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Abstract 
 

We introduce a cinematographic video production system to create movie-like attractive footage from 

our indoor daily life. Since the system is designed for ordinary users in non-studio environments, it is 

composed of standard hardware components, provides a simple interface, and works in near real-time 

of 5~6 frames/sec. The proposed system reconstructs a visual hull from acquired multiple videos and 

then generates final videos from the model by referring to the camera shots used in film-making. The 

proposed method utilizes “Reliability” to compensate for errors that may have occurred in non-studio 

environments and to produce the most natural scene from the reconstructed model. By using a virtual 

camera control system, even non-experts can easily convert the 3D model to movies that look as if 

they were created by experienced filmmakers. 
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1. INTRODUCTION 

 

Many studies have already used video cameras to capture and store daily experiences as external 

memories. Small events and incidents can happen anytime and anywhere in daily life. Capturing such 

moments would be useful for cherishing memories, making life-logs, or learning from experiences.  

There are two typical approaches to capturing and storing daily experiences. The first, which uses 

a wearable or portable camera, can easily record all activities the object performs with a single video 

stream. However, in daily life, continuously grasping the important moments from the best viewpoint 

is difficult with a portable camera. The second approach uses fixed environmental cameras that 

always provide objective and stable visual information, but an enormous amount of unnecessary video 

must be captured to cover the entire area at all times. We also have to switch between multiple videos 

to determine the best viewpoint for observing the activities.  

To solve the above problems, studies have been conducted on regenerating video captured at 

arbitrary view-points in 3D space. These techniques reconstruct 3D models in the space by merging 

multiple videos and generate free-viewpoint videos by applying computer graphic technology.  

Although we can overcome the above 3D reconstruction problems, one more problem remains: 

how can we produce attractive videos from 3D models? In each scene, there are several choices of 

shots. Interestingly, different shot choices produce different impressions and effects, even if the 

captured scene is identical.  

Finally, the system must be equipped with a moderate price and show robust performance in real 

environments with proper processing speed for use in daily life. If the system requires a special 

environment such as a blue-screen studio or high performance computers, access by average users 

will be limited. Moreover, if the system cannot provide fast feedback of the results of their data, 

normal users will give it a “cold shoulder.” 

In this paper, we introduce a cinematographic video production system to overcome the above 

limitations. Its key concept is capturing moments in daily life with multiple cameras and regenerating 

film-like footage. The system consists of two subsystems: free-viewpoint video generation and 

cinematographic camera control. The free-viewpoint video system generates fine 3D models using 

multiple cameras, and the cinematographic camera control system helps users generate final videos 

from the 3D model by referring to professional camera works. 

 

1.1. Related Works 

Shape-from-silhouette. Since Kanade et al. proposed “Virtualized Reality” as a new visual medium 

for manipulating and rendering prerecorded scenes [1], many computer vision-based 3D imaging 

systems have been developed around the shape-from-silhouette (SFS) approach [2][3]. Silhouettes are 



easily obtainable with several restrictions and the implementation of the shape-from-silhouette 

method is generally straightforward. The visual hulls constructed using SFS provide an upper bound 

on the shape of the object. However, common SFS method has the following limitations for use in 

real environments. 

First, most SFS methods assume perfect silhouette information of objects in advance or use simple 

background subtraction techniques in restricted environments such as blue screen or simple-colored 

backgrounds. Grauman et al. proposed a Bayesian approach to compensate for modeling errors from 

false segmentation [4]. They modeled prior density using probabilistic principal components analysis 

and estimated maximum-a-posteriori reconstruction of multi-view contours. Guillemaut et al. 

simultaneously solved both segmentation and reconstruction problems using a Bayesian framework 

and a graph-cut approach [5].  

Second, most previous methods assume that the modeling space is free of occlusion. Therefore, if 

the model is occluded by any background object from a certain view, conventional methods will 

produce an incomplete model. Guan et al. pointed out this problem and suggested making occlusion 

masks by observing the boundaries of a moving object [6].  

Third, computational complexity is one of the biggest problems of SFS methods because they have 

to back-project each 3D point to all silhouette images. Matsuyama et al. and Ueda et al. used PC 

clusters for real-time modeling and rendering, but doing so drastically increases sys-tem costs [7][8]. 

Li et al. used hardware acceleration for visual hull rendering [9]. 

 

Virtual view rendering. One of the most popular methods of rendering voxel-based data is the 

marching cube algorithm originally proposed by Lorensen and Cline [10]. Lookup tables and vertex 

interpolation allow the appropriate polygons to be generated for each cube. The resulting mesh is very 

fine, but it has a very high polygon count and requires high computational load to optimize the mesh 

structures. The second problem concerns implementation of the algorithm on graphics processing 

units (GPU). Unfortunately, at present the geometry shader can only take a maximum of six vertices 

as inputs, so dealing with a full cube at a time is impossible. The alternative is a variation called 

marching tetrahedra, which splits each cube into five or six tetrahedra to perform a similar algorithm 

[11]. An additional benefit of the marching tetrahedra algorithm is that it eliminates the ambiguous 

cases seen in marching cubes. However, since it is also over-tesselated, the optimization problem re-

mains. 

 

Silhouette extraction. The background subtraction technique is one of the most common approaches 

for extracting foreground objects from video sequences because it works very quickly and 

distinguishes semantic object regions from static backgrounds [12][13]. A Gaussian mixture model, 

which is the most representative approach [14], has been widely incorporated with other methods 



[15][16]. However, these approaches require high computational complexity and have trade-offs in 

the learning rate. Tuzel et al. proposed using 3D multivariate Gaussians to improve computational 

efficiency [17], and Elgammal et al. used Kernel Density Estimators (KDE) to quickly adapt to 

background changes [18]. Several advanced approaches using KDE have also been proposed [19][20]. 

However, these KDE-based approaches consume a lot of memory when updating recent background 

statistics. Recently, graphcut-based segmentation approaches are being used in offline 3D modeling 

systems [21][22], but these approaches were not considered in our system because they are too time-

consuming for real-time systems. 

 

Camera works.  The progress of digital cinema technology has made normal users be able to make 

their own videos and enjoy a small-scale cinema with a high quality at home [23]. However, it is still 

difficult for normal people to produce attractive videos with changing camera positions or camera 

works in response to each captured situation like professional cameramen for film and television 

video productions. The “grammar of film language” describes the rules of filmmaking to produce 

easily understandable and attractive footage for audiences [24][25]. There have been several trials to 

apply this grammar to the 3D CG world and verified its effectiveness by video productions [26][27]. 

However, this grammar has not yet been applied to real events in the real 3D world. In the 3DCINE 

workshop at CVPR 2006, numerous state-of-the-art techniques for 3D cinematography were 

presented [28], and Tenmoku et al. recently proposed a pre-visualization system for film-making 

using 3D modeling and Mixed Reality technique to support real shooting [29]. There have also been 

trials to produce movie-like videos from reconstructed 3D models [30][31]. However, since they 

manually applied camera works to their 3D models, they are too time-consuming to produce scenes. 

More-over, producing video from their own 3D models with such professional 3D editing tools as 

MAYA and 3DS MAX is difficult for ordinary users. 

 

1.2. Contributions 

The final goal of our research is to develop a practical 3D video production system that can be 

used in daily life by average users. Our proposed system was developed to provide a solution to the 

problems and limitations previously mentioned. The major contributions of the proposed system can 

be summarized as follows: 

 

• Reliability-Based Evaluation Criteria. A “reliability” factor is defined in this system. This 

reliability organically connects all stages from segmentation to applying camera works to minimize 

errors and produces the most natural scene from the model. 

 

• Wide usability in various environments. The proposed system includes robust silhouette extraction 



and 3D reconstruction algorithms for non-studio environments. Moreover, the system was realized 

with common PCs and small synchronized IEEE 1394 cameras. Therefore it can be set and shot 

anyplace with static backgrounds. 

 

• Interface. The cinematographic camera control system provides a simple interface to generate 

movie-like videos by referring to the grammar of film language. Therefore, even non-experts can 

easily convert their scenes of daily life to attractive movies with the help of the system’s expertise. 

 

• Processing speed. We realized 3D reconstruction and free-view rendering algorithms on the 

graphics processing unit (GPU) so that it works in near real-time on a PC. We exploit geometry 

shaders and shader model 4.0 that were recently added. Therefore, the proposed system provides very 

fast feedback to users. 

 

 

2. SYSTEM OVERVIEW AND SETUP 

 

The system consists of a multiple-video capturing module, a free-view generation module, an 

annotation module, and a cinematographic camera-control module as shown in Fig. 1. The capturing 

module is implemented using seven calibrated IEEE 1394 cameras set on poles or tripods to surround 

the space. All cameras, which provide 1024x768 RGB video streams at 30 frames/sec, are oriented to 

observe the capturing space. Each capturing PC extracts the silhouettes of objects and sends silhouette 

masks and texture information by UDP (User Datagram Protocol) to the modeling PC. The modeling 

PC features an Intel Core 2 processor running at 2.40-GHz with 2.0-GB of main system memory and 

a NVIDIA GeForce 8800 GTS video card. The reconstructed 3D model can be directly rendered in 
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Fig. 1. Block diagram of cinematographic video production  



near real-time by controlling a virtual camera with the following methods: keyboard control, 

ARToolkit [32], or a xml file with previously generated camera works. However, the present system 

cannot match the capturing speed because segmentation and 3D reconstruction do not work in full 

real-time of 30 frames/sec. Therefore, the system optionally provides a function to capture and save a 

scene with time stamps in advance to produce a full frame-rate video on an off-line process. To apply 

new camera works to the generated model, we need manual processes to annotate the main objects in 

a scene and select proper cameras shots. With just a few clicks for designating a target object and 

selecting key frames, camera position, and camera actions, the system automatically produces a final 

video. The details of each step in the flow are elucidated in the following sections. 

 

 

3. FREE-VIEWPOINT VIDEO GENERATION 

 

The proposed system makes a free-viewpoint video of the real world from multiple cameras. When 

target objects are captured by these cameras, the PC allocated to each capturing camera segments the 

objects and transmits the masks and color textures to a 3D modeling server by the system’s network. 

The modeling server then generates 3D models of each object from the gathered masks. Finally, the 

server generates a video at the designated point of view with the 3D model and texture information. 

 

3.1. Silhouette Extraction 

Silhouette extraction is one of the most important parts in a SFS-based 3D reconstruction system 

because segmentation errors directly affect the final model. In our system, the background is modeled 

using a generalized Gaussian family (GGF) distribution to cope with problems from various changes 

in the background and shadows [33][34]. Pixel variation in a static scene over time is modeled with 

the GGF distribution, defined as: 
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where )(⋅Γ  is a gamma function, µ  is a mean, and 2σ  is a variance of the distribution. In Eq. (1), 

ρ  represents a shape of distribution and it is decided by calculating the excess kurtosis in Eq. (2) of 

the first m frames. For example, the excess kurtosis of Gaussian and Laplace distributions is 0 and 3, 

respectively. 
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The optimized parameters of the background models can be estimated by maximizing the 

likelihood of the observed data [35]. The background is modeled in two distinct parts: a luminance 

component and a hue component. To cope with various changes in the background, the background 

model is updated by selective running average. 

Based on the constructed background models, the silhouettes of foreground objects are extracted 

from the video sequences. Each pixel of the segmented regions is expressed with two bits: the first bit 

indicates the group of the pixel, and the second bit represents the intra-reliability of the result as 

shown in Table 1. 

 

TABLE 1. Categories of silhouette masks 

Code Group Intra-reliability 

01 Background Reliable 

00 Background Suspicious 

10 Foreground Suspicious 

11 Foreground Reliable 

 

First, initial region classification is performed by subtracting the luminance components of the 

current frame from the background model. The initial object region is classified into four categories 

using multiple thresholds based on background subtraction BD, as in Eq. (3). LI and LB indicate the 

luminance components of pixel p in the current frame and the background model, respectively, and b 

is a scale parameter of the background model: 
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Then, the suspicious regions from the initial classification are refined using a hue component 

because the shadow or lighting change the color properties of the background much less than the 

luminance. The system applies Eq. (3) to the hue component in a similar manner with single 

parameter K4 and refines the suspicious regions. The absolute of difference in Eq. (3) should be an 

angle distance due to the angular nature of the hue component. The eliminated regions are changed to 



Suspicious background regions. 

Thresholds K1~K4 are determined by training data with the following condition, where β was 

empirically set to 3 because false positive errors are generally more critical than false negative errors 

in 3D reconstruction: 
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Finally, the final foreground is extracted using a silhouette extraction technique that wraps the 

object with four drapes to smooth the foreground boundaries and eliminate holes inside the regions 

[36]. Newly covered background regions by silhouette extraction are changed to Suspicious 

foreground regions. Figure 2 shows the results of silhouette extraction in each step. 

 

Results. Figure 3 shows the segmentation results of various scenes: the left image shows the captured 

image, and the right image shows the extracted foreground in each pair. Figure 4 shows objective 

evaluations of the foreground extraction algorithm. We randomly selected 14 frames from six 

different scenes (i.e., 84 images in total) and created ground-truth segmentation masks by manual 

segmentation. Then we compared the segmentation error of the proposed algorithm with a Gaussian-

based algorithm with a single threshold [37] and a KDE-based algorithm [18]. We applied the same 

morphological processes to all experiments to see the effect of the proposed model. We compared the 

results by calculating the percentage of erroneous pixels as Eq. (5). 
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The silhouette extraction algorithm works in 6~7 frames/secs with XGA image sequences. The 

detailed analysis for processing time is dealt in Section 4 because the balance with other processes in 

the whole system should also be evaluated. 

 
(a) Original image     (b) Initial regions   (c) Shadow elimination    (d) Final result 

Fig. 2. Results of silhouette extraction. In the results, the black, dark gray, light gray and white 

regions indicate Reliable background, Suspicious background, Suspicious foreground and Reliable 

foreground, respectively.  



 

3.2. Voxel Reconstruction 

The SFS technique carves 3D space by projecting silhouettes from each view into the space using 

projection matrixes obtained by camera calibration. The visual hull constructed using SFS provides an 

upper bound on the object shape. This system uses an improved SFS technique to reconstruct a visual 

hull in the presence of outliers. Here, we considered two kinds of outliers that can happen in real 

environments: segmentation errors and partial occlusions [6][38]. The proposed algorithm 

compensates for modeling errors due to the outliers by considering both the intra- and inter-

reliabilities of the silhouettes that represent the reliability of the segmentation itself and the reliability 

from the projection circumstances to the other cameras, respectively. 

In the SFS process, a single segmentation error classified into the background with low intra-

reliability can damage the visual hull and nullify all correct information in the other images. On the 

other hand, an occluder in front of the target object at the view of a certain camera has a high 

possibility to be a Reliable background region because it is unaffected by the foreground object. 

However, we must exercise caution when determining whether it is a partial occluder or a real hole in 

the space. Therefore, we establish a set of rules to distinguish outliers in silhouette masks, where mp is 

a projected point of 3D point M(X,Y,Z) on a silhouette mask Sp (p=1,…,N). 

 

 

 

 
 

 

Fig. 3. Foreground extraction in various environments. 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Segmentation errors to ground-truth (%) 



• if (mp==00 && first bit (all other mn(n≠p))==1) 

     then mp=10  //Segmentation error 

• if ( mp==01 && mp-1==11 && mp+1==11) 

     then mp=10  //Occluded region 

 

Implementation on GPU. Visual hull reconstruction using the SFS method is extremely time-

consuming because this method checks all voxels in the modeling space by projecting them into all 

silhouette image planes. Due to the highly parallel nature of the voxel reconstruction process, the SFS 

algorithm would function better on a platform that supports the parallel processing of data. To this end, 

we implemented the algorithm on a GPU. Visual hull reconstruction is implemented using a single 

fragment shader, and results are rendered directly to a three-dimensional texture using a framebuffer 

object (FBO) one layer at a time. Each layer is rendered such that the fragment shader is run once per 

texel. 

Our implementation uses two textures: one to store the silhouette images as input, and another to 

store the reconstructed 3D voxel model. For each frame, the silhouette images are loaded into a three-

dimensional texture in the video memory as a stack of two-dimensional images. Then we use a 

fragment shader to execute the reconstruction algorithm on each voxel in the three-dimensional output 

texture. However, modern hardware is currently only capable of rendering two-dimensional images. 

As such, we divide the voxel space into two-dimensional slices of data and render them one at a time. 

The output texture is specifically sized to ensure that the fragment shader is run once for each voxel. 

That is, each pixel that comes from the fragment shader represents a single voxel. 

 

Results. Figure 5 shows snapshots of generated visual hulls. The visual hull was damaged by 

segmentation errors in Fig. 5(b) that were caused by a conventional method. Therefore, we loosened 

the segmentation parameters to compensate for cracks, but this coarsened the visual hull, as seen in 

Fig. 5(c). On the other hand, the visual hull generated based on reliability looks much closer to the 

real 3D model. Figure 6 shows the results in an environment where occluders exist. The result was 

affected by segmentation errors and occlusion by a table, a rack, or a whiteboard. However, the 

proposed method constructed more natural models by compensating for the outliers.  In the second 

test set, the legs are not restored perfectly because their lower part is occluded by two different 

occluders. We restricted the maximum number of partial occluders to one per voxel in this experiment. 

It can be changed to deal with multiple occlusions, but the model recovered from more than two 

occluders may become too coarse due to a lack of information; moreover it roughens the other part of 

the visual hull and increases computational complexity. 



 

3.3. Virtual View Rendering 

Microfacet billboarding. In our system, a microfacet billboarding technique is employed to solve the 

limitations of mesh-based approaches [39]. Microfacet is defined as “a slice which intersects the 

center of the voxel and is vertical to the viewing direction.”  Thus, as the virtual camera is rotated 

around the model, the normals of each rendered microfacet are adjusted to be parallel to the virtual 

camera's view vector. The second reason that we employ microfacet billboarding is that it is very 

suitable for GPU characteristics. The system does not need to calculate the normal vectors of facets 

against a virtual camera because the geometry shader works with a camera coordinate.  

 

Camera selection and texturing. Due to occlusion and changes in a surface's appearance caused by 

lighting conditions and viewing angles, great care must be taken to select the appropriate camera to 

use as a texture for each microfacet. Improper camera selection can lead to unrealistic images due to 

  

         (a)                  (b)                  (c)                  (d)  

Fig. 5. Reconstructed visual hulls. (a) With ground-truth masks; (b) Conventional SFS with 

optimized parameters; (c) Conventional SFS with loosened parameters; (d) Proposed method with 

reliabilities 

 

 
          (a)                            (b)            (c) 

Fig. 6. Results with partial occlusion. (a) Captured videos; (b) Conventional method; (c) proposed 

method with reliabilities 



distortion, clipping, or occlusion.  

To select the most suitable texture for rendering, the system chooses three candidate cameras per 

microfacet that minimize the following energy of texture: 
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The first factor is the primary one that investigates the angles between the virtual camera and 

environmental camera Cp. If the angle is larger than 90°, the first factor is set ∞ because it cannot be 

projected on the right side of the facet. The second factor is related to the resolution of textures to 

provide the most detailed texture where dp denotes a distance from environmental cameras Cp to a 

facet. Finally the system refers to the reliability of silhouette masks because the wrong texture might 

be mapped from segmentation errors or occluders. Weighting factors α, β, and r are determined 

empirically.  

 

Occlusion handling. The above method’s primary problem, however, is that it ignores the possibility 

of occlusion. When non-trivial objects are recorded by the proposed system, the model generated 

often occludes itself in one or several of the captured camera images. Figure 7 demonstrates this 

problem. Notice that the texture of the hand will be rendered on the chest if c1 is selected for texturing 
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Fig. 7. Occlusion problem in camera selection. 

 
Fig. 8. Example of depth textures. Intensity of each pixel represents its depth; lighter parts are 

further away than darker parts. 



in the virtual view V. Only proper occlusion detection can eliminate this problem. 

Given viewpoint V, voxel Mn is considered occluded if voxel Mo lies directly between Mn and V. 

Thus, one method of checking for occlusion is to use a three-dimensional version of Bresenham's line 

drawing algorithm to obtain the coordinates of every voxel between V and Mn [40]. However this 

method requires many accesses into the voxel model. Alternatively, avoiding so many lookups into 

the voxel model is possible with some precomputation. Before the model is rendered from the virtual 

viewpoint, depth texture Tp is rendered from the perspective of each camera. The value of texel t in Tp 

represents the distance from Cp to the closest microfacet along the ray projected from Cp through t. 

Examples of the depth textures generated by this method are shown in Fig. 8.  

Thus, when rendering, it is possible to use these depth textures to check for occlusion. If the 

distance between voxel V and camera Cp is larger than the value in the depth map, it means that the 

voxel is occluded from the camera. Then the algorithm continues to check the remaining cameras 

based on their priority until one is found that is not occluded. 

Precomputing depth textures requires an additional step before rendering, but it reduces the 

computational complexity of the occlusion verification for each voxel to a single texture check and 

comparison. 

 

Implementation on GPU. To implement microfacet billboarding, our system primarily relies on the 

geometry shader because it operates in a camera space. This means that the microfacet vertices are 

trivial to compute, since the process involves the addition of fixed offsets in the x and y directions. 

This ensures that the resulting microfacet will always directly face the camera.  

In camera selection and texturing, the vertex and geometry shaders cooperate with each other. 

Depth textures are generated by rendering all space-occupying voxels as microfacets from the 

perspective of a given camera. We set each microfacet's color equivalent to its distance from the 

camera. Thus, the final texture will contain the distance to the closest microfacet at each texel. The 

vertex shader begins by checking the voxel texture to ascertain whether the voxel needs to be 

rendered. If it does, the voxel's position in the global coordinate system is calculated. Then, the vertex 

shader sorts the list of cameras and picks the best three by calculating the energy of texture in Eq. (6). 

The geometry shader receives this list along with the voxel information and calculates and calculates 

the distance between the voxel and the cameras. The shader continues execution with the other 

selected cameras until it finds one that is not occluded. Finally, the selected camera's image is used to 

texture the microfacet. 

 

Results. Figure 9 shows generated micro-facet billboards and selected cameras for each facet. The 

texture in the body is partly replaced with pink cameras because the microfacets are occluded from 

the blue camera by the left hand.   



Users can watch the rendered results in real-time by controlling a virtual camera with a keyboard 

or ARToolkit. ARToolkit tracks the relative position of the fiducial marker to the camera and 

synthesizes the reconstructed 3D model on the marker. We also attached a small display behind a 

normal USB camera to match the camera direction and the user’s viewpoint. Therefore, the users 

control the marker and the USB camera as if on a miniature set of 3D space with a real camera to 

shoot the scene. Figure 10 shows scenes where a user is controlling the USB camera and the 

generated video from the designated camera position. 

 

 

4. CINEMATOGRAPHIC VIRTUAL CAMERA CONTROL 

 

In this section, we introduce our cinematographic camera controlling system to produce movie-like 

footage from the reconstructed 3D models. The grammar of film language is based on a constrained 

condition for switching sequential camera shots. Since each single shot is nothing more than a video 

fragment, many shots must be combined to generate an entire video in a sequential combination of 

shots called a “scene.”  

 

Fig. 9. Results of microfacet generation and camera selection. Surface color corresponds to the 

color of each camera. 

 
Fig. 10. Real-time rendering with a USB camera and ARToolkit. We attached a small display 

behind the USB camera to match camera direction and user’s viewpoint. 



 

4.1. Camera Shots 

Camera shot information is generally comprised of two types of information for camera control: 

initial camera parameters and camera actions (Fig. 11). The initial camera parameters are set to 

appropriately capture the target objects in the initial state. They specifically describe the relative angle 

between a target object and a capturing camera, in addition to the object’s size and position in the 

captured image. The camera action describes variations in the camera position and the zoom 

parameters. In the proposed system, values can be set in the following two ways: using the time-series 

relative difference from the initial state and calculating the values by interpolating the initial and exit 

states, given as input information. The proposed system provides fourteen sets of camera actions. 

 

4.2. Annotation 

To apply the shots to the scene, information about the positions of the target objects and the 

capturing-time code is necessary. We use annotation information that consists of spatial and temporal 

information.  

Figure 12 shows a screenshot of our developed interface tool for simultaneously inputting spatial 

and temporal annotations. Here, a spatial annotation is defined by dragging a mouse over the area, 

while a temporal annotation is defined by clicking on a certain point on a time-scale bar. These 

annotations are recorded with index information and an extra “user’s area” described in a free format. 

Annotations are assumed to be made not only by humans but also by various sensor inputs such as IR 

and pressure sensors. 

 

4.3. Applying Camera Shots 

The system generates a scene by declaring a set of camera shots that follow the rules in the 

grammar of film language. If a suitable set of camera shots is found among the preserved scene 
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Fig. 11. Camera shots 



databases of experts, the user can apply the set to his/her model by setting the camera’s initial 

positions and key frames. If the user cannot find a suitable set of shots, however, the system creates a 

new set of camera shots and stores it in the database.  

Figure 13 shows an example of applying camera shots to the 3D models with the camera control 

system. If the user defines the target objects, key frames, camera positions, and camera actions, then 

the system generates a final video based on a storyboard.  

When users make a new set of shots, the system helps produce the most natural and cleanest scene 

by providing information to them. First, it warns the user if he/she tries to combine shots that violate 

the grammar of film language. For example, the constrained condition for switching camera shots 

explains the contraindication of continuity between a current shot and the next shot. The system 

provides the following two contraindications of camera shot switching based on the grammar of film 

language. 

 

1. Do not set the next camera shot to cross the imaginary line because it confuses the audience. 

2. Do not choose a subsequent camera shot that resembles the current shot because the similarity 

reduces the effectiveness of the switch. 
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Fig. 12. Interface of developed annotation tool 

 
Fig. 13. Example of scene production 



The system also shows the sum of the texture energy of Eq. (6) in the scene when the user selects 

an initial position of the virtual camera and key frames on the timeline. Rendered scenes show very 

different quality of textures based on the position of the virtual camera because the environmental 

cameras are sparsely set up. For example, a scene from a point between two cameras in the distance 

shows more distorted texture than one from a closer position to an environmental camera. By 

checking the energy functions in the scene based on the virtual camera’s position, the user can decide 

the best shots from the candidates being considered.   

 

 

5. FINAL RESULTS  

 

5.1. Free-view Generation 

We tested the proposed system in various indoor places, in various times of a day, and with various 

people. Visual hulls were constructed at a resolution of 300x300x200 on a 1cmx1cmx1cm regular 

    

       (a) Captured multiple videos              (b) Silhouette and reliability information 

 
(c) Scenes from arbitrary viewpoints 

Fig. 14. Results of free-view generation. 



voxel grid using the proposed reconstruction algorithm. 

For objective evaluation, we made ground-truth 3D model with the manually segmented masks, 

and calculated errors of reconstructed models by conventional visual hull method with Gaussian-

based segmentation [1] and results with the proposed algorithm. Table 2 shows voxel errors of the 

reconstructed 3D models against the ground-truth model. We tested randomly-selected 14 frames in 

the sequence and calculated errors in the same manner as Eq. (5) in three dimensions. The false 

negative (FN) error whereby the 3D objects is falsely classified as null space normally comes from 

occlusion, and the false positive (FP) errors from shadows or redundancy of the reliability-based 

visual hull. The proposed algorithm shows much lower error rate than the conventional visual hull 

algorithm, because the algorithm creates more tight segmentation masks and compensates 3D models 

occluded from certain camera view.  

 

Table 2. Voxel errors to ground-truth model (%) 

 FP FN 

Conventional 95.24 9.56 

Proposed 29.72 4.45 

 

Figure 14 shows the captured multiple videos, silhouette masks with reliabilities, and final 

rendered images from arbitrary viewpoints. The system can also produce stereoscopic 3D videos by 

dual rendering. Figure 15 shows snapshots of the free-viewpoint stereo videos rendered from the 

visual hulls using two virtual cameras aligned in parallel. Natural 3D scenes from any point of view 

can be rendered from the proposed system though it shows degraded texture in zoomed-in scenes 

because of the limited resolution of the fixed environmental cameras. 

 

Run-time analysis. We selected 200 frames of multiple video sets from various scenes that contained 

just one foreground object, computed the average processing time for a single frame of data to 

 
Fig. 15. Snapshots of generated free-view stereo videos. (top) Left images; (bottom)Right images 



reconstruct and render one full 3D voxel model in Table 3. 

The whole system ideally works at about 5~6 frames/sec. However, in a practical rendering system 

connected to camera clients by a network, the speed is almost halved because the process also needs 

idle time to gather the complete information necessary to make 3D models from all camera clients. 

The frame rate of the whole system also depends on the complexity of the objects 

 

Table 3. Speed analysis of system (msec) 

Capturing Modeling and Rendering 

Stage Time Stage Time 

Capturing 31.22 Data transfer 6.73 

Subtraction 23.57 3D reconstruction 179.77 

Labeling 6.70 Depth texturing 0.89 

Silhouette extraction 73.15 Rendering 0.77 

Background update 15.02   

Total 149.66 Total 188.16 

Speed (fps) 6.68 Speed (fps) 5.31 

 

5.2. Cinematographic Video Production 

Finally, the system generates a video by piecing together all the 3D videos generated from 

designated shots. Figure 16(a) shows example footage of a 3D video with camera works using two 

spatial and five temporal annotations. Varied shots with different angles and framings are set to 

dramatically show a karate player. Figure 16(b) shows another piece of footage from the same 3D 

model to which different shots are applied. In the upper-left of Fig. 16(a), the virtual camera position 

is near the ceiling even though in Fig. 16(b) the virtual camera targets his foot. These pieces of 

footage were made from the same 3D model, but they give rather different impressions. In Fig. 16(a), 

the CraneDownShot shot gives the initial state as “Long” framing and a “BIRDS EYE” angle, and 

then the camera position is gradually moved closer to the ground. In Fig. 16(b), on the other hand, the 

DollyShot shot maintains a fixed distance to the annotated target, the foot, using “Close” framing and 

the “REGULAR” angle. Figure 17 shows storyboards that indicate the locations of the virtual camera, 

the shot names, and the parameters in the footage of Fig. 16. These pieces of footage indicate that the 

user can aim the camera to generate a dramatic video, as shown in Fig. 16(a), or a suspenseful one, as 

in Fig. 16(b). Our system can obviously produce video to respond to user requests.  

After saving these sets of camera shots with new names “Dramatic” and “Suspense,” we captured 

new contents in different environment. After reconstructing the visual hulls of the new scene, we 

loaded the sets from the database of the camera control system and applied them to the new model. 

We simply annotate the foreground objects and set the key frames. Then the system automatically 

produces new videos with the sets of camera shots. Figure 18 shows the results of the “Ballet” scene 

with the same camera shots.  



5.3. Applying to Daily Lives 

We tested the proposed system in various real environments. The system is relatively small, so it is 

easy to set up at any place. We mounted seven synchronized IEEE cameras to surround the capture 

space and connected them to capturing PCs. In order to get the camera parameters, we calibrated all 

cameras with a checker board and a 3D laser-surveying instrument [41], but it can be replaced with 

simpler solutions such as wand calibration [31]. After checking the system in real-time mode, we 

recorded the scene as uncompressed videos for off-line processing. In the off-line processing, we 

reconstructed 3D model for each frame and saved them again as voxel sequence to apply camera 

works. Finally we rendered a video from the 3D model using the cinematographic virtual camera 

control system.  

Figure 19 shows snapshots of the rendered videos. First, we captured scenes in the same place for 

long time and generated models of people’s activity in the space. It was open space so that the 

background and brightness vary according to time. We updated the background model for silhouette 

extraction using the similar way to Elgammal’s method [18]. Second, we also tested the system with 

various environment and conditions. We assumed very challenging situations such as occlusions 

between multiple people, interaction with small props and occlusions from large objects such as table 

and chairs. Therefore, we can see some errors of models and textures in the final scene, and some 

users may not be satisfied with the quality of the produced final video comparing with other time-

consuming state of the art methods [31][42]. However, all scenes were produced with only seven 

small cameras and four normal PCs, and it took just several minutes from capturing to final rendering 

including application of camera works for a video of 15 seconds. If we need to increase the quality of 

model and textures for the final video, we can apply more time-consuming refinement processes such 

as global or local optimization of 3D models [5, 31, 42] as post-processing.  

 

           (a) “Dramatic” shots      (b) “Suspense” shots  

Fig. 16. Produced scenes of a karate player 



 

(a) Dramatic 

 
(b) Suspense 

Fig. 17. Overview of camera works in Fig. 16 

 

 

           (a) “Dramatic” shots      (b) “Suspense” shots  

Fig. 18 Reproduced “Ballet” scenes with same camera works 



 

  
(a)                          (b) 

Fig. 19. Produced cinematographic free-view videos in our daily lives. (a) for many hours at the 

same place; (b) from various environments and situations. 

 

 

Video clips displaying all processes and results from the proposed system can be downloaded from 

the following address. 

http://www.3dkim.com/research/CR.mov or http://www.3dkim.com/research/CR.wmv 

 

 

6. CONCLUSION AND FUTURE WORK 

 

The ultimate goal of this study is to record our real lives and display them as movie-like footage. 

We presented a practical method to construct the visual hull from multiple videos in a real 

environment and to display realistic images of those objects from arbitrary viewpoints. The system 

was realized to work in near real-time with a few ordinary PCs. Then we applied expert knowledge to 

generate desirable and interesting film footage using a sequence of shots taken by virtual cameras. 

Due to the simple interface of the proposed camera control system, even non-experts can easily 

convert their own 3D model to attractive movies that look as if they were edited by experienced 

filmmakers with the help of the system’s expertise. The applications can be extended to surveillance, 

remote training or education, and entertainment fields as well as personal life recording. 

Although significant advances have been made in this paper, there are still many areas that need to 

be explored in future research. In terms of camera calibration, it is necessary to devise more handy 

and fast calibration tool. Bundle adjustment [43] or wand calibration [31] which considers the inter-

camera relationship between cameras can be a solution to increase efficiency and the accuracy of the 

calibration. In silhouette extraction, we have to develop a more powerful segmentation algorithm 

which is robust to variations in the background and extract fine silhouettes. The current algorithm 



works well for indoor scenes, but it is still hard to be applied to outdoor scenes because of the strong 

shadows by the sun and unstable background. We can also see flickering on the boundaries of moving 

object because temporal consistency is not considered. We are going to devise algorithm to track the 

stable object boundaries on 2D silhouette and 3D model over frames. Finally, future works should 

include improving the system speed to full real-time and developing a texture-blending algorithm 

from multiple images to generate more natural surface texture.  

Although the system still has problems to be overcome, we believe that the proposed system offers 

a framework for popularizing 3D imaging systems and applications. 
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