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Abstract. This paper pursues Takeuchi’s Hopf algebraic approach [T] to the Picard-
Vessiot (PV) theory for differential equations, to involve the PV extensions of difference
equations. Differential fields and total difference rings in the standard PV theory are
unified here by artinian simple (AS) module algebras over a cocommutative, pointed
smooth Hopf algebra.

Introduction

The Picard-Vessiot (PV) theory is a Galois theory for extensions of differential fields;

see van der Put and Singer [vPS2] for modern treatment. A differential field is a field

given a differential operator (or derivation). Let K be such a field of characteristic

zero, in which the field k := K0 of constants is algebraically closed. Suppose that a

linear differential equation, v′ = Zv, is given, where Z is an n × n matrix with entries

in K. This is equivalent to saying that a differential K-module of K-dimension n is

given. There is a unique (up to isomorphism) extension L/K, called the PV extension,

of differential fields with (K0 =) k = L0 that is a minimal splitting field for v′ = Zv

in the sense that Ln includes an n-dimensional (many enough!) k-subspace of solutions

v for v′ = Zv, and their entries generate L over K. The group G(L/K) of differential

automorphisms of L/K naturally forms a linear algebraic group over k. There is a 1-1

correspondence between the intermediate differential fields K ⊂ M ⊂ L and the closed

subgroups G(L/M) ⊂ G(L/K).

By the beautiful, Hopf-algebraic approach, M. Takeuchi [T] clarified the heart of the

theory in the generalized context of C-ferential fields, intrinsically defining PV extensions

and the minimal splitting fields of C-ferential modules. By replacing linear algebraic

groups with affine group schemes (or equivalently commutative Hopf algebras), he suc-

ceeded in removing from many of the results the assumptions of finite generation, zero

characteristic and algebraic closedness. For a cocommutative coalgebra C with a specific
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grouplike 1C , a C-ferential field [T] is a field given a unital, measuring action by C; the

concept includes differential fields, ∆-fields [K] and fields with higher derivations.

A difference field [vPS1] is a field given an automorphism. A linear difference equation

has coefficients in such a field. To amend a failure which arises when one develops,

restricting oneself to fields, a PV theory for difference equations, van der Put and Singer

[vPS1] introduced the notion of the PV ring for such an equation, and established the

desired theory.

From the viewpoint of non-commutative differential geometry, André [A] gave a unified

approach to the PV theories for differential and difference equations. Alternatively follow-

ing Takeuchi’s line, this paper will give such an approach in the context of artinian simple

(AS) module algebras over a cocommutative, pointed smooth Hopf algebra D. Thus D

is of the form D = D1#RG over a fixed field, say R, where G is the group of grouplikes

in D, and the irreducible component D1 containing 1 is of Birkhoff-Witt type; see As-

sumption 2.3. A difference ring which includes R in its constants is precisely a D-module

algebra, where D1 = R, and G is the free group with one generator. Differential rings

are also within our scope, though only in characteristic zero because of the smoothness

assumption. Algebras with higher derivations of infinite length fit in the assumption, in

arbitrary characteristic.

D-module algebras are all supposed to be commutative, at least in this Introduction. A

D-module algebra K is said to be AS if it is artinian as a ring and simple as a D-module

algebra. Let K be an AS D-module algebra. If P ⊂ K is a maximal ideal, then one will see

that K1 := K/P is a module field over the Hopf subalgebra D(GP ) := D1#RGP , where

GP denotes the subgroup (necessarily of finite index) of the stabilizers of P . Moreover,

K can recover from K1, so as

K = D ⊗D(GP ) K1 =
⊕

g∈G/GP

g ⊗K1,

where the product in K recovers from the component-wise product (g⊗a)(g⊗b) = g⊗ab

in the last direct sum; see Section 2 below. The D-invariants KD in K form a subfield,

such that KD ' K
D(GP )
1 . Following [T], we say that an inclusion K ⊂ L of AS D-

module algebras is a PV extension, if KD = LD and if there exists a (necessarily unique)

D-module algebra K ⊂ A ⊂ L such that the total quotient ring Q(A) equals L, and

H := (A⊗K A)D generates the left (or right) A-module A⊗K A. Then H has a natural

structure of a commutative Hopf algebra over KD (= LD), with which A/K is a right
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H-Galois extension; see Proposition 3.4. If an inclusion K ⊂ L of AS D-module algebras

is a PV extension, then the induced inclusion K/P ∩K ⊂ L/P of D(GP )-module fields

is a PV extension, where P is an arbitrary maximal ideal of L. The converse holds true

if GP is normal in GP∩K ; see Proposition 3.13 and Theorem 3.15.

As our main theorems we prove:

Galois Correspondence (Theorem 3.9): Given a PV extension L/K of AS D-module al-

gebras, there is a 1-1 correspondence between the intermediate AS D-module algebras

K ⊂M ⊂ L and the Hopf ideals I in the associated Hopf algebra H; L/M is then a PV

extension with the associated Hopf algebra H/I. This has the obvious interpretation in

terms of the affine group scheme G(L/K) = Spec H corresponding to H.

Characterization (Theorem 4.6): An inclusion K ⊂ L of AS D-module algebras with

KD = LD is a finitely generated PV extension if and only if L/K is a minimal split-

ting algebra for some K#D-module V of finite K-free rank, say n; this means that

L⊗K V ' Ln as L#D-modules, and L is “minimal” with this property.

Tensor Equivalence (Theorem 4.10): If this is the case, the symmetric tensor category

MH
fin of finite-dimensional right comodules over the associated Hopf algebra H (or equiv-

alently that category RepG(L/K) of finite-dimensional linear representations of G(L/K))

is equivalent to the abelian, rigid tensor full subcategory {{V }} “generated” by V , in the

tensor category (K#DM,⊗K , K) of K#D-modules; cf. [vPS2, Theorem 2.33].

Unique Existence (Theorem 4.11): Suppose that KD is an algebraically closed field. For

every K#D-module V of finite K-free rank, there is a unique (up to isomorphism) min-

imal splitting algebra L/K which is a (finitely generated) PV extension.

One cannot overestimate the influence of the article [T] by Takeuchi on this paper of

ours. Especially the main theorems above except the third are very parallel to results

in [T], including their proofs. A C-ferential field is equivalent to a module field over the

tensor bialgebra T (C+) [T, p. 485]. We remark that even if K, L are fields, the first

two theorems above do not imply the corresponding results in [T]. The last one only
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generalizes [T, Theorems 4.5, 4.6] in which T (C+) is supposed to be of Birkhoff-Witt

type.

1. Tensor equivalences associated to an inclusion of cocommutative

Hopf algebras

Throughout we work over a fixed field R. In particular the unadorned ⊗ means ⊗R.

Modules mean left modules unless otherwise stated.

Let C be a cocommutative Hopf algebra. The structure maps (for any Hopf algebra as

well) will be denoted by

∆ : C → C ⊗ C, ε : C → R, S : C → C,

as usual. The C-modules form an R-abelian tensor category CM = (CM,⊗, R) with the

obvious tensor product V ⊗W and the unit object R. This is symmetric by the trivial

symmetry V ⊗W → W ⊗ V , v ⊗ w 7→ w ⊗ v.

Let D be a cocommutative Hopf algebra including C as a Hopf subalgebra. A coalgebra

in the tensor category DM is called a D-module coalgebra. Define D̄ = D/DC+, where

C+ = Ker(ε : C → R). D is a D-module coalgebra, and D̄ is its quotient. Let D̄
DM denote

the R-abelian category of (D̄, D)-Hopf modules such as defined in [T2, pp. 454–455].

Given objects M, N in D̄
DM, let M�D̄N denote the cotensor product; this is by definition

the equalizer of the two D̄-colinear maps M ⊗ N−→
−→D̄ ⊗M ⊗ N given by the structure

maps of M,N . This is a D-submodule of M ⊗ N , and is further an object in D̄
DM. We

see that D̄
DM = (D̄

DM,�D̄, D̄) is a symmetric tensor category, in which the associativity

constraint (M�D̄N)�D̄L
'−→ M�D̄(N�D̄L), the unit constraint D̄�D̄N

'−→ N and the

symmetry M�D̄N
'−→ N�D̄M are the obvious ones.

For an object V in CM, define

Φ(V ) = D ⊗C V.

This is naturally an object in D̄
DM. We thus have an R-linear functor

Φ : CM→ D̄
DM.

Proposition 1.1. Φ is an equivalence of symmetric tensor categories.

Proof. By [T2, Theorem 2 and 4], Φ is a category equivalence; its quasi-inverse N 7→ Ψ(N)

is given by

Ψ(N) = {n ∈ N | λ(n) = 1̄⊗ n in D̄ ⊗N},
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where λ : N → D̄ ⊗N is the structure map on N . It is easy to see that

Ψ(M)⊗Ψ(N)→ Ψ(M�D̄N), m⊗ n 7→ m⊗ n,
R→ Ψ(D̄), 1 7→ 1̄

are isomorphisms in CM. We see that the isomorphisms, as tensor structures, make Ψ

an equivalence of symmetric tensor categories. �

Let D1 denote the irreducible component in D containing 1; this is the largest irre-

ducible Hopf subalgebra. If the characteristic ch R of R is zero, then D1 = U(g), the

universal envelope of the Lie algebra g = P (D) of all primitives in D; see [Mo, Sect. 5.6].

Let G = G(D) denote the group of all grouplikes in D.

In what follows we suppose:

Assumption 1.2. D is pointed, so that

D = D1#RG, (1)

the smash product with respect to the conjugate action by G on D1; see [Mo, Cor. 5.6.4].

In what follows we also take as C a Hopf subalgebra of the form

C = D1#RG1,

where G1 ⊂ G is a subgroup of finite index. This will be denoted by

C = D(G1). (2)

The equivalence Φ will be denoted by

ΦG1 : D(G1)M
≈−→ D̄

DM, (3)

if one needs to specify G1.

The vector space R(G/G1) freely spanned by the set G/G1 of left cosets is a quotient

left D-module coalgebra of D along the map D = D1#RG → R(G/G1) which is given

by the counit ε : D1 → R and the natural projection G→ G/G1. Since the map induces

an isomorphism D̄
'−→ R(G/G1), an object in D̄

DM is such a left D-module N that is

the direct sum
⊕

s∈G/G1
Ns of those D1-submodules Ns (s ∈ G/G1) which satisfy that

gNs ⊂ Ngs, where g ∈ G, s ∈ G/G1. If M =
⊕

s∈G/G1
Ms is another object in D̄

DM, then

M�D̄N =
⊕

s∈G/G1

Ms ⊗Ns.

We have D =
⊕

g∈G/G1
gC.
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Notation 1.3. Here and in what follows, g ∈ G/G1 means that g lies in a fixed system

of those representatives in G for the left cosets G/G1 which include the neutral element

1 in G.

The neutral component N1 in N is a C-submodule. We have the identification

Φ(N1) =
⊕

g∈G/G1

g ⊗N1.

Here D acts on the right-hand side so that if d ∈ D1,

d(g ⊗ n) = g ⊗ (g−1dg)n (n ∈ N1),

and if h ∈ G,

h(g ⊗ n) = g′ ⊗ tn (n ∈ N1),

where g′ is a representative and t ∈ G1 such that hg = g′t. Notice that Ψ(N) = N1.

Hence, by Proposition 1.1, we have a natural isomorphism Φ(N1) =
⊕

g∈G/G1
g⊗N1

'−→ N

in D̄
DM, given by g ⊗ n 7→ gn.

An algebra A in D̄
DM is precisely such a D-module algebra that is the direct product∏

s∈G/G1
As of D1-module algebras As (s ∈ G/G1), satisfying gAs ⊂ Ags (g ∈ G). It

is identified with Φ(A1) =
⊕

g∈G/G1
g ⊗ A1, which is endowed with the component-wise

product.

Let A = Φ(A1) be as above. An A1-module V in CM is precisely a module over

the algebra A1#C of smash product. Φ(V ) is naturally an A-module in D̄
DM; this is in

particular an A#D-module.

Proposition 1.4. The functor

Φ : A1#CM→ A#DM

gives an equivalence between the R-abelian categories of modules.

Proof. By Proposition 1.1, it suffices to prove that the category A(D̄
DM) of A-modules

in D̄
DM is isomorphic to A(DM) = A#DM. Given N in A#DM, define Ng = (g ⊗ 1)N

(g ∈ G/G1), where g ⊗ 1 denote the canonical, orthogonal central idempotents in Φ(A1).

Then N =
⊕

g∈G/G1
Ng so that N is in A(D̄

DM). This gives the desired isomorphism. �

The proposition can be extended to bimodule categories. As is easily seen, the equiv-

alence preserves the tensor structure:
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Proposition 1.5. Let A = Φ(A1) be as above. The functor

Φ : (A1(CM)A1 ,⊗A1 , A1)→ (A(DM)A,⊗A, A)

gives a tensor equivalence between the categories of bimodules.

For a C-module V , let

V C = {v ∈ V | cv = ε(c)v (c ∈ C)}

denote the vector space of C-invariants. Similarly, let ND denote the vector space of

D-invariants in a D-module N .

Lemma 1.6. A natural isomorphism V C '−→ Φ(V )D is given by v 7→
∑

g∈G/G1
g ⊗ v.

Proof. If
∑

g g⊗vg ∈ Φ(V )D, one sees first v1 ∈ V C , and then vg = v1 for all g ∈ G/G1. �

To prepare for discussions in Section 3, let K ⊂ A be an inclusion of D-module algebras.

Then A⊗K A is in A(DM)A. This has the natural coalgebra structure

A
ε←− A⊗K A

∆−→ (A⊗K A)⊗A (A⊗K A) (4)

in the tensor category (A(DM)A,⊗A, A), given by

ε(a⊗ b) = ab, ∆(a⊗ b) = (a⊗ 1)⊗ (1⊗ b).

See [Sw].

2. Simple module algebras

In what follows algebras (in any symmetric tensor category) are supposed to be com-

mutative and non-zero, unless otherwise stated.

Let D = D1#RG be a cocommutative pointed Hopf algebra, as in (1); this, as an

exception, can be non-commutative.

Definition 2.1. A D-module algebra K is said to be simple if it is simple as a K#D-

module, or in other words if it includes no non-trivial D-stable ideal.

Lemma 2.2. Let G1 ⊂ G be a subgroup of finite index. A module algebra K1 over D(G1)

(see (2)) is simple if and only if the D-module algebra ΦG1(K1) is simple.

Proof. This follows from Proposition 1.4. �

In what follows we suppose in addition:
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Assumption 2.3. The irreducible Hopf algebra D1 is of Birkhoff-Witt type.

This means that as a coalgebra, D1 is spanned by (possibly infinitely many) divided

power sequences of infinite length. This is necessarily satisfied if ch R = 0. If ch R = p > 0,

this is equivalent to the Verschiebung map D1 → R1/p ⊗ D1 being surjective. The

assumption implies that if A is an algebra, the A-algebra Hom(D1, A) of all R-linear

maps D1 → A, whose product is given by the convolution-product, is the projective limit

of A-algebras, A[[x1, . . . , xn]], of power series. The assumption is equivalent to saying

that D is smooth as a cocommutative coalgebra.

A differential ring which includes R in its constants is precisely a module algebra over

the polynomial Hopf algebra R[d], in which d is primitive, and hence acts as a derivation.

The Hopf algebra R[d] (= R[d]1) satisfies Assumption 2.3 if and only if chR = 0. A

difference ring which includes R in its constants is precisely a module algebra over the

group algebra R[g, g−1] of the free group with one generator g, which is grouplike, and

hence acts as an automorphism. An algebra (over R) with R-linear higher derivations

d0 = id, d1, d2, . . . of infinite length is precisely a module algebra over the Hopf algebra

R〈d1, d2, . . .〉, which denotes the (non-commutative) free algebra generated by d1, d2, . . . ,

and in which 1, d1, d2, . . . form a divided power sequence. This Hopf algebra satisfies

Assumption 2.3, in arbitrary characteristic; see [T, p. 504].

Let K be a D-module algebra in general. Suppose that K is noetherian as a ring. Let

Ω(K) denote the (finite) set of all minimal prime ideals in K. Then G acts on Ω(K).

Let GΩ(K) denote the normal subgroup consisting of those elements in G which stabilize

every P ∈ Ω(K).

Proposition 2.4. Suppose that K is simple.

(i) The action of G on Ω(K) is transitive, so that the subgroups GP of stabilizers of

P ∈ Ω(K) are conjugate to each other.

(ii) Every P ∈ Ω(K) is D1-stable, so that K/P is a D(GP )-module domain. This is

simple as a D(GΩ(K))-module algebra.

(iii) Let P ∈ Ω(K), and set K1 = K/P . Then we have a natural isomorphism of

D-module algebras,

K ' ΦGP
(K1).

Proof. (ii) Let

ρ : K → Hom(D1, K), x 7→ [d 7→ dx] (5)
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denote the algebra map associated to the D1-module algebra structure on K. This is

D1-linear, where (dϕ)(c) = ϕ(cd) (c, d ∈ D1, ϕ ∈ Hom(D1, K)). Since Hom(D1, K/P )

is a domain, Hom(D1, P ) is a prime ideal in Hom(D1, K), so that its pull-back P ′, say,

along ρ is a D1-stable prime ideal; see the proof of [T, Lemma 4.2]. We see that P ′ ⊂ P ,

and so P = P ′ by the minimality of P . Hence P is D1-stable.

For the second statement, let P ⊂ J ( K be a D(GΩ(K))-stable ideal. Then,
∩

g∈G/GΩ(K)
gJ

is D-stable, and hence is zero. Since P is prime, there exists g such that gJ ⊂ P , and so

P ⊂ J ⊂ g−1P . By the minimality of g−1P , P = J (= g−1P ).

(i) Let P ∈ Ω(K). We see ∩
g∈G

gP =
∩

Q∈Ω(K)

Q = 0, (6)

since the intersections are both D-stable. The first equality implies {gP | g ∈ G} = Ω(K);

this proves (i).

(iii) By (i), g 7→ gP gives a bijection G/GP
'−→ Ω(K). If Q and Q′ in Ω(K) are distinct,

then (Q () Q + Q′ = K, by (ii). This together with (6) proves that the natural map

gives an isomorphism,

K
'−→

∏
Q∈Ω(K)

K/Q =
∏

g∈G/GP

K/gP.

Obviously, ΦGP
(K1) is isomorphic to the last direct product. �

Corollary 2.5. For K as above the following are equivalent.

(a) K is total in the sense that any non-zero divisor in K is invertible;

(b) K is artinian as a ring;

(c) The Krull dimension Kdim(K) = 0, or in other words Ω(K) equals the set of all

maximal ideals in K.

If these conditions are satisfied, every K#D-module is free as a K-module.

Proof. Each condition is equivalent to that for any/some P ∈ Ω(K), K/P is a field. The

last assertion holds true by Part (iii) of the last proposition and by Proposition 1.4. �

Definition 2.6. A D-module algebra K is said to be AS, if it is artinian and simple. By

the corollary above, this is equivalent to that K is total, noetherian and simple.

A D-module field is obviously AS. The total PV ring [vPS1, Definition 1.22] of a differ-

ence equation is an AS R[g, g−1]-module algebra over the field R of constants. Therefore
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the standard PV theories for differential equations in characteristic zero, and for difference

equations in arbitrary characteristic is within our scope.

For later use we prove some results.

Lemma 2.7. Let A be a D-module algebra, and let T ⊂ A be a G-stable multiplicative

subset. The D-module algebra structure on A can be uniquely extended to the localization

T−1A of A by T . (D1 may not be of Birkhoff-Witt type.)

Proof. The algebra map ρ : A→ Hom(D,A) associated to A (see (5)) is uniquely extended

to an algebra map ρ̃ : T−1A → Hom(D, T−1A), since each ρ(t), t ∈ T , is invertible on

RG, and so on the whole D; cf. the proof of [T, Proposition 1.9]. We have thus obtained

the measuring action

d(a/t) = ρ̃(a/t)(d) (d ∈ D, a ∈ A, t ∈ T )

by D on T−1A. It remains to prove that this makes T−1A a D-module. We have only to

see that

cd(1/t) = c(d(1/t)) (c, d ∈ D, t ∈ T ).

This holds since the two maps D ⊗D → T−1A, c ⊗ d 7→ cd(1/t) and c ⊗ d 7→ c(d(1/t))

coincide, because both of them are the convolution-inverse of c⊗ d 7→ cdt. �

As the referee kindly informed us, the preceding lemma is proved by Tyc and Wísniewski

[TyW, Theorem 3.4], in which the pointed Hopf algebra is not supposed to be cocommu-

tative. Also, the first part of our Proposition 2.4 (ii) follows from [TyW, Theorem 5.9

(2)].

Lemma 2.8. Let L be an AS D-module algebra, and let K ⊂ L be a D-module subalgebra.

If K is total, then K is AS.

Proof. Given an element x 6= 0 in L =
∏

P∈Ω(L) L/P , define the support of x by

supp(x) = {P ∈ Ω(L) | x 6∈ P}. (7)

One sees that x is a non-zero divisor if and only if supp(x) = Ω(L).

Choose an element x 6= 0 in K with minimal support. Then for g ∈ G, the supports

supp(x) and supp(gx) are either equal or disjoint, according to x(gx) being non-zero or

zero. By Proposition 2.4 (i), we have those elements x, g1x, . . . , grx in K with disjoint

supports, whose sum is a non-zero divisor. Let y be the inverse of the sum; this is

indeed in K, since K is total. We see that e := xy is a (primitive) idempotent in K
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with supp(e) = supp(x). By the minimality of the support, each non-zero element in eK

has supp(x) as its support, and hence has an inverse in eK, just as x above. We have

K =
∏r

i=1 gieK, the direct product of the fields gieK; this proves the lemma. �

Corollary 2.9. Let A be a D-module subalgebra in an AS D-module algebra L.

(i) Every non-zero divisor x in A has full support: supp(x) = Ω(L) (see (7)).

(ii) Let K = Q(A) denote the total quotient ring of A; this is realized in L by (i). Then

K is an AS D-module subalgebra of L.

Proof. Let T be the set of all non-zero divisors in A. Then, K = T−1A.

(i) Choose an x ∈ T such that supp(x) is minimal in {supp(t) | t ∈ T}. If supp(x) 6=
Ω(L), there is a g ∈ G such that supp(gx) ∩ supp(x) = ∅, which implies x(gx) = 0, a

contradiction.

(ii) Let ρL : L → Hom(D, L) be the algebra map associated to the D-module algebra

structure on L. It restricts to ρ : A → Hom(D, A) associated to A. If t ∈ T , ρL(1/t) is

the inverse of ρ(t) in Hom(D,L), and hence is contained in Hom(D,T−1A) by the proof

of Lemma 2.7. This implies that K (= T−1A) is a D-module subalgebra of L. K is AS

by Lemma 2.8. �

3. Picard-Vessiot extensions of AS module algebras

Proposition 3.1. In general an object X in an abelian category A is simple if and only

if

(a) the endomorphism ring E := A(X, X) is a division ring, and

(b) for every object Y in A, the evaluation map

ev : A(X, Y )⊗E X → Y

is injective.

Proof. This seems well known, though we could not find an explicit citation in the lit-

eratures. The proposition is specialized by [MY, Theorem 1.1 and the Theorem on p.

232], and the proof given there works in the generalized context, as was suggested by T.

Brzeziński. �

Corollary 3.2. Let L be a simple D-module algebra. Then LD is a field, and for every

Y ∈ L#DM, the natural map

L⊗LD Y D → Y, x⊗ y 7→ xy
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is injective.

Proof. This follows by applying the proposition for X in A to L in L#DM. Notice that

LD ' EndL#D(L), and the natural map above is identified with the evaluation map. �

Let K ⊂ L be an inclusion of AS D-module algebras. By the corollary we have an

inclusion of fields, KD ⊂ LD.

Definition 3.3. We say that L/K is a Picard-Vessiot, or PV, extension if the following

conditions are satisfied:

(a) KD = LD; this will be denoted by k.

(b) There exists a D-module subalgebra A ⊂ L including K, such that the total

quotient ring Q(A) of A equals L, and the k-subalgebra H := (A⊗K A)D generates

the left (or equivalently right) A-module A ⊗K A: A ·H = A ⊗K A (or H · A =

A⊗K A).

Proposition 3.4. Suppose that L/K is a PV extension. Let A,H be as in Condition (b)

above.

(i) The product map µ : A⊗k H → A⊗K A, µ(a⊗h) = a ·h is a D-linear isomorphism.

(ii) The k-algebra H has a unique Hopf algebra structure such that the k-algebra map

θ : A → A⊗k H, θ(a) = µ−1(1⊗ a) makes A a right H-comodule. A/K is necessarily a

right H-Galois extension [Mo, Sect. 8.1] in the sense that

Aθ : A⊗K A→ A⊗k H, Aθ(a⊗ b) = aθ(b)

is an isomorphism.

(iii) Such an algebra A that satisfies Condition (b) above is unique.

Proof. (i) Since by Corollary 3.2, the natural map L⊗k (L⊗K A)D → L⊗K A is injective,

the map µ is injective; it is surjective by Condition (b).

(ii) Notice that AD = k by Condition (a). The twofolds A⊗k H ⊗k H
'−→ A⊗K A⊗K A

of µ, being a D-linear isomorphism, induces an isomorphism H⊗k H
'−→ (A⊗K A⊗K A)D.

Similarly the threefolds of µ induces H ⊗k H ⊗k H
'−→ (A⊗K A⊗K A⊗K A)D. It follows

by [T, Proposition 2.2] that the coalgebra structure (4) on A ⊗K A in A(DM)A induces

a Hopf algebra structure on H,

k
ε←− H

∆−→ H ⊗k H.
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The antipode is induced from the twist map a ⊗ b 7→ b ⊗ a, A ⊗K A → A ⊗K A. The

map Aθ, being µ−1, is an isomorphism. Since this interprets θ into the natural right

A⊗K A-comodule structure a 7→ 1⊗ a, A→ A⊗K A = A⊗A (A⊗K A) on A, we see the

described uniqueness of the structure on H.

(iii) This follows in the same ways as [T, Lemma 2.5], but by using the fact that L is

a free K-module; see Corollary 2.5. �

Definition 3.5. A (resp., H) is called the principal D-module algebra (resp., the Hopf

algebra) for L/K. To indicate these we say that (L/K, A,H) is a PV extension.

Example 3.6. Let G1 ⊂ G be a normal subgroup of finite index. Let K be a D-module

field. Regarding this as a D(G1)-module algebra, define L = ΦG1(K). We then have the

inclusion

K ↪→ L =
⊕

g∈G/G1

g ⊗K, x 7→
∑

g

g ⊗ g−1x

of AS D-module algebras. If KD(G1) = KD, then KD = LD (=: k) by Lemma 1.6.

Moreover, (L/K,L, H) is a PV extension, where H = k(G/G1)
∗, the dual of the group

algebra k(G/G1). In fact, we see that the elements

eg :=
∑

h∈G/G1

(h⊗ 1)⊗K (hg ⊗ 1) (g ∈ G/G1)

in L ⊗K L are D-invariant, and behave as the dual basis in H of the group elements g

(∈ G/G1) in k(G/G1). Thus, ∆(eg) =
∑

h egh−1 ⊗ eh, ε(eg) = δ1,g, S(eg) = eg−1 . The

H-comodule structure θ : L→ L⊗k H is given by

θ(h⊗ x) =
∑

g

(hg−1 ⊗ gx)⊗k eg,

as is seen from following computation in L⊗K L:

1⊗K (h⊗x) =
∑

f

(f⊗f−1hx)⊗K (h⊗1) =
∑

g

(hg−1⊗gx)⊗K (h⊗1) =
∑

g

(hg−1⊗gx)·eg.

Lemma 3.7. Let G1 ⊂ G be a subgroup of finite index. Write Φ = ΦG1. Let K1 ⊂ L1

be an inclusion of AS D(G1)-module algebras. (L1/K1, A1, H) is a PV extension if and

only if (Φ(L1)/Φ(K1), Φ(A1), H) is a PV extension of AS D-module algebras.

Proof. The natural coalgebra isomorphism Φ(A1 ⊗K1 A1) ' Φ(A1) ⊗Φ(K1) Φ(A1) (see

Proposition 1.5) together with Lemma 1.6 prove the lemma. �
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Remark 3.8. Let K ⊂ L be an inclusion of AS D-module algebras. Choose p ∈ Ω(K),

and let P1, . . . , Pr be all those elements in Ω(L) that lie over p. Define K1 = K/p,

L1 =
∏r

i=1 L/Pi. Then we have an inclusion K1 ⊂ L1 of AS D(Gp)-module algebras such

that the induced inclusion ΦGp(K1) ⊂ ΦGp(L1) is identified with K ⊂ L. We can thus

reduce to the case where K is a field, especially to discuss PV extensions; see Lemma 3.7.

Theorem 3.9. Let (L/K, A,H) be a PV extension of AS D-module algebras.

(i) There is a 1-1 correspondence between the Hopf ideals I ⊂ H and the intermediate

AS D-module algebras K ⊂M ⊂ L, given by

M = {x ∈ L | 1⊗ x ≡ x⊗ 1 mod I · (L⊗K L)},

I = H ∩Ker(L⊗K L→ L⊗M L).

(ii) If I ↔M under the correspondence, (L/M, AM, H/I) is a PV extension.

(iii) Suppose I ↔ M under the correspondence. I is a normal Hopf ideal [T1] if and

only if M/K is a PV extension.

The 1-1 correspondence in Part (i) is obtained as the composite of the 1-1 correspon-

dences given below.

Proposition 3.10. Let K ⊂ L be an inclusion of AS D-module algebras.

(i) Suppose that (L/K, A,H) is a PV extension. Then, I 7→ I · (L ⊗K L) gives a 1-1

correspondence between the Hopf ideals I ⊂ H and the coideals I of the coalgebra L⊗K L

in (L(DM)L,⊗L, L); see (4).

(ii) M 7→ Ker(L⊗K L→ L⊗M L) gives a 1-1 correspondence between the intermediate

AS D-module algebras K ⊂M ⊂ L and the coideals I as above.

Proof. (i) This follows in the same way as [T, Proposition 2.6], but by using Corollary

3.2. In fact the correspondence is extended to a 1-1 correspondence between the ideals

I ⊂ H and the D-stable ideals I ⊂ L⊗K L.

(ii) Suppose that K ⊂ M ⊂ L is given. Since L, being an M#D-module, is M -free,

M can recover from I := Ker(L⊗K L→ L⊗M L) so as

M = {x ∈ L | 1⊗ x ≡ x⊗ 1 mod I in L⊗K L}. (8)

Suppose that I ⊂ L ⊗K L is a coideal, and define M by (8); this is obviously an

intermediate D-module algebra. By Corollary 2.9 (i), every non-zero divisor x in M has

full support, and we easily see x−1 ∈M . Then M is AS by Lemma 2.8.
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Let C = L⊗K L/I. One sees that the canonical L⊗K L→ C factors through a coalgebra

surjection,

α : L⊗M L→ C.

To prove the injectivity we may suppose by Proposition 1.5 that M is a field; replace

M ⊂ L with M1 ⊂ L1 so as in Remark 3.8. To apply Proposition 3.1, regard C merely

as an L-coring, or a coalgebra in (LML,⊗L, L), and suppose A is the category of right

C-comodules; an object Y in A is thus a right L-module with a right L-linear structure

map Y → Y ⊗L C. Notice that the category is abelian since C is left L-free. Take L as

the X in the proposition; it has the natural C-comodule structure

λ : L→ L⊗L C = C, λ(x) ≡ 1⊗K x mod I.

Since E = A(L,L) 'M , A(L, C) ' L, we identify α with the evaluation map for Y = C.
Therefore it suffices to see that L is simple in A. L includes a simple subobject of the

form eL, where e is an idempotent. Since λ is D-linear, we see that for g ∈ G, g(eL)

is also a simple subobject, which coincides or trivially intersects with eL. It follows

from Proposition 2.4 (i) that L is semisimple; this implies that L is simple since the

endomorphism ring E is a field. �

Part (ii) of Theorem 3.9 follows in the same way as [T, Proposition 2.8]. Part (iii)

follows as [T, Theorem 2.9], but by using Lemma 2.7. Suppose I ↔M is as in Part (iii).

The Hopf algebra H ′ and the principal module algebra A′ associated to M/K is given by

H ′ = {h ∈ H | ∆(h) ≡ h⊗ 1 mod H ⊗k I},

A′ = θ−1(A⊗k H ′),

where θ : A→ A⊗k H denotes the natural H-comodule structure. For a right comodule

V over a k-Hopf algebra H in general, let

V coH = {v ∈ V | ρV (v) = v ⊗ 1}

denote the k-subspace of H-coinvariants, where ρV : V → V ⊗k H is the structure on V .

We remark that

H ′ = HcoH̄ , A′ = AcoH̄ (H̄ = H/I).

Remark 3.11. Let (L/K,A, H) be a PV extension of AS D-module algebras. The affine

k-group scheme G(L/K) = SpeckH corresponding to H is called the PV group scheme for

L/K. As in [T, Appendix], one sees that this is isomorphic to the automorphism group

scheme AutD,K−alg(A) of A; this associates to each k-algebra T the group AutD,K⊗kT−alg
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(A ⊗k T ) of D-linear K ⊗k T -algebra automorphisms of A ⊗k T . In fact the linear

representation G(L/K) → GL(A) arising from the H-comodule structure θ : A →
A ⊗k H gives an isomorphism G(L/K) ' AutD,K−alg(A). Since L = Q(A), the group

G(L/K)(k) with values in k is isomorphic to the group AutD,K−alg(L) of automorphisms

of L. Theorem 3.9 allows the obvious interpretation in terms of G(L/K); see [T, Theorem

2.10].

Corollary 3.12. Let (L/K, A, H) be a PV extension of AS D-module algebras.

(i) A is simple as a D-module algebra.

(ii) A contains all primitive idempotents in L.

Proof. (i) The following proof is essentially the same as that of [T, Theorem 2.11]; we

contain this for the importance of the result.

Let 0 6= a ⊂ A be a D-stable ideal. Then L⊗K (A/a) is a quotient D-module algebra

of L⊗K A (' L⊗k H). We see from Corollary 3.2 that L⊗k (H/I) ' L⊗K (A/a), and

so L ⊗k I ' L ⊗K a, where I ⊂ H is an ideal. Since La = L by the simplicity of L, it

follows that I · (L⊗K L) = L⊗K L. This implies that I = H, and so a = A, by the fact

stated in the proof of Proposition 3.10 (i).

(ii) Since L is a localization of A, we have Ω(L) ⊂ Ω(A) via P 7→ P ∩ A. We see

A ⊂
∏

P∈Ω(L) A/P ∩ A. It remains to prove that if P 6= Q in Ω(L), then the sum

J := P ∩ A + Q ∩ A equals A. If J ( A on the contrary, one sees as in the proof of

Proposition 2.4 (ii) that J = P ∩ A = Q ∩ A by Part (i), and so P = Q. �

Proposition 3.13. Let (L/K,A, H) be a PV extension of AS D-module algebras. Choose

arbitrarily P ∈ Ω(L), and write Φ = ΦGP
. Let p = P ∩K (∈ Ω(K)). Define

K1 = K/p, A1 = A/P ∩ A, L1 = L/P.

Then, (i) We have A ' Φ(A1).

(ii) Φ(K1) is identified with the K-subalgebra K̂ of L which is spanned over K by the

primitive idempotents in L.

(iii) (L1/K1, A1, H̄ = H/I) is a PV extension of D(GP )-module fields, where I =

H ∩Ker(L⊗K L→ L⊗K̂ L); cf. [vPS1, Corollary 1.16].

(iv) The subalgebra of H

B = {h ∈ H | ∆(h) ≡ h⊗ 1 mod H ⊗k I} (= HcoH̄)
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is a finite-dimensional separable k-algebra. We have a right H̄-colinear B-algebra iso-

morphism H ' B ⊗k H̄.

(v) If GP is normal in Gp, then B ⊂ H is a Hopf subalgebra which is isomorphic to

k(Gp/GP )∗, and we have an extension

k(Gp/GP )∗ � H � H̄

of Hopf algebras; cf. [vPS1, Corollary 1.17].

Proof. (i) This follows from Corollary 3.12 (ii).

(ii) This is easy to see.

(iii) By Theorem 3.9 (ii), we have a PV extension (L/K̂, A, H̄) = (Φ(L1)/Φ(K1), Φ(A1), H̄).

Part (iii) now follows by Lemma 3.7. �

For the remaining (iv), (v) we prove:

Lemma 3.14. Let G1 ⊂ G be a subgroup of finite index. Write Φ = ΦG1. Let K ⊂ A be

an inclusion of D-module algebras.

(i) We have an isomorphism of D-module algebras over Φ(K),

A⊗K Φ(K)
'−→ Φ(A),

given by a⊗K (g ⊗ x) 7→ g ⊗ (g−1a)x (g ∈ G/G1).

(ii) We have an isomorphism of KD-algebras,

AD(G1) '−→ (A⊗K Φ(K))D,

given by a 7→
∑

g∈G/G1
ga⊗K (g ⊗ 1).

(iii) Suppose Φ(K) ⊂ A, so that A = Φ(A1), where A1 is a D(G1)-module algebra. Let

N ⊂ G denote the largest normal subgroup (necessarily of finite index) that is included

in G1. Define F = A
D(N)
1 ; this is G1-stable. Choose a system of representatives g1, . . . , gt

(∈ G) for the double cosets G1\G/G1. Then,

AD(G1) =
t∑

i=1

(
∑
g∈Oi

g)⊗ F g−1
i Sigi ,

where Oi denotes the orbit containing the coset giG1 in the left G1-set G/G1, and Si ⊂ G1

denotes the subgroup of stabilizers of giG1.

Proof. (i) This is easily seen.

(ii) This follows from (i) and Lemma 1.6.
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(iii) We see

AD(G1) = (AD(N))G1 = (
⊕

g∈G/G1

g ⊗ F )G1 .

An element
∑

g∈G/G1
g ⊗ ag (ag ∈ F ) is G1-invariant if and only if

∑
g∈Oi

g ⊗ ag is so for

each 1 ≤ i ≤ t. Fix a coset giG1, and suppose that

gi, s2gi, . . . , slgi (sj ∈ G1)

represent the G1-orbit Oi. Then,
∑l

j=1 sjgi ⊗ aj (s1 = 1, aj ∈ F ) is G1-invariant if and

only if s(gi ⊗ a1) = sjgi ⊗ aj for every s ∈ G1, where sgiG1 = sjgiG1, or s−1
j s ∈ Si. This

is further equivalent to that a1 = · · · = al ∈ F g−1
i Sigi , since we compute

s(gi ⊗ a1) = sjgi ⊗ (g−1
i s−1

j sgi)a1.

�

Proof of Proposition 3.13 (iv), (v). By Remark 3.8 we may suppose that K is a field, and

so p = 0, Gp = G.

(iv) The obvious equalizer diagram

0→ A⊗K K̂ → A⊗K A−→
−→A⊗K A⊗K̂ A

of D-module algebras is naturally identified with

0→ A⊗k B → A⊗k H−→
−→A⊗k H ⊗k H̄.

In particular we see that

A⊗k B ' A⊗K K̂ = A⊗K Φ(K)

and so

B = (A⊗K Φ(K))D. (9)

By applying Lemma 3.14 to the present situation especially when G1 = GP , it follows

that

(A⊗K Φ(K))D '
t∑

i=1

(
∑
g∈Oi

g)⊗ F g−1
i Sigi , (10)

where F = A
D(N)
1 with N = GΩ(L); see Proposition 2.4. Since (L

D(N)
1 )G/N = k with

G/N finite, L
D(N)
1 /k is a finite Galois extension of fields. Therefore F and hence F g−1

i Sigi

now are finite separable field extensions over k. By (9), (10), B is a finite-dimensional

separable k-algebra.
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Recall that A has the natural, right H̄-comodule k-algebra structure A
1⊗−−−→ A⊗K̂ A '

A⊗k H̄; in fact, A is also a left H̄-comodule k-algebra. We see that the map

σ : Φ(A1 ⊗K A1) = A⊗K̂ A→ A⊗K A (11)

given by g⊗ (a⊗K b) 7→ (g⊗a)⊗K (g⊗b) (g ∈ G/GP ) is a D-linear, two-sided H̄-colinear

k-algebra splitting of A ⊗K A → A ⊗K̂ A. The induced σD : H̄ → H is a two-sided

H̄-colinear k-algebra splitting of H → H̄. It follows by [Mo, Theorem 7.2.2] (due to Doi

and Takeuchi) that

B ⊗k H̄ → H, b⊗ x 7→ bσD(x) (12)

gives a right H̄-colinear B-algebra isomorphism.

(iv) If GP is normal in G, then GP = N , and hence F = k in (10). We then see

B = (Φ(K)⊗KΦ(K))D. By Example 3.6, B ⊂ H is a Hopf subalgebra which is isomorphic

to k(G/GP )∗. The isomorphism given in (12) induces the described extension of Hopf

algebras. �

Theorem 3.15. Let K ⊂ L be an inclusion of AS D-module algebras. Choose arbitrarily

P ∈ Ω(L), and let p = P ∩K (∈ Ω(K)). Then L/K is a PV extension if

(a) GP is normal in Gp, and

(b) the inclusion K1 := K/p ⊂ L1 := L/P of D(GP )-module fields is a PV extension.

The converse holds true if the field KD (= LD) of D-invariants is separably closed.

Proof. This follows by slightly modifying the last proof, as follows. We may suppose that

K is a field.

Suppose that (L1/K1, A1, H̄) is a PV extension. Define A = Φ(A1) with Φ = ΦGP
.

Recall from Proposition 3.13 that if L/K is PV, the principal module algebra must be A.

As was seen in the last proof, A ⊗K A is a right H̄-comodule k-algebra and the map σ

given in (11) induces an H̄-colinear k-algebra map σD : H̄ → (A⊗K A)D. Again by [Mo,

Theorem 7.2.2], we have a D-linear and H̄-colinear isomorphism

A⊗K Φ(K)⊗k H̄ ' A⊗K A

of algebras over A⊗K Φ(K); see (12). It follows that L/K is a PV extension if and only

if the natural injection

A⊗k (A⊗K Φ(K))D → A⊗K Φ(K) (13)
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is surjective. If GP is normal in G, then this is surjective since by Example 3.6, A ⊗k

(Φ(K)⊗K Φ(K))D → A⊗K Φ(K) is already surjective.

To prove the converse, we may suppose (b), and that the map given in (13) is an

isomorphism. It follows that

dimk(A⊗K Φ(K))D = [G : GP ]. (14)

If k is separably closed, then F = k in (10). The equation (14) implies that (t =)

|GP\G/GP | = [G : GP ], or GP is normal in G. �

The first half of the theorem above seems new even in the standard PV theory for dif-

ference equations. As will be seen from the following, the second half does not necessarily

hold true unless k is separably closed.

Example 3.16. Let N ⊂ G1 ⊂ G be as in Lemma 3.14. Suppose that K is a D-module

field such that KD(G1) = KD (=: k). Let L = ΦG1(K). One sees from the argument for

(14) that L/K is a PV extension if and only if

dimk(L⊗K L)D = [G : G1].

The left-hand side equals
t∑

i=1

dimk F g−1
i Sigi (15)

with the notation in Lemma 3.14, including F = KD(N).

Suppose that N is trivial, and K/k is a Galois extension with G1 = Gal(K/k). If G1 ⊂
G has a splitting π : G → G1 through which G acts on K, then L/K is a PV extension

since one sees that the quantity (15) equals
∑t

i=1[G1 : Si] =
∑t

i=1 |Oi| = [G : G1]. We

have a non-trivial example of such PV extension, for which G = Dn is the dihedral group

of order 2n ≥ 6 and G1 is a cyclic subgroup of order 2.

4. Splitting algebras

Let K ⊂ L be an inclusion of AS D-module algebras. Let V be a K#D-module. The

rank rkK(V ) of the free K-module V will be called the K-rank; see Corollary 2.5.

Definition 4.1. We say that V splits in L/K, or L/K is a splitting algebra for V , if there

is an L#D-linear injection L⊗K V ↪→ LI into some power LI of L.

Any K#D-submodule W ⊂ V splits in L/K, if V does.
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Lemma 4.2. If V has a finite K-rank, say, n = rkK(V ), then the following are equivalent:

(a) V splits in L/K;

(b) There is an L#D-linear isomorphism L⊗K V
'−→ Ln;

(c) The canonical L-linear map

L⊗LD HomK#D(V, L)→ HomK(V, L)

is an isomorphism.

Proof. See [T, Proposition 3.1] also for other equivalent conditions. We only remark that

by Corollary 3.2, the map in (c) is necessarily injective, since Y := HomK(V, L) is an

L#D-module with Y D = HomK#D(V, L), under the D-conjugation:

(dϕ)(v) =
∑

d1(ϕ(S(d2)v)) (d ∈ D, ϕ ∈ Y, v ∈ V ). (16)

Here, ∆(d) =
∑

d1 ⊗ d2. �

Let K〈V 〉 denote the smallest AS D-module subalgebra in L that includes K and all

f(V ), where f ∈ HomK#D(V, L). This equals the quotient ring of the K-subalgebra in L

generated by all f(V ). Obviously, V splits in K〈V 〉/K if it does in L/K.

Definition 4.3. A splitting algebra L/K for V is said to be minimal if L = K〈V 〉.

Lemma 4.4. Let G1 ⊂ G, K1 ⊂ L1 be as in Lemma 3.7. Write Φ = ΦG1. Then, L1/K1

is a (minimal) splitting algebra for a K1#D(G1)-module V1, if and only if Φ(L1)/Φ(K1)

is a (minimal) splitting algebra for the Φ(K1)#D-module Φ(V1).

Proof. This easily follows from Proposition 1.4 if one notices that Φ(K1〈V1〉) = Φ(K1)〈Φ(V1)〉,
in particular. �

For finitely many elements u1, . . . , um in L, let K〈u1, . . . , um〉 denote the smallest AS

D-module subalgebra in L including K and u1, . . . , um.

Definition 4.5. L/K is said to be finitely generated if L is of the form K〈u1, . . . , um〉.
This is equivalent to that L1/K1 is finitely generated, where K1 = K/P ∩K, L1 = L/P

for an arbitrarily chosen P ∈ Ω(L).

Theorem 4.6. Let K ⊂ L be as above. Suppose KD = LD. Then the following are

equivalent:

(a) L/K is a finitely generated PV extension;

(b) L/K is a minimal splitting algebra for a cyclic K#D-module of finite K-rank;
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(c) L/K is a minimal splitting algebra for a K#D-module of finite K-rank;

(d) L = K〈xij〉, where X = (xij)i,j is a GLn-primitive in Kolchin’s sense [K]: X ∈
GLn(L), and for every d ∈ D, (dX)X−1 ∈Mn(K) with dX = (dxij)i,j.

Proof. We write k = KD (= LD).

(a) ⇒ (b). By Lemmas 3.7 and 4.4, we may suppose that K is a field. Suppose that

(L/K, A,H) is a finitely generated PV extension. By Proposition 3.13 (iii), we have a

finitely generated PV extension (L1/K,A1, H̄) of module fields over C := D(GP ) with

P ∈ Ω(L), such that L = Φ(L1), A = Φ(A1).

There exist those finitely many elements u1, . . . , um in A which span an H-subcomodule

over k, and satisfy L = K〈u1, . . . , um〉; see [T, p. 501] (but, we do not suppose here the

k-linear independence of these elements). Set an element u = (u1, . . . , um) in Am, and

let V = (K#D)u, the cyclic K#D-submodule generated by u. Since L⊗K A ' L⊗k H,

we see that L/K is a minimal splitting algebra for Am, and hence for V .

It remains to prove that the K-dimension dimK(V ) is finite. It suffices to prove that

the natural image V (P ), say, of V under the projection Am → Am
1 has a finite K-

dimension, since V is naturally embedded into
∏

P∈Ω(L) V (P ). Let g1, . . . , gs be a system

of representatives of the right cosets GP\G. Then we have

V =
s∑

i=1

(K#C)giu.

Fix 1 ≤ i ≤ s, and let w = (w1, . . . , wm) ∈ Am
1 denote the natural image of giu. It suffices

to prove that W := (K#C)w has a finite K-dimension. By re-numbering we have a k-

basis, w1, . . . , wr (r ≤ m), of the k-subspace in A1 spanned by w1, . . . , wm. There is a

rank r matrix T with entries in k, such that w = w′T with w′ = (w1, . . . , wr). It suffices

to prove that W ′ := (K#C)w′ has a finite K-dimension, since W ′ ' W under the right

multiplication by T .

Notice that for any g ∈ G, gu1, . . . , gum span an H-subcomodule in A. It then follows

that w1, . . . , wr form a k-basis of an H̄-subcomodule in A1. We see from proof of [T,

Theorem 3.3, (a) ⇒ (b)] that dimK(W ′) is finite, as desired.

(b) ⇒ (c). This is trivial.

(c) ⇒ (d). This follows in the same way as [T, Theorem 3.3, (c) ⇒ (d)]. For later use

we follow the outline.
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Suppose that L/K is a minimal splitting algebra for V with finite K-free basis v1, . . . , vn.

By Lemma 4.2, we have a k-basis f1, . . . , fn in HomK#D(V, L). Define

X = (fj(vi)), v = t(v1, . . . , vn). (17)

Then, X is GLn-primitive, such that

(dX)X−1v = dv (d ∈ D). (18)

(d) ⇒ (a). Let X = (xij) be GLn-primitive, and suppose X−1 = (yij). As in [T,

Example 2.5c], one sees that the K-subalgebra

A = K[xij, yij] ⊂ L

and the k-subalgebra

H = k[zij, wij] ⊂ L⊗K L

generated by the entries in

Z = (zij) = (X−1 ⊗K 1)(1⊗K X), Z−1 = (wij) = (1⊗K X−1)(X ⊗K 1) (19)

make (L/K,A, H) a PV extension. We only need to be careful to see that φ : D →
Mn(K), φd = (dX)X−1 (d ∈ D) is convolution-invertible since each φg (g ∈ G) is; cf. [T,

p. 494, line -11]. �

Remark 4.7. Keep the notation just as above.

(i) As is noted in [T, p. 495], one sees from (19) that the natural right H-comodule

structure θ : A→ A⊗k H is given by

θ(X) = X ⊗k Z (= (X ⊗k 1)(1⊗k Z)). (20)

It follows that the structure of H is given by

∆(Z) = Z ⊗k Z, ε(Z) = I, S(Z) = Z−1.

We have a Hopf algebra surjection,

O(GLn) = k[Tij, det(Tij)
−1]→ H, Tij 7→ zij,

which gives a closed embedding G(L/K) → GLn of affine k-group schemes; see [T,

Example A.3].

(ii) Suppose that D = R[g, g−1] with g grouplike, and K is a field; K is then a difference

field [vPS1, Definition 1.1], given an automorphism, say, ϕ : K → K. A difference system

ϕy = By with B ∈ GLn(K) arises uniquely from a K#D-module of K-dimension n,

together with its K-basis. We see from (18) that the X in (17) is a fundamental matrix
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[vPS1, Definition 1.4] for the difference system arising from the V and the v above, and so

that A is the PV ring [vPS1, Definition 1.5] for the system. It will follow from Theorems

4.6, 4.11 that if k (= KD) is algebraically closed, a PV ring for any difference system as

above uniquely exists, and is given by such an A as above.

Corollary 4.8. Let (L/K,A, H) be a PV extension of AS D-module algebras. The fol-

lowing are equivalent:

(a) L/K is finitely generated (Definition 4.5);

(b) L is the total quotient ring of a finitely generated K-subalgebra in L;

(c) A is finitely generated as a K-algebra;

(d) H is finitely generated as a k-algebra.

Proof. When K ⊂ L are D-module fields, the result is proved in [T, Corollary 3.4 and

the following paragraph]. The proof works in our generalized situation. Alternatively, the

result easily reduces to the special case above; use Proposition 3.13 (iv) for the reduction

of (d). �

Corollary 4.9. Let K ⊂ L be an inclusion of AS D-module algebras such that KD = LD.

Then L/K is a PV extension if and only if it is a minimal splitting algebra for such a

K#D-module V that is a directed union, V =
∪

λ Vλ, of K#D-submodules Vλ of finite

K-rank.

Proof. This follows in the same way as [T, Corollary 3.5], but by using Theorems 3.9 (iii)

and 4.6, together with Corollary 4.8. �

Let K be an AS D-module algebra. We have the KD-abelian symmetric tensor category

(K#DM,⊗K , K). Let V be an object in K#DM of finite K-rank. Then the K-linear dual

V ∗ := HomK(V, K) is an dual object under the D-conjugation; see (16). Thus the tensor

full subcategory K#DMfin consisting of the finite K-rank objects is rigid. Let {{V }}
denote the abelian, rigid tensor full subcategory of K#DM generated by V , that is, the

smallest full subcategory containing V that is closed under subquotients, finite direct

sums, tensor products and duals. Thus an object in {{V }} is precisely a subquotient of

some finite direct sum W1⊕· · ·⊕Wr, where each Wi is the tensor product of some copies

of V, V ∗; see [vPS2, Theorem 2.33] also for comparing with the following.



PICARD-VESSIOT EXTENSIONS 25

Theorem 4.10. Let (L/K,A, H) be a finitely generated PV extension of AS D-module

algebras. By Theorem 4.6, we have such a K#D-module V of finite K-rank for which

L/K is a minimal splitting algebra.

(i) Let W ∈ {{V }}. Regard the A ⊗K W as a right H-comodule with the structure

induced by A. Then (A⊗K W )D is an H-subcomodule with k-dimension rkK(W ).

(ii) W 7→ (A⊗K W )D gives a k-linear equivalence

{{V }} ≈ MH
fin

of symmetric tensor categories, where MH
fin = (MH

fin,⊗k, k) denotes the rigid symmetric

tensor category of finite-dimensional right H-comodules; notice that this is isomorphic to

the category RepG(L/K) of the same kind, consisting of finite-dimensional linear represen-

tations of the PV group scheme G(L/K) = SpeckH.

Proof. Regard naturally A as an algebra in the symmetric tensor category (DMH ,⊗k, k)

of those D-modules N which has a D-linear, right H-comodule structure ρN : N →
N ⊗k H; D acts on N in N ⊗k H. We then have the symmetric tensor category A(DMH)

of A-modules in DMH , which we denote by (A#DMH ,⊗A, A); this is k-abelian. Define

k-linear functors

MH
Θ1−→←−
Ξ1

A#DMH
Θ2−→←−
Ξ2

K#DM

by

Θ1(U) = A⊗k U ; H coacts codiagonally,

Ξ1(N) = ND,

Θ2(N) = N coH (= {n ∈ N | ρN(n) = n⊗k 1}),

Ξ2(W ) = A⊗K W ; H coacts on A.

We see that Θ1 and Ξ2 are symmetric tensor functors with the obvious tensor structures.

Moreover by [Mo, Theorem 8.5.6] (due to Schneider), Θ2 and Ξ2 are quasi-inverses of each

other, since A/K is H-Galois by Proposition 3.4 (ii). Since AD = k, Ξ1 ◦Θ1 is isomorphic

to the identity functor. Suppose N ∈ A#DMH . Since A is simple by Corollary 3.12 (i),

we see from Corollary 3.2 that the natural morphism in A#DMH

µN : Θ1 ◦ Ξ1(N) = A⊗k ND → N
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is an injection. Let N denotes the full subcategory of A#DMH consisting of those N for

which µN is an isomorphism. Since each Θ1(U) is in N , Θ1 gives an equivalence

MH ≈ N .

Necessarily, N is closed under tensor products, and this is an equivalence of symmetric

tensor categories.

Since A⊗K V ' An (n = rkK(V )) in A#DM, Ξ2(V ) = A⊗K V ∈ N . We see that Θ1

is exact, and N is closed under subquotients. Therefore for (ii), it suffices to prove that

Ṽ := Ξ1 ◦ Ξ2(V ) = (A⊗K V )D

generatesMH
fin. Let v1, . . . , vn be a K-free basis of V , and define X, v as in (17). We see

from (18) that the entries in ṽ := X−1 ⊗K v (∈ (A ⊗K V )n) are D-invariant, and hence

form a k-basis in Ṽ . By (20), the H-comodule structure ρṼ : Ṽ → Ṽ ⊗k H on Ṽ is given

by

ρṼ (tṽ) = tṽ ⊗k
tZ−1,

where t denotes the transpose of matrices. This means that the coefficient k-space of Ṽ

is the subcoalgebra in H spanned by the entries wij in tZ−1. Since wij together with the

entries S(wij) in Z generate the k-algebra H (see the proof of Theorem 4.6 (d) ⇒ (a)),

Ṽ generatesMH
fin; see [W, Theorem 3.5]. This proves Part (ii).

If W ∈ {{V }}, then Ξ2(W ) ∈ N , and so

dimk(A⊗K W )D = rkA(A⊗K W ) = rkK(W ).

This proves Part (i). �

Theorem 4.11. Let K be an AS D-module algebra such that the field KD of D-invariants

is algebraically closed. Let V be a K#D-module of finite K-rank. Then there exists an AS

D-module algebra L including K such that KD = LD, and L/K is a (necessarily finitely

generated) minimal splitting algebra for V . Such an algebra is unique up to D-linear

isomorphism of K-algebras.

To prove this, we need the following:

Lemma 4.12. Let K be an AS D-module algebra. Let A be a simple D-module algebra,

and let L = Q(A) be the total quotient ring of A; by Lemma 2.7, L is uniquely a D-module

algebra. If A is finitely generated as a K-algebra, then LD/KD is an algebraic extension

of fields.
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Proof. We follow Levelt [L, Appendix] for this proof. If x ∈ LD, then (A : x) = {a ∈
A | ax ∈ A} is a D-stable ideal. Since this contains a non-zero divisor, we have that

(A : x) = A, and so AD = LD.

If A is finitely generated, then it is noetherian. By Proposition 2.4, we may suppose

that K is a field (and A is a domain). If P ⊂ A is a maximal ideal, then the field AD is

included in the field A/P , which is algebraic over K. Therefore if x ∈ AD, it is algebraic

over K. Let ϕ(T ) = T n + c1T
n−1 + · · ·+ cn denote the minimal polynomial of x over K.

Since for any d ∈ D, ε(d)T n + (dc1)T
n−1 + · · ·+ dcn has x as a root, each ci ∈ KD by the

minimality of ϕ(T ). Thus x is algebraic over KD. �

Proof of Theorem 4.11. Existence; this is proved by modifying the proof of [T, Theorem

4.5], as follows. Let v1, . . . , vr be a K-basis for V . For d ∈ D, write

dvi =
r∑

s=1

cis(d)vs

with cis(d) ∈ K. Define a D-module algebra structure on K[Xij], the polynomial K-

algebra in r2 indeterminates, by

d(Xij) =
r∑

s=1

cis(d)Xsj (d ∈ D).

Since det(cij(g)) is invertible in K for each g ∈ G, the D-module algebra structure of

K[Xij] is uniquely extended to F = K[Xij, det(Xij)
−1] by Lemma 2.7. Let I be a maximal

D-stable ideal of F , and put A = F/I. Since K is simple, I ∩ K = 0. Hence A is a

noetherian simple D-module algebra including K. Let L be the total quotient ring of

A; this is an AS D-module algebra by Proposition 2.4 and Lemma 2.7. By Lemma 4.12,

we have LD = KD. Let xij denote the image of Xij in A, and define K-linear maps

fj : V → L (j = 1, . . . , r) by fj(vi) = xij. Then these maps are in HomK#D(V, L), and

are linearly independent over LD, since (xij)i,j ∈ GLr(L). Therefore, L/K is a minimal

splitting algebra for V by Lemma 4.2 (c).

Uniqueness; this follows by modifying the proof of [T, Theorem 4.6]. �
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Ann. Sci. École Norm. Sup. (4) 34 (2001), 685–739.

[K] E. R. Kolchin, “Differential Algebra and Algebraic Groups”, Pure and Applied Mathematics 54,
Academic Press, New York, 1973.

[L] A.H.M. Levelt, Differential Galois theory and tensor products, Indag. Mathem., N.S., 1(4) (1990),
439–450.

[MY] A. Masuoka and T. Yanai, Hopf module duality applied to X-outer Galois theory, J. Algebra 265
(2003), 229–246.

[Mo] S. Montgomery, “Hopf Algebras and Their Actions on Rings”, CBMS Reg. Conf. Series 82, Amer.
Math. Soc., Providence, 1993.

[vPS1] M. van der Put and M. F. Singer, “Galois Theory of Difference Equations”, Lec. Notes in Math.
1666, Springer, 1997.

[vPS2] M. van der Put and M. F. Singer, “Galois Theory of Linear Differential Equations”, Grundlehren
Math. Wiss. 328, Springer, 2003.

[Sw] M. Sweedler, The predual theorem to the Jacobson-Bourbaki theorem, Trans. Amer. Math. Soc.
213 (1975), 391–406.

[T1] M. Takeuchi, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7
(1972), 251–270.

[T2] M. Takeuchi, Relative Hopf modules—equivalences and freeness criteria, J. Algebra 60 (1979),
452–471.

[T] M. Takeuchi, A Hopf algebraic approach to the Picard-Vessiot theory, J. Algebra 122 (1989),
481–509.
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