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Abstract

For any one-dimensional tiling, we discuss finite dimensional standard mod-
ules for the associated tiling bialgebra. We will notice that such modules are
completely reducible, and we will parametrize finite dimensional irreducible
ones, using the set of all patches. Furthermore, we will discuss the associated
completed groups and Iwasawa-type decompositions. We also characterize for
one-dimensional tilings to be locally nondistinguishable by the associated tiling
bialgebra structures.
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0. Introduction. In this paper, we will give an algebraic approach to tilings, and es-

tablish some basic properties. First, we will construct tiling monoids (Section 2) and

tiling bialgebras (Section 3). Then we will classify finite dimensional irreducible stan-

dard modules (Section 4). Also we will reach a certain decomposition rule for tensor

products of such modules (Section 6). Since our bialgebra is coming from a monoid

structure, the action on a tensor product can be said to be diagonal roughly. Hence,

the decomposition rule looks very simple (Section 5). Furthermore, we will construct

some completed groups using formal exponential maps. Then, we will see that there

are Gauss decompositions as well as Iwasawa decompositions in such groups (Section

10). We shall review for the readers Gauss decompositions (Section 8) and Iwasawa

decompositions (Section 9), both of which are well-known. Finally we will discuss

some local property for two tilings to be locally nondistinguishable. We will find that

this condition is equivalent to the fact that the corresponding tiling bialgebras are

isomorphic as bialgebras with triangular decompositions (Section 11).

1. Tilings. Let V = R be a real line. A tile in V is a connected closed bounded

subset V , namely a closed interval [a, b] whose interior is nonempty. A tiling T of V
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is an infinite set of tiles which cover V overlapping, at most, at their boundaries. A

finite subset of a tiling is called a patch if the subset of V covered by its elements

is connected. Let P = P (T ) be the set of all patches in T . We define two patches

τ and τ ′ to be equivalent if there is a translation f of V such that f(τ) = τ ′. Each

equivalence class of patches is called a patch class. The patch class containing a patch

τ is denoted by [τ ], and we put [P ] = { [τ ] | τ ∈ P }. Sometimes, we use the same

notation [P ] for a set of complete representatives of [P ] in P , and the same notation

[τ ] for a representative of the patch class [τ ]. If a patch consists of one tile, then the

corresponding equivalence class is called a tile class. Let Ω = Ω(T ) = { [τ ] | τ ∈
P, Card(τ) = 1 } be the set of all tile classes of T . We identify Ω with a set of

complete representatives of tile classes. An element of Ω may simply be written as

[ω] or ω instead of [{ω}].

2. Tiling monoids. A doubly pointed patch is a triplet (p, τ, q) with a patch τ and

two distinguished tiles p and q appeared in τ . We also define (p, τ, q) and (p′, τ ′, q′) to

be equivalent if there is a translation f of V such that f(τ) = τ ′, f(p) = p′, f(q) = q′.
Each equivalence class is called a doubly pointed patch class. The doubly pointed

patch class containing (p, τ, q) is denoted by [p, τ, q]. Sometimes we identify [ω] with

[ω, {ω}, ω] for each tile ω ∈ T . Hence, we can view Ω as the set of [ω, {ω}, ω] for all

tiles ω in our tiling T . Let M = M(T ) be the set of all doubly pointed patch classes

of a tiling T together with two special symbols z and e, that is, M = { z, e, [p, τ, q] |
p, q ∈ τ, τ ∈ P }. We will introduce a binary operation on M . Let [p, τ, q] and

[p′, τ ′, q′] be two doubly pointed patch classes. If there are translations f and f ′ of

V such that both f(τ) and f ′(τ ′) are patches with f(q) = f ′(p′), then we define

[p, τ, q] [p′, τ ′, q′] = [p′′, τ ′′, q′′], where p′′ = f(p), q′′ = f ′(q′), and τ ′′ = f(τ)∪ f ′(τ ′). If

there is no such a pair of translations, we define [p, τ, q] [p′, τ ′, q′] = z. Also we define

m z = z m = z as well as m e = e m = m for all m ∈ M . Then, the set M becomes

a monoid with the above operation. We call M the tiling monoid of a given tiling T .

In another sense, M can also be regarded as an inverse monoid with zero (cf. [6]).

3. Tiling bialgebras. Let A = A(T ) = C[M ] = ⊕m∈M Cm be the monoid algebra

of M over C. Then, we can introduce a coalgebra map ∆ : A −→ A ⊗ A with

∆(m) = m⊗m (m ∈ M), and a counit map ε : A −→ C with ε(m) = 1 (m ∈ M) . In

this way, A has a bialgebra structure (cf. [1]). Then Cz is a two sided ideal of A and a

coideal of A, since ∆(z) = z⊗z ∈ Cz⊗A+A⊗Cz. We set B = B(T ) = A/Cz, which is

called the tiling bialgebra of T . We use the same symbol e and [p, τ, q] for their images

modulo Cz. If we consider G(B) = { x ∈ B | ∆(x) = x⊗x, ε(x) = 1 }, the set of all

group-like elements in B, then we easily see G(B) = { e, [p, τ, q] | p, q ∈ τ, τ ∈ P }.
Let L = L(B) be the family of principal two sided ideals, Ih = BhB, of B generated

by h with h ∈ G(B). We consider this L as a lattice (with respect to inclusion). We

usually use 1 = 1B instead of e for an identity element of the bialgebra B. We set

H = H(B) = { [p, τ, q] | p, q ∈ τ, τ ∈ P, |τ | = 2, p 6= q }. Then, we see that B is
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generated by 1, Ω and H.

For ω, ω′ ∈ T , we say ω < ω′ if x < x′ with x ∈ ω◦ and x′ ∈ ω′◦, where ω◦ and ω′◦

are the interior of ω and ω′ respectively. Then, we put

B+ =
∑

[p,τ,q]∈M, p<q

C[p, τ, q], B− =
∑

[p,τ,q]∈M, p>q

C[p, τ, q],

and B0 = C1 ⊕ ∑
[p,τ,p]∈M C[p, τ, p]. Then we obtain triangular decompositions (cf.

[8]) : B = B− ⊕B0 ⊕B+.

4. Standard modules. A B-module U is called standard if for each u ∈ U , there

are only finitely many x ∈ G(B) such that xu 6= 0. Here we put T = [P ] ∪ {1}. For

t ∈ T , we define |t| by |1| = 1 and |t| = Card(τ) if t = [τ ] ∈ [P ].

Proposition 1. Let U be a finite dimensional standard B-module. Then:

(1) U is completely reducible.

(2) If U is irreducible, then U is isomorphic to Ut for some t ∈ T . (Finite dimensional

irreducible standard B-modules are parametrized by T naturally.)

(3) In general, U ' Ut1 ⊕ Ut2 ⊕ · · · ⊕ Uts for some t1, t2, · · · , ts ∈ T .

For t = 1, we put U1 = C, being viewed as a trivial B-module, that is, 1u = u

and [p, τ, q]u = 0 for all u ∈ U1 and for all [p, τ, q] ∈ B. We want to construct

the representation corresponding to t = [τ ] ∈ [P ]. If |t| = 1, then Ut = C and

[p, σ, q] with [σ] 6= [τ ] acts on Ut as the zero operator, while [τ ] acts as the identity

operator. Next suppose that τ = {ω1, . . . , ω`} with ` = |τ | > 1 and ωi < ωi+1 for

1 ≤ i ≤ ` − 1. Put Ut = C`. We take xk = [αk, τk, βk] and yk = [βk, τk, αk] in H for

each τk = {αk, βk} ∈ P with αk < βk. Let [ω] ∈ Ω. We fix a standard basis of Ut,

and then identify End(Ut) with the matrix algebra M`(C). The symbol Eij denotes

an `× ` matrix unit, 1 in the (i, j)-position, 0 elsewhere. Then the action of B on Ut

is described as follows:

ξt :





xk 7→ ∑
1≤i<` δ[αk],[ωi] · δ[βk],[ωi+1] · Ei,i+1 ;

yk 7→ ∑
1≤i<` δ[αk],[ωi] · δ[βk],[ωi+1] · Ei+1,i ;

[ω] 7→ ∑
1≤i≤` δ[ω],[ωi] · Eii .

Proof of Proposition 1. Because of the condition for a standard module, we see that the

action of B on U can be considered as passing through the quotient algebra B/J(ν) of

B by J(ν) for a suitable integer ν ≥ 0, where J(ν) is the two-sided ideal of B defined

by

J(ν) = ⊕Card(τ)>ν, p,q∈τ C[p, τ, q],
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and ν should be large enough. Then, we find that B/J(ν) is finite dimensional and

semisimple, since

ξν : B −→ ⊕t∈T, |t|≤ν M|t|(C)

with x 7→ (ξt(x))t∈T, |t|≤ν induces B/J(ν) ' ⊕t∈T, |t|≤ν M|t|(C). Therefore, U is com-

pletely reducible, and each irreducible component must be isomorphic to one of the

Ut above. Q.E.D.

5. Diagonal actions. Let S = { s1, . . . , s` } and S ′ = { s′1, . . . , s
′
`′ }. We consider

an operation

fk : S ∪ S ′ −→ S ∪ S ′ ∪ {0}
with fk(S) ⊂ S ∪{0} and fk(S

′) ⊂ S ′ ∪{0}. (We assume for convenience that si 6= 0,

s′i 6= 0 and si 6= s′j.) Then we define a new operation

f̃k : S × S ′ −→ (S × S ′) ∪ {0}

by

f̃k(s, s
′) =

{
(fk(s), fk(s

′)) if fk(s) 6= 0 and fk(s
′) 6= 0

0 otherwise

for all (s, s′) ∈ S × S ′. We choose and fix a system of such operations, called { fk |
k }. Then we say (r, r′) ∼ (s, s′) for (r, r′), (s, s′) ∈ S × S ′ if fk(r, r

′) = (s, s′)
or fk(s, s

′) = (r, r′) for some k. This creates, as its transitive closure, an equivalence

relation on S×S ′, which is also called ∼. If we take the tensor product of two modules

with bases S and S ′ respectively, and if we want to consider some diagonal actions,

then the above process is helpful to study a certain decomposition into submodules.

Actually we will use this in Section 6. (One may find that a similar idea appeared as

crystal graphs in the theory of quantum groups.)

6. Tensor products. Let τ, τ ′ ∈ P . We say that τ ′′ is a subpatch of τ , and we write

τ ′′ a τ if τ ′′ is a subset of τ such that τ ′′ ∈ P . Put t = [τ ], t′ = [τ ′]. We set D∗(t, t′) =

{ (τ1, τ
′
1) | τ1 a τ, τ ′1 a τ ′, [τ1] = [τ ′1] }. Then, we denote by D(t, t′) the subset of

D∗(t, t′) consisting of the maximal elements in D∗(t, t′) relative to the natural double

inclusions, called (τ1, τ
′
1) ⊂ (τ2, τ

′
2), which is defined by τ1 ⊂ τ2 and τ ′1 ⊂ τ ′2. Then,

for each t′′ = [τ ′′] ∈ [P ], we put ct′′(t, t
′) = Card({ (τ1, τ

′
1) ∈ D(t, t′) | t′′ = [τ1] }),

E(t, t′) = { [τ1] | (τ1, τ
′
1) ∈ D(t, t′) } and F (t, t′) = { (τ1, τ

′
1) | τ1 a τ, τ ′1 a

τ ′, Card(τ1) = Card(τ ′1) = 1, [τ1] 6= [τ ′1] }, and we define c1(t, t
′) = Card(F (t, t′)).

Then, we obtain the following decomposition method for tensor products. We note

that ⊗ always means ⊗C.

We take standard bases of Ut and Ut′ as S and S ′ in Section 5, respectively, and we

choose { xk, yk | k } as a system of operations. Then, the corresponding equivalence

relation ∼ discussed in Section 5 gives all information about the decomposition of

Ut⊗Ut′ into irreducible components. On the other hand, transitive closures in Section
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5 are corresponding to maximal elements in D∗(t, t′) here. Hence, we get the following.

Proposition 2. Let Ut, Ut′ be finite dimensional irreducible standard B-modules with

t = [τ ], t′ = [τ ′] ∈ T . Then,

Ut ⊗ Ut′ '

 ⊕

t′′∈E(t,t′)

U
⊕ct′′ (t,t

′)
t′′


⊕

(
U
⊕c1(t,t′)
1

)
.

Using the situation of these combinatrics, we can symbolically explain the following

computation as an example:

ababa⊗ abaab = 2aba + 2ab + 3a + 12,

which implies the decomposition of the corresponding tensor product of modules:

U[ababa] ⊗ U[abaab] ' U⊕2
[aba] ⊕ U⊕2

[ab] ⊕ U⊕3
[a] ⊕ U⊕12

1 .

In this demonstration, we consider ababa and abaab as subsequences of a tiling of R
with two symbols a, b.

There is a visual simple way to understand this rule. Using the above example, we

can express the following table:

a b a a b

a a ? a a ?

↘ ↘
b ? b ? ? b

↘
a a ? a a ?

↘ ↘
b ? b ? ? b

↘
a a ? a a ?

In this table, one can easily read the information, along the diagonal direction, that

aba appears twice and ab appears twice, but a appears three times, which shows

the multiplicities for U[aba], U[ab], U[a] respectively. Also the number of ? gives the

multiplicity for U1.

Proof of Proposition 2. Let S and S ′ be standard bases of Ut and Ut′ respectively.

We choose { xk, yk } as a system of operations as in the previous section. Then we

obtain the equivalence relation ∼ on S × S ′. Let Q be an equivalence class, and put
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UQ = ⊕(s,s′)∈Q C(s⊗ s′). Then UQ is a submodule of Ut⊗Ut′ . Furthermore, since the

action of B creates the full C-endomorphism ring of UQ, we see that UQ is irreducible.

We also find that UQ is isomorphic to Ut′′ for some t′′ ∈ T corresponding to Q. On the

other hand, we obtain Ut ⊗ Ut′ = ⊕Q UQ, where Q runs over all equivalence classes.

If UQ is trivial, then Q is corresponding to an element of F (t, t′). If UQ is nontrivial,

then Q is corresponding to an element of E(t, t′). Hence, we have the desired result.

Q.E.D.

7. Trivial tilings. Let T be a trivial tiling of R, which means the case when Ω =

{ ω }, where we simply denote ω = [ω], and also we write

ω =

and put

x = p q , y = q p .

Then,

B = C〈 x, y 〉 = ⊕0≤i,k≤j Cxiyjxk.

Then, we can describe all finite dimensional standard representations. In fact, the

maps of { x, y } into M`(C) with

x 7→




0 1 0 · · · 0

0 0 1 · · · 0

0 0 0
. . .

...
...

...
. . . . . . 1

0 0 · · · 0 0




, y 7→




0 0 0 · · · 0

1 0 0 · · · 0

0 1 0
. . .

...
...

...
. . . . . . 0

0 0 · · · 1 0




for ` ≥ 1 give all finite dimensional irreducible standard representations of B.

8. Gauss decompositions. Let GLn(C) be the general linear group over C of degree

n. We take three kinds of standard subgroups, namely U+(C) as the standard max-

imal upper-triangular unipotent subgroup, T (C) as the standard maximal diagonal

subgroup, and U−(C) as the standard maximal lower-triangular unipotent subgroup.

Then we obtain the following decomposition:

GLn(C) = U±(C) U∓(C) T (C) U±(C),

which is called a Gauss decomposition. The name comes from “Gauss eliminations”.

Such a decomposition exists in a finite dimensional semisimple algebraic group as well

as in a Kac-Moody group (cf. [9]).

9. Iwasawa decompositions. Let Un(C) be the standard unitary subgroup of

GLn(C), namely

Un(C) = { X ∈ GLn(C) | tX̄X = In },
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where In is the identity matrix of degree n. Then, we obtain the following decompo-

sition:

GLn(C) = Un(C) T (C) U±(C),

which is called an Iwasawa decomposition and is extremely well-known. There is a

strong version. We take the following positive diagonal subgroup:

T (R>0) = { diag(a1, . . . , an) ∈ GLn(R) | ai > 0 (1 ≤ i ≤ n) }.

Then we also have

GLn(C) = Un(C) T (R>0) U±(C).

At the right hand side, the expression is unique, since Un(C) ∩ (T (R>0) U±(C)) =

{ In }.

10. Completed groups. Let B be the tiling bialgebra of a tiling T . As a formal

sum, we consider the following infinite sum:

∞∑

g∈G(B)

ag g

with ag ∈ C. Then naturally we can define the sum of such formal sums by

( ∞∑
ag g

)
+

( ∞∑
bg g

)
=

∞∑
(ag + bg) g.

Also we can define the multiplication of such formal sums by

( ∞∑
ag g

)
·
( ∞∑

bg g

)
=

∞∑
cg g

with

cg =
∑

g′,g′′∈G(B), g′g′′=g

ag′bg′′ ,

where the number of pairs (g′, g′′) satisfying g′g′′ = g is actually finite. Hence, the

number cg can be determined. We denote by B̂ the set of all such formal infinite sums∑∞
g∈G(B) ag g with ag ∈ C. Then B̂ becomes an associative algebra containing B.

This B̂ is called the formal completion of B. In the same way, we can construct, named

B̂ε, the formal completions of Bε with ε = 0,±. Clearly we have B̂ = B̂−⊕ B̂0⊕ B̂+.

Also we need B̂×, the set of units in B̂, to obtain the associated group. We note

that B̂ ' ∏
t∈T M|t|(C) and B̂× ' ∏

t∈T GL|t|(C). Using B̂×, we define the following

exponential map:

Exp : B̂ −→ B̂×
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by Exp(x) =
∑∞

i=0 xi/i!. Put Γ̂ = 〈 Exp(x) | x ∈ B̂ 〉 = Exp(B̂) = B̂×, and

Γ̂ε = Γ̂ ∩ B̂ε for ε = 0, ±. Then, using Gauss decompositions in Section 8, we obtain

the following Gauss-type decomposition:

Γ̂ = Γ̂±Γ̂∓Γ̂0Γ̂±.

Next, we define the anti-automorphism of B̂, named ∗, induced by (α[p, τ, q])∗ =

ᾱ[q, τ, p] and (α1)∗ = ᾱ1 with α ∈ C. Then, the unitary form in the sense of Lie

theory, called B̂u, is the R-span of

√−1([p, τ, q] + [q, τ, p]), [p, τ, q]− [q, τ, p],
√−1[p, τ, p],

√−1 · 1B

with p 6= q. Using this form, we can construct Γ̂u by Γ̂u = Exp(B̂u), which may be

called a compact-like subgroup of Γ̂. Then, using Iwasawa decompositions in Section

9, we obtain the following Iwasawa-type decomposition:

Γ̂ = Γ̂uΓ̂0Γ̂±.

If we set Γ̂a = Exp(B̂R
0 ), where B̂R

0 = { ∑∞
g∈G(B0) agg | ag ∈ R } ⊂ B̂0 ⊂ B̂, then we

can rewrite the decomposition Γ̂ = Γ̂uΓ̂0Γ̂± by

Γ̂ = Γ̂uΓ̂aΓ̂±

with unique expression in the sense that for every element ĝ ∈ Γ̂ there uniquely exist

ĝu ∈ Γ̂u, ĝa ∈ Γ̂a, ĝ± ∈ Γ̂± satisfying ĝ = ĝuĝaĝ± (cf. Section 9).

Proposition 3. Notation is as above. Then, we have the following Iwasawa-type

decompositions:

Γ̂ = Γ̂uΓ̂0Γ̂±, Γ̂ = Γ̂uΓ̂aΓ̂±.

11. Local properties. In this section, we will characterize some local property of

one-dimensional tilings by the associated bialgebras. Let T and T ′ be one-dimensional

tilings with the set of tiles Ω = Ω(T ) and Ω′ = Ω(T ′) respectively. We call T and T ′

are locally nondistinguishable if the following conditions are satisfied:

(LND1) there is a bijection ψ of Ω onto Ω′, which gives a transformation between the

patterns in terms of Ω and the patterns in terms of Ω′,
(LND2) if [τ ] ∈ [P (T )], then the pattern induced from [τ ] by ψ appears in [P (T ′)],
(LND3) if [τ ′] ∈ [P (T ′)], then the pattern induced from [τ ′] by ψ−1 appears in [P (T )].

If the condition (LND1) is satisfied, then without loss of generality we can assume

Ω = Ω′. Sometimes we may also assume ψ(ω) = ω for ω ∈ Ω (modulo permutations).
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Before showing our main theorem, we will discuss a lattice of certain two sided ideals.

For each h ∈ G(B), we put Ih = BhB, the principal two sided ideal of B generated

by h. Let L be the family of principal two sided ideals Ih = BhB for all h ∈ G(B).

There is the top element Ie = BeB = B in L, which equals the whole algebra. (B

is called a level-zero element.) We note that I[p′,τ ′,q′] = B[p′, τ ′, q′]B is spanned by all

[p′′, τ ′′, q′′] satisfying [τ ′] a [τ ′′]. What is a maximal element (= a level-one element)

in L ? It is of the form m = Iω = BωB for some ω ∈ Ω, which is spanned by all

[p′′, τ ′′, q′′] satisfying [ω] a [τ ′′]. We choose and fix τ = {α, β} ∈ P with ω ∈ τ and

Card(τ) = 2. Let a = I[p,τ,q] = B[p, τ, q]B with p, q ∈ τ , which is the C-subspace of

m spanned by all [p′′, τ ′′, q′′] satisfying [τ ] a [τ ′′]. Then a is a level-two element in L
with a ⊂ m ⊂ B. Let b be the C-subspace of a spanned by all [p′′, τ ′′, q′′] satisfying

[τ ] a [τ ′′] and [τ ] 6= [τ ′′]. Then b is a proper ideal in a satisfying a/b ' M2(C). This

b is uniquely maximal in a in the sense of being generated by group-like elements.

More precisely, we have a = (C[α, τ, α]⊕C[α, τ, β]⊕C[β, τ, α]⊕C[β, τ, β])⊕ b.

Proposition 4. Let T and T ′ be two tilings of R with the associated tiling bialgebras

B and B′ respectively. Then, T and T ′ are locally nondistinguishable if and only if

there is a bialgebra isomorphism φ : B −→ B′ satisfying φ(Bε) = B′
ε with ε = 0,±.

Proof of Proposition 4. We only need to show “if part”. Using φ, we obtain a bijection,

again denoted φ, between G(B) and G(B′) as well as an isomorphism, also denoted

φ, between two lattices L(B) and L(B′). Hence, modulo our identification of tiles, we

can assume that Ω = Ω(T ) = Ω(T ′). Then we write L(B) and L(B′) as

m1 ← a1 ← · · ·
↙ ... ↙ ...

B ← mi ← aj ← ...

↖ ... ↖ ...
... ← ... ← · · ·

m′
1 ← a′1 ← · · ·

↙ ... ↙ ...

B′ ← m′
i ← a′j ← ...

↖ ... ↖ ...
... ← ... ← · · ·

with φ(mi) = m′
i and φ(aj) = a′j, where mi (resp. m′

i) is a maximal element of L(B)

(resp. L(B′)), and aj (resp. a′j) is a level-two element of L(B) (resp. L(B′)), and so

on. Here the arrows “ ← ”, “ ↖ ”, “ ↙ ” in the above diagram mean the canonical

inclusion maps. For each aj, we select xj and yj as follows. The elements xj, yj ∈ G(B)

are uniquely determined by the property that xj is an element of B+ generating aj

and yj is an element of B− generating aj. More precisely there is a uniquely definable

maximal proper ideal bj in aj satisfying aj/bj ' M2(C), and

aj = (Cz11 ⊕ Cz12 ⊕ Cz21 ⊕ Cz22)⊕ bj
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with z11, z22 ∈ G(B) ∩ B0, z12 ∈ G(B) ∩ B+ and z21 ∈ G(B) ∩ B−. Then each of

the z11, z12, z21, z22 generates aj, and we put xj = z12 and yj = z21. Similarly we can

choose x′j, y
′
j ∈ B′. Then we see φ(xj) = x′j and φ(yj) = y′j for all j. On the other

hand, we know that the xj and yj together with Ω generate B as a C-algebra, and

that the x′j and y′j together with Ω generate B′ as a C-algebra, respectively. Put

W = { xj, yj | j }, and W ′ = { x′j, y′j | j }. If we write

xj = [pj, τj, qj], yj = [qj, τj, pj], x′j = [p′j, τ
′
j, q

′
j], y′j = [q′j, τ

′
j, p

′
j],

then we obtain, using Ω-actions from the left hand side and from the right hand side,

[τj] = [τ ′j] for all j (modulo our identification). On the other hand, there is a natural

bijection between the sets

P̂ = { w1 · · ·w` ( 6= 0) | ` ≥ 1, wk ∈ W (1 ≤ k ≤ `) }

and

P̂ ′ = { w′
1 · · ·w′

` (6= 0) | ` ≥ 1, w′
k ∈ W ′ (1 ≤ k ≤ `) }.

This implies that both local patches for T and T ′ should completely coincide. There-

fore, T and T ′ are locally nondistinguishable. Q.E.D.

12. Remarks. There are many ways to construct interesting tilings and study them,

e.g. by the usual cut-and-projection scheme, by a certain symbol dynamical system,

and so on (cf. [3], [4], [10]). One may be interested in several algebraic approaches

to quasicrystals (cf. [2], [7]), which induce tilings, tiling algebras and representations.

Algebraically it is very natural and important to produce a suitable representation

theory and classify all irreducible representations (cf. [5]). If two tilings T and T ′ of

V = R are opposite, that is, T ′ = −T , then there is a bialgebra isomorphism ψ :

B −→ B′ satisfying ψ(Bε) = B′
−ε with ε = 0,±, however it is not necessary for T and

T ′ to be locally nondistinguishable in our sense here. The main part (Proposition 4) of

this note, at this moment, could not be generalized to the case of higher dimensional

tilings. Some difficulty exists to control the geometrical configurations of given tilings

only using the associated tiling bialgebras. Other parts (Propositions 1,2,3) can be

established, in the same way as here, for any higher dimensional tiling just by a formal

generalization.
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