : L — {0,1} is a function that maps a
lattice value to its “bit” of order ¢, assuming a binary
encoding for lattice values.
Definition 4.2 (Specification Slicing). Given an
mv-LTL formula ¢, we call the slice index i of ¢
the (two-valued) LTL formula ¢() defined by the
inductive definition b)elow:

JE%) = bi(l)
00 = (o)

(¢ A w(z:) = ¢(l:) A ¢(l:)
(V) = ¢ vyl
(¢ — w)g = ¢(’>(7 Q)

3 — X¢) K3

(Gp) = Gl
(¢ U w)(f) = ¢(z:) §] w(f)
(pRY) = ¢ Ry

Where p’ € AP® and AP is defined as
APY = {pi | p € AP}.
Definition 4.3 (Problem Slicing). Let £ = (L,C)
be a boolean lattice of order n. Given a standard
multi-valued model-checking problem P = M =
¢, where M is a MVKS, ¢ is a mv-LTL formula,
we define P, the slice index i of P, as the (2-
valued) model checking problem, given by the ex-
pression below:

PO = Mm@ = o

6 IPSJ Journal 1959

(a) STR(100)

(b) STR(010)

(c) STR(001)

Fig. 2: Three different “slices” of the original model.

The following lemma sumarizes the method of
naive multi-valued model checking problem slic-
ing.

Lemma 4.1. For a multi-valued model-checking
problem P = M |= ¢ > [, based on a boolean
lattice of order n, the following equivalence holds:
M |: ¢ PN #[M(n—l) ‘: ¢(n—1)7
M(TL—Q) |: (b(n—Q)7

% k¢

4.2 Direct Translation + Slicing

The second approach we present for solving the
problem is a direct translation designed following
very closely the one proposed in?, but with the nec-
essary modifications to preserve the multi-valued
semantics of models (MVKS) and specifications
(mv-LTL formulas).

In the following we always consider that image
of the equality relation is restricted to { L, T }.
Definition 4.4 (Unfolding the Transition Relation).
Let M = (S, S0, R, AP, L,O) be a MVKS. Let
{si]i € N} be a set of state variables. We define
the mv-propositional formula [M]; that encodes
the transition relation of M as:

k—1
[M]i == I(so) A\ T(si,si41)
Where, =0
I(Sz) = \/ (52 = 5)
SESy
and
T(siys) = \/ (si=uns;=v)Al

(u,v,l)eR

Definition 4.5 (Translation of an mv-LTL formula
without a loop). For an mv-LTL formula' ¢, abound
k,i € N, with ¢ < k, the translation [¢];, of ¢ for a

path without a loop is inductively defined as:

[=
ol = p(s)
el = —w(si)
[o 7ol = [l ALV
[eveli = [V
oty = { s
[F ¢l Vi Lol
[Gol, = L
DUl = V(WA AR
[oRU1 = VI8l AN IVTR)

Deﬁnltlon 4.6 (Successor in a loop). Let k1,4
N, with ¢ < k and [< k. The successor succ(of
iin an (k,1)-loop is
suce(i) = i+1, ifi<k

l, otherwise
Definition 4.7 (Translation of an mv-LTL formula
for a loop). For an mv-LTL formula ¢, a bound k,
i,1 € N, with i,1 < k, the translation ;[¢]% of ¢ for

Vol.0O No.0

a (k, 1)-loop path is inductively defined as:
U

ol = p(si)
=ply = —w(s:)
o Al = el Al
o vl = loli Vvl
Xl = o]yt

![F ¢]]7ic = \/?:min(i,l) l[[¢]]i
l[[G (b]]i‘ = /\?:mm(z 1) l[[¢]]k .
doUeli = Vi, (il A NZhlelp) v
i1 el A A 1[61A
-V (VLo)
l[[¢Rw]]%¢ = /\j:min(i,l) l[[,(/]]]?c\/

Vi (6T A A ilel?) v
Vit (1 A Ay 017N >
, ! e (1T
Definition 4.8 (Loop Condition). For k,! € N, let
lLk = T(Sk, Sl), and Lk = vf:O lLk~

Definition 4.9 (General Translation). Let ¢ be an
mv-LTL formula, M an MVKS and k£ € N. Then,

M, ¢k := [M]k A [¢]x
Where,

k
[61k :== (=L AL6D2) v \/ 1Lk A ISI7)
1=0
It is important to note that Weight () is automat-
ically encoded in [¢], as ;Li or Li. So checking
the following property for k:
There is a path 7 such that Weight(m) M
(r b= —¢) 3 L.
Reduces checking the following one:
There are states sg, S1,...,Sk such that
[¢ 2L
By slicing, this final property reduces to checking
(for a fixed k):
There are states sg, S1,...,Sk such that
there is some slice i for which b;([¢]x) =
1 (i.e. non-zero).
Hence, we take disjunction of formulas generated
by slicing, and check its satisfiability by an ordi-
nary, two-valued SAT-solver.

5. Prototype Implementation

On this section we describe our prototype imple-
mentation of multi-valued bounded model check-
ing. Our method can be summarized as follows. We
encode a boolean algebra with 2™ values in a vec-
tor of n bits. A few syntactical constructions ware

Optimizing mv-BMC to mv-SAT Conversion 7

defined with the following additional features:

e A statement lattice boolean (n), that
specify the size of the boolean algebra being
used for the model.

e The lattice values are accepted as literals,
and specified as #d; ...d, where, d €
{0,1}.

e A special predicate $TR (I) , where [is a lattice
value. We will discuss this predicate latter.

e Specifications are defined in relation to a given
lattice value. This has the same effect of defin-
ing a set of designated values as proposed in
22), except that the set of designated values is
not bound to the model, but to individual spec-
ifications.

The role of the predicate STR (l) is paramount
for the mapping of the multi-valued model to a 2-
valued one. The basic idea is that STR (/) can be
used to define the logic values associated with the
transitions in the model. In a rouge view, STR (l)
can be compared to the mv-transition relation R.

Although, the interpretation of STR (/) as corre-
sponding to the R is justifiable, we think that a more
interesting interpretation arise when we think of a
multi-valued model as a structure representing the
overlaying of many different 2-valued models, each
2-valued model corresponding to one layer of the
final model, and then we think of STR (l) as a se-
lector that specifies on which layers the outermost
logic expression applies. The idea of a mv-model
as a composition of standard model is illustrated
in Fig. 1, where the transitions of the model are la-
beled with 3-bit lattice values, indicating 3 compos-
ing layers.

Figure 2 illustrate the use of the special predicate
STR (1) as a selector of the layers of the mv-model.
Each bit in the argument of $TR (I) selects a differ-
ent layer of the mv-model. Of course, combinations
of more than one layer are possible. One immedi-
ate consequence of this view is the possibility to
express different viewpoints in a same composite
model. Each viewpoint standing for one layer in
the model.

The translation of the model, from the multi-
valued description, to a standard 2-valued descrip-
tion is outlined by Algorithm 1. Basically, each mv-
variable is translated to an array of size n, and each
mv-expression is translated to an equivalent list of
n expressions.

11<i<n

6. Experimental Results

We have implemented a bounded multi-valued
model checker prototype. The prototype translates
a MVMC problem description to a conjunctive nor-

8 IPSJ Journal 1959

Algorithm 1 General algorithm for applying

MVBMC.

Require: M a Model object; ¢ a mv-LTL formula
object; k the bound to be applied.

Ensure: The boolean valuation that represents a
counterexample to ¢ in M if ¢ does not hold,;
or the empty valuation if ¢ holds.

1: procedure MVBMC(M, ¢, k, fname)
2: f < MVBMCTRANS(M, —¢, k)

3 fs < SLICE(fs, k)

4: g < MKPEF(dsj, fs)

5 BOOL2CNE(g, fname)

6 RUNSATSOLVER (fname)

7. end procedure

Algorithm 2 Translation from multi-valued model

to multi-valued finite domain propositional for-

mula.

Require: M a Model object; ¢ a mv-LTL formula
object; k the bound to be applied.

Ensure: A multi-valued finite domain proposi-
tional formula that encodes the MVBMC prob-
lem for a bound k.

1: function MVBMCTRANS(M, ¢, k)

2: iop < INSTANCE(M.init, 0)

3 fori — 0..(k—1)do

4: tr[i] < INSTANCE(M.trans,i,i + 1)
5: end for

6 m < FOLDL(V, i, tr)

b

f < TRSPECNOLOOP(M, ¢, k)
8: g « TRSPECLOOP(M, ¢, k)

90 h<(fVvyg)

10: return (m A h)
11: end function

mal formula (CNF) in DIMACS format?? for sat-
isfiability problems, and uses the MiniSAT SAT
solver tool' to look for a solution.

6.1 Example

As an example of the use of multi-valued log-
ics for modeling systems, we take the telephone
system studied in'¥ and'". On its original pre-
sentation, two separated versions of the same fea-
ture were specified and the separated models were
merged to reason about which properties are agreed
and which are disputed. Figure 3 shows the model
of the caller’s perspective of the system, and Figure
4 shows the perspective of the callee. The details of

Algorithm 3 Replace abstract model variables by
its equivalent concrete state variables.

Require: M — the model data structure; ¢ — a
finite domain propositional formula; ; — the
current state variable index; j — the next state
variable index, if not specified its default value
is —1.

Ensure:) — an instantiated finite domain propo-
sitional formula equivalente to ¢, but with
all model propositional variables replaced by
its corresponding concrete state propositional

variables.
1: function INSTANCE(M, ¢, 1,)
2: match ¢ with
3: | v=
4: return GETCONCRETEVAR(M, v, 7)
5: | v/, when j < 0=
6: error: “Invalid use of next state vari-
able.”
7: | v/, when j > 0 =
8: return GETCONCRETEVAR(M, v, j)
9: | n=
10: return n
11: | Tl = To =
12: Y1 < INSTANCE(M, 21, 1)
13: Y2 < INSTANCE(M, x4, 1)
14: return y; = yo
15: | =1 =
16: 1)1 < INSTANCE(M, ¢1,1)
17: return —;
18: | 1 © ¢ =
19: 11 < INSTANCE(M, ¢1, 1)
20: thg < INSTANCE(M, ¢3, 1)
21: return 11 © Vo
22: end match

23: end function

the merging procedure are outside the scope of this
paper, but are explained in'¥. The merged model is
presented in Figure 5.

As can be seen there are disagreement about a
number of transitions in the model. Some analysis
is necessary if we want be able to tell if these dis-
agreements affect or not the overall design of the
system.

6.2 Experiments

For the tests presented here we encode the tele-
phone system shown in Section 6.1 for a 22 boolean
logic, and extended the model for other 2" logics,
with 1 < n < 8. Then we tested each model for
increasing values of the bound k. All tests were
performed on a Intel Core 2 Duo T7200 (2.0 GHz)

Vol.0O No.0

RINGING1
offhook=FF
calee sel=FF
connected=TT
callee free=TT

Optimizing mv-BMC to mv-SAT Conversion

IDLE
offhook=FF
calee_sel=FF
connected=FF
calee free=TT

CONNECT
offhook=TT
calee sel=TT
connected=TT
callee_free=FF

DIALTONE
offhook=TT
callee sel=FF
connected=FF
calee free=TT

RINGING2
offhook=FF
calee sel=TT
connected=TT
callee free=FF

RINGTONE
offhook=TT
calee sel=TT
connected=FF
calee free=TT

Fig. 5: Combined caller’s and callee’s persperctives of the telephone system.

Algorithm 4 Retrieve a concrete state propositional

variable corresponding to the given abstract model

variable

Require: M — the model data structure; x —
a model propositional variable; ¢ — the current
state variable index.

Ensure: The concrete state propositional variable
correponding to the model propositional variable
x.

function GETCONCRETEVAR(M, k, , 1)
nvars < length(M.vars)
Zpos < index(M.vars)
return (i X nvars) + Zpos

end function

processor machine with 2.0 GB of RAM.

Figure 6 shows the growth of the number of vari-
ables in the CNF generated for each model as a
function of k. Figure 7 shows the corresponding
growth in the number of clauses in the CNF, also as
a function of k. As it is easy to see, both measures
(number of variables and number of clauses) seems
to grow linearly with k. This behavior may be jus-
tified by the particular caracteristic of the proposi-
tional formulae generated by our translation. It is
easy to note that our approach generate a very spe-
cific kind of formulae, by composing formulas that

CONNECTED
offhook=T
calee sd=T

connected=T
callee free=F

BUSYTONE
offhook=TT
calee sel=TT
connected=FF
calee free=FF

Ha

DIALTONE RINGTONE\ BUSYTONE
offhook=T offhook=T offhook=T
callee_sel=F calee sel=T calee sel=T
connected=F connected=F connected=F
callee free=T callee free=T) callee free=F

| DEI_;/
offhook=F
calee sdl=F
connected=F
calee free=T

Fig. 3: Caller persperctive of the telephone system.

are greatly similar in structure, but each with its
own set of variables. Here we remember that we
take the disjunction of the propositional formulas
generated by slicing the multi-valued formula that
encodes the MVMC problem. Also, our implemen-
tation uses a direct acyclic graph to represent propo-
sitional formulae, this allows us to translate shared
sub-formulae only once in the CNF generation.
Since the number of variables and the number of
clauses in the CNF grow linearly with k, it is not

10 IPSJ Journal 1959

IDEL
offhook=F
connected=F

RINGING DIALTONE
offhook=F offhook=T
connected=T connected=F

i

CONNECTED
offhook=T
connected=T

Fig. 4: Callee persperctive of the telephone system.

I
< ¥aXxM
> ¥ 4 X M
L

e 4T AXHM

e a e ¥ XN
+ <
a

 MeadRWAIN
-e

E
o
]
[
WeadrTAXN

Fig. 6: Number of variables in CNF x k.

"

L]
aXx
a »- v A I L
v

L
4 b ¥ & X M

4k ¥ aAXIH

mear
*

- MeABVAIN
+an

£ WEARTALM

[
v AR
[1= 4 O%

Fig.7: Number of clauses in CNF X k.

surprising that the time required by our prototype
appears to grow polinomialy with %k, as shown in
Figure 8. Although, we must say that, as for now,
we do not have enought evidence to claim that the
time complexity in the average case is indeed poli-
nomial, as for the worst case it is known to be ex-
plonential.

& T M
v

x

QEEERERPEE. = =

ERTL M
BT AX M
WakY AT M
meak ¥

| L

L

®ioge | #loge? ¥loge} Wisged *loget % logee *inge? Bilsged

Fig. 8: Time x k, time in milliseconds.

7. Related Work and Conclusion

In recent years a number of researchers has
shown interest in the problem of multi-valued
model checking, and many distinct approaches has
been proposed. The translation of a 3-valued model
checking problem for CTL* and the model pu-
calculus to a standard model checking problem was
defined by Bruns and Godefroid?>. A restricted
version of the problem with a 2-valued transition
relation in the model was considered.

Another approach was adopted by Chechik et al.
A new model checking algorithm for a multi-valued
version of CTL was defined exploiting mv-BDD’s”
for unrestricted interpretations and MTBDD’s® for
finite distributive quasi-boolean algebras. Still, a
model checker for mv-LTL under restrict interpre-
tations (2-valued transition relation and totally or-
dered sets for the propositions) haves been imple-
mented, based on a translation to (mv-)Biichi au-
tomata.'?

A translation from a negation-free mv-CTL* to
CTL* model checking for model over finite quasi-
boolean lattices was shown by Konikowska and
Penczek?D, that later revised their technique to
make use of designated values in complete lat-
tices??.

Also, model checking algorithms for mv-CTL
over multi-valued interpretations featuring differ-
ent notions of negations were considered Chechik
etal®.

Regarding, bounded model checking, the orig-
inal idea has been proposed by Biere, Clarke et
al.""2:12) For the CTL logics, an extension of the
BMC method based on SAT procedures to verifi-
cation of all the properties expressed in ACTL was
shown by Penczek et al.?*.

We have presented a new algorithm for solving
the multi-valued model checking problem by ap-

Vol.0 No.0

plying bounded model checking, and we state that
the proposed translation procedure is sound. This
opens the possibility of applying already known op-
timization techniques for standard BMC in the con-
text of multi-valued model checking. Our prelimi-
nary experimental results seems to confirm that the
method is efficient and scalable. One more evi-
dence that contributes to this conclusion is shown
by Table 1 that show the ration between the time
needed for the translation from the MVMC problem
to mv-SAT problem. As can be seen, the time con-
sumed by the translation has the same magnitude of
the remaining of the process, i.e. the time required
for generating the CNF and running the SAT solver.
This represents an improvement of orders of mag-
nitude over the naive solution to the problem.
Despite or perliminary results, there are still
much ground for further improve this work. At least
three points must be addressed in the short term.
(1) We need more comprehensive tests to vali-
date or conjecture that BMC applied to the
multi-valued logic context does preserve ad-
vantages that it pocesses in the 2-valued con-
text.

(2) We need to improve our prototype so that we
can investigate more meaningful examples

(3) We expect to extend our approach to cover
more general logics like pseudo-boolean al-
gebras and, maybe, Heyting algebras.

These improvements will provide the means to
conduct experiments with realistic applications of
multi-valued logics. Many topics can be further
investigated, but at the moment we target at the
capacity of bounded model checking to efficiently
find counterexamples and the possibility that multi-
valued temporal logic provides to express disagree-
ment will certainly provide powerful tools to reason
about model refinement.?®

References

1) Biere, A., Cimatti, A., Clarke, E., Strichman, O.
and Zhu, Y.: Bounded model checking (2003).

2) Biere, A., Cimatti, A., Clarke, E. and Zhu, Y.: Sym-
bolic Model Checking without BDDs, Lecture Notes
in Computer Science, Vol.1579, pp.193-207 (1999).

3) Bruns, G. and Godefroid, P.: Model checking with
multi-valued logics (2003).

4) Bruns, G. and Godefroid, P.: Model Checking Par-
tial State Spaces with 3-Valued Temporal Logics,
Computer Aided Verification, pp.274-287 (1999).

5) Bruns, G. and Godefroid, P.: Generalized Model
Checking: Reasoning about Partial State Spaces,
Lecture Notes in Computer Science, Vol. 1877, pp.
168+ (2000).

Optimizing mv-BMC to mv-SAT Conversion 11

6) Chechik, M. and MacCaull, W.: CTL model-
checking over logics with nonclassical negations
(2003).

7) Chechik, M., Devereaux, B., Easterbrook, S.
and Gurfinkel, A.: Multi-Valued Symbolic Model-
Checking, ACM Transaction on Software Engineer-
ing and Methodology, Vol. 2, No. 4, pp. 371-408
(2003).

8) Chechik, M., Devereaux, B., Easterbrook, S.,
Lai, Y. C. and Petrovykh, V.: Eficient Multiple-
Valued Model-Checking Using Lattice Representa-
tions, Lecture Notes in Computer Science, Vol.2154,
pp-441-455 (2001).

9) Chechik, M., Devereux, B. and Easterbrook, S.:
Implementing a Multi-Valued Symbolic Model
Checker, Proceedings of 7th International Confer-
ence on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’01), Lecture Notes
in Computer Science, Vol.2031, Springer, pp.404—
419 (2001).

10) Chechik, M., Devereux, B. and Gurfinkel, A.:
Model-Checking Infinite State-Space Systems with
Fine-Grained Abstractions Using SPIN, Lecture
Notes in Computer Science, Vol. 2057, pp. 16+
(2001).

11) Chechik, M., Gurfinkel, A., Devereux, B., Lai, A.
and Easterbrook, S.: Data structures for symbolic
multi-valued model-checking, Form. Methods Syst.
Des., Vol.29, No.3, pp.295-344 (2006).

12) Clarke, E.M., Biere, A., Raimi, R. and Zhu, Y.:
Bounded Model Checking Using Satisfiability Solv-
ing, Formal Methods in System Design, Vol. 19,
No.1, pp.7-34 (2001).

13) Clarke, E. M., Grumberg, O. and Peled, D. A.:
Model Checking, The MIT Press (1999).

14) Easterbrook, S. and Chechik, M.: A Framework
for Multi-Valued Reasoning over Inconsistent View-
points, International Conference on Software Engi-
neering, pp.411-420 (2001).

15) Een, N. and Sorensson, N.: An Extensible SAT-
solver [ver 1.2].

16) Fitting, M.C.: Many-Valued Modal Logics, Funda-
menta Informaticae, Vol. XV, pp.235-254 (1991).
17) Fitting, M.C.: Many-Valued Modal Logics II, Proc.

LFCS’92, Springer-Verlag (1992).

18) Gurfinkel, A. and Chechik, M.: Multi-valued model
checking via classical model checking, CONCUR
2003 — Concurrency Theory, 14th International
Conference (Armadio, R.M. and Lugiez, D., eds.),
Lecture Notes in Computer Science, Vol.2761, Mar-
seille, France, Springer, pp.263-277 (2003).

19) Huth, M. and Ryan, M.: Logic in Computer Sci-
ence: Modelling and Reasoning about Systems,
Cambridg University Press, Cambridg, UK, 2"¢ edi-
tion (2004).

20) Johnson, D.S. and Trick, M.A.(eds.): Cligues, Col-
oring and Satisfiability: Second DIMACS Implemen-

12 IPSJ Journal
k | Logicl | Logic2 | Logic3 | Logic4 | Logic5 | Logic6 | Logic7 | Logic8
1 0.416 0.385 0.385 0.316 0.263 0.263 0.300 0.300
2 0.461 0.385 0.333 0.300 0.300 0.286 0.286 0.619
3 0.384 0.316 0.316 0.300 0.333 0.565 0.522 0.542
4 0.461 0.300 0.350 0.545 0.565 0.542 0.520 0.538
5 0.333 0.300 0.333 0.591 0.542 0.538 0.577 0.533
6 0.315 0.286 0.545 0.542 0.538 0.536 0.533 0.548
7 0.300 0.571 0.542 0.577 0.536 0.548 0.559 0.541
8 0.300 0.565 0.519 0.536 0.548 0.514 0.526 0.479
9 0.300 0.565 0.536 0.533 0.543 0.538 0.545 0.500
10 0.571 0.560 0.552 0.571 0.561 0.553 0.492 0.507

Table 1: Ration of the translation time with relation to the total execution time.

tation Challenge, DIMACS Series In Discrete Math-
ematics and Theoretical Computer Science, Vol.26,

AMS (1996).

21) Konikowska, B. and Penczek, W.: Reducing Model
Checking from Multi-Valued CTL* to CTL* (2002).
22) Konikowska, M. C.: On Designated Values in
Multi-Valued CTL* Model Checking (2004).
23) Nishizawa, K., Kameyama, Y. and Kinoshita, Y.:
Simulations of Multi-Valued Models for Modal p-
Calculus, Technical Report AIST01-J00022-68, Na-
tional Institute of Advanced Industrial Science and
Technology (AIST), Japan (2007).
24) Penczek, W., Wo’zna, B. and Zbrzezny, A.:
Bounded model checking for the universal fragment

of CTL (2002).

25) Tassey, G.: The Economic Impacts of Inadequate
Infrastructure for Software Testing, Technical Re-
port 7007.011, National Institute of Standards and

Technology — NIST (2002).

26) Tatsumi, Y. and Kameyama, Y.: Towards Modeling-
error Detection Using Multi-valued Model Check-
ing, IPSJ Transactions on Programming, No. 47

(2006).

1959

