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Theoretical study of the time-dependent phenomena on a two-dimensional
electron gas weakly coupled with a discrete level
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'We theoretically study a time evolution of the electron density distribution on a two-dimensional
electron gas, which suddenly couples with a discrete level. Depending on the relative position between
a discrete level and the Fermi level (Ey), a “dip” or a “peak” of electron density appears after a discrete
level couples with the two-dimensio:al electron gas. Moreover, we clarify the mechanism of dip and

peak formation by using a projection analysis.
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1. Introduction

One of the central issues in semiconductor device is a precise control of tunneling phenom-
ena which appear many situations such as a charge injection into floating gates of memory
devices’?) and a leakage current in MOSFET.? %) These phenomena intimately related to
reliability issues and channel technologies of modern semiconductor devices.®?) As for the
theoretical studies of tunneling phenomena, a remarkable progress has recently been reported

11-13) However, a wide va-

by solving Schrodinger equation with open boundary conditions.
riety of dynamical processes such as electron dynamics at the interfaces of semiconductors
becomes important especially in the aggressively scaled modern semiconductor devices. Thus,
to consider an explicit trace of the dynamical process of electron wave functions is necessary
to obtain a deeper understanding of tunneling phenomena.

In the present work, we investigate the tunneling phenomena from a two-dimensional

electron gas to a discrete level which describes a quantum dot (QD) floating gate or a defect

level in a dielectric material. We study the time-dependent electron density distribution of the
two-dimensional electron gas, which suddenly couples with a spatially localized discrete level.
'We find that the time evolution of the electron density distribution is significantly different
depending on the relative position between the connecting discrete level and the Fermi level
of the two-dimensional electron gas. A clear dip of electron density on the two-dimensional
electron gas is formed just below the connecting site during electron tunneling.

The content of this paper is as follows. In §2, we give the model of our study and the

brief description of the calculational method. In §3, we review the time dependent behavior of
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the electron density distribution on the two-dimensional electron gas by varying the relative
energy level position between a discrete level and the Fermi level of the two-dimensional
electron gas. Depending on the energy level position of the connecting site, a “dip” or a
“peak” of electron density distribution appears on the two-dimensional electron gas. In §4, we
clarify the mechanism of dip and peak formation by using a projection analysis. A summary

is given in §5.

2. Model and Method
A time-evolution of electron wave functions is calculated by solving the time-dependent

14-16) Tp this study, we employ a tight binding approximation, where

Schrodinger equation.
two-dimensional electron gas and a discrete level are represented by the two-dimensional
periodic tight binding lattice and a weakly coupled additional site, respectively [Fig. 1(a)].
We assume that the wave function of the k-th orbital [¢x(¢)] is expanded by the basis
function [y;(z)] which is localized at each site,

Yl t) = ) cf(txile), (1)

i=1,...,n,d
where the notation ¢ shows a position of the sites. The matrix elements of the tight binding

Hamiltonian are expressed as

Hm‘ = /X;‘ijd:c
= EOCSM + Ed(si’]ﬂj’d + ("Y(Si’jj:l + C.C.) + (7kd5i,05j,d + C.C.). (2)
where, on-site energies (Ey, F4) and transfer integrals (v, yrq) are represented as follows;
Ey = /XfHXidx , BEq= /XZHdefC, (3)
1= [xittmde = [ i Hds (1)
[ XoHxada. (5)

where the notations ¢ and d show the positions of two-dimensional lattice sites and an ad-
ditional site, respectively. Note that ¢ = 1 expresses the adjecent sites of the i-th site in the
two dimensional lattice. We set that the additional site is connected to the one of the sites on
the two-dimensional lattice whose position and transfer integral are 0 and 74, respectively.
The transfer integral between the nearest neighbor sites (y) set to 1. Hereafter, we scaled the
values of on-site energies and the transfer integrals by ~. In this study, time is scaled by 1/~.

The formal solution of the time-dependent Schrodinger equation is expressed as
i(t + At) = exp(—iH ALy (1), (6)

where At is a small increment of time. We employ the second order differencing scheme for
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Fig. 1. (a) Schematic illustration of the two-dimensional tight-binding lattice (open circle) with a
weakly coupled additional site (closed circle). The coupling constant between a two-dimensional
lattice and the additional site (yxq) is set to 0.179. On the other hand, we varied the on-site energy
of the discrete level. The number of site (N) is 255 x 255. We considered two cases. One is the
case of (b) Eq > E and the other is (¢c) Eq = Ey, respectively. The electrons initially occupy five

states from the ground state of two-dimensional lattice assuming the low carrier density.

representing the time propagator as,
Yi(t + At) = ¢yt — At) — 2iAtHipi (). (7)

This scheme is accurate up to (HAt)2.17:18) Moreover, this scheme is symmetric in time and
known to be conditionally stable. We use At = 1/256 and Az = 1 for satisfying the stable
condition of At/A:r2 < 0.25.

Under the above assumptions, we study dynamical properties of the electron density dis-
tribution in the two-dimensional lattice which suddenly couples with the discrete level. In
order to clarify the local modulation of the electron density distribution, caused
by the tunneling from the electron gas to the discrete level, we define the dif-
ferential density between the initial density distribution and the time-developed

density distribution (Ap(t)) as follows,

Ap(t) = p(x,0) — p(z,1), (8)

where p(z,t)(= chvzl Yr(z,t)|?) is the electron density distribution in the two di-
mensional lattice. We investigate two cases in this study. One is Eq > E [Fig. 1(b)], the
other is £y = Ey [Fig.1(c)]. In order to obtain the precise picture of electron dy-
namics for these different conditions, we employ a projection analysis, where the
initial wave function v, which is the k-th eigenstate of the condition ;4 =0 (¢t = 0)

are expanded by the eigenstates (¢;) of the condition ;4 # 0 (¢ > 0). A projection
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probability of initial states (P;) can be described as follows:

N
Pi= 0 [ dtinax? (9)
k=1

'We expect that the value of P; and the spatial density distributions of each eigen-
state ¢; enable us to reveal the detailed feature of the time evolution of electron
density distributions.

We set that five electrons initially occupy five lowest eigenstates of the two-dimensional
lattice. Thus, Ey is about —4.00 in this situation. The carrier density of electron gas is
about 1.4x 10! /cm? when the lattice constant of the tight binding lattice coincides
with the length of Si-Si bond. This condition corresponds to the typical carrier
density of weak inversion layer of MOSFET. We investigate a time evolution as
follows. At ¢t = 0, a discrete level suddenly begins to couple (yzs # 0) with the
two-dimensional lattice, though 7.4 is 0 when ¢ is smaller than 0. In the present

work, we neglect the electron-electron interaction for simplicity.

3. Results and Discussion

3.1 Time Evolution

Figures 2 (a) and (b) show the snapshots of the time-dependent electron density distri-
butions against the time in the condition of E; > Ef(Eq = —3.95y) and E4 = Ej, respec-
tively. The time evolution of the electron density distributions on the two-dimensional lattice
show the different features that depend on the relative position of the energy levels. When
E4 = —3.957, a tunneling from the two-dimensional lattice to the discrete level is rare due
to the sufficient energy difference [Fig. 2(c)]. Noticeable feature is that the electron density
distribution has a peak around the connecting site and the modulation oscillatory spreads
outwards from the connecting site during time development. The maximum value of the
electron density at the peak is about 30% larger than the initial density. In the
condition of E; = Ey, however, the time evolution of the electron density distribution is com-
pletely different. A “clear dip” instead of a peak is formed around the site which connects to
the discrete level and this dip region becomes deeper and wider during tunneling event [Fig.
4(c)]. The minimum value of the density at the dip is about 40% smaller than the
initial density. Note that the tunneling probability to the discrete level at t=200 in Fig.2(d)
is about 15 times larger than the peak at t=>50 in Fig.2(c) caused by the large mixing between
the two-dimensional lattice and the discrete level.

These phenomena can be regarded as a time dependent version of the Friedel oscillation.
[Electrons initially on the eigenstates of the two-dimensional lattice are perturbed by coupling
with the discrete level. Consequently, the initial states are no longer being an eigenstate of

this system and a mixed state is formed, where electron wavefunctions are expanded by the
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Fig. 2. Snapshots of time-dependent electron density distribution under the condition of (a) E; =
—3.95y and (b) E; = —4.00y. Fermi level corresponds to E; = —4.00y. At ¢ = 0, the two-
dimensional lattice and the discrete level is connected by the strength of ;4 = 0.17. The time
dependency of the electron density in the discrete level for the condition of (¢) Eq = —3.95y and
(d) E4 = —4.00, respectively. Note that the longitudinal axis of (d) is twenty times larger than

(c)-

several eigenstates of H described in eq. (2) whose 4 is finite. As a result, the electron density
distribution is modulated by the mixing of these eigenstates. From another viewpoint,
this modulation is understood in terms of the transitions among the unperturbed states via the

discrete level. In this perspective, we could see that the second order perturbation produces
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the modulation of the electron density in the electron gas. Further details of this
consideration are discussed in our previous work.?)

Recently, Tkeda et al. have reported the collective motion of electrons occurs during elec-
tron injection into Si-QDs in the MOS memory transistor system, where many electrons collec-
tively tunnel into the Si-QDs within a very short period.!) The results of our time-dependent
calculations in the E; = Ey [Fig. 2 (b)] enable us to propose a possible mechanism of this
collective motion of electrons. Once tunneling event occurs, a dip of electron density is
formed in the two-dimensional gas just below the discrete level. The tunneling probability be-
tween a localized state and a discrete level is much larger than that between a delocalized level
and a discrete level. Accordingly, after one tunneling event occurs, the tunneling probability
of second tunneling is expected to be remarkably enhanced, which leads to the occurrence of

successive electron tunneling.

3.2 Projection Analysis

In the previous subsection, we found that the time-evolution of the electron density dis-
tribution sensitively depends on the relative position between FE4 and E;. In the condition
FEq = Ey, a clear dip of electron density on the two-dimensional lattice appears around the
connecting site, however, in the condition Eq > Ef, a peak appears around it. In this sub-
section, we discuss these characteristic time-evolutions in terms of the superposition of the
eigenstates for H with yq # 0.

Figure 3 is the schematic illustrations of the time evolution for two-state system, where the
wave function is expanded by two states of ¢ and ¢2. We assume that both two states have
the peak (dip) of electron density distribution around the center of the system. Further, these
two states have different eigenvalues each other, which leads to the different phase velocity
in time evolution. The superpositions of these states for different time are shown in the right
row of Figs. 3(a) and (b). We also assume that the relative phase between the two states
is initially 7 for satisfying the uniform distribution of electron density at ¢ = 0 [Fig. 3(a)].
The time-development of this wavefunction shows the modulation of the density distribution,
because the relative phase difference between the two states changes in time evolution. Fig.
3(b) describes the system at ¢ = ¢;, where the relative phase between the two states is 0.
As shown in this figure, the electron density distribution has the clear peak (dip) around the
center of the system at ¢ = t;. Thus, the ”hidden structures” of the electron state inevitably
emerge during the time evolution as shown in Figs. 3 (a) and (b). Based on this consideration,
The electron density distributions of the eigenstates of H with yxq = 0.1y in the two-
dimensional lattice are shown in Figs. 4 (a) and (b) for the conditions of By > Ey (Eq =
—3.957) and E4 = Ey, respectively. Here, the wave functions having cosine waves for both
and y directions mix with a discrete level because of the symmetry. We classify these states into

two groups by their spatial distributions of electron density, where we assign the eigenstate
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Fig. 3. The schematic illustrations of the time evolution for two-state system, where both states have
the peak (solid line) or the dip (broken line) of electron density distribution around the center of
the system. Further, these two states have the different eigenvalues each other, which leads to the
different phase velocity in time evolution. The relative phase between these states is 7 at t = 0
(a) and the one is 0 at t = t; (b).

having a peak on the two-dimensional lattice around the connecting site as a “peaked state”
and the one having a dip as a “dipped state”, respectively. On the other hand, the wave
functions having a sine form (odd symmetry) cannot mix with the discrete level and does
not change its density distribution even in the condition iy # 0. We assign these states as
“the odd states”. We can see that the electron density distributions of the eigenstates of the
condition yiq # 0 show the completely different features depending on the relative position
between E; and Ey. In the condition E; = —3.95y [Fig.4(a)], we can only find peaked and
odd states; The first, second, sixth states can be categorized into peaked states and the other
six states are odd states as clearly shown in Fig. 4 (a). In the condition E; = Ey [Fig. 4(b)],
however, most of the states are dipped and odd states except the ground state (peaked state);
The second, sixth, and tenth states can be categorized into dipped state and the threefold
degenerate states (the third to fifth and the seventh to ninth states) are classified as odd
states. Only the ground states can be assigned as a peaked state in this condition. It is noted
that the ground state has very small amplitude on the two-dimensional lattice whereas large
amplitude on the discrete level reflecting the large mixing between the two-dimensional lattice
and the discrete level.

To investigate the role of these eigenstates in the time evolution, we project the initial

states into these eigenstates as defined above. The projection probabilities for each condition
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Fig. 4. The electron density distribution of eigenstates of the condition 5y = 0.1v in the two-
dimensional lattice for (a) Eq > Er and (b) E; = Ey. The eigenstates are assigned by sequential
numbers and classified into three groups by their characteristics of the electron density distribu-
tions. The threefold degenerate states (3 to 5 and 7 to 9) are classified as the “odd states” on both
conditions. The states 2, 6 and 10 in (b) are classified as the “dipped states”. The other states
[1, 2 and 6 in (a) and 1 in (b)] are the “peaked states”. The projection probability of the initial
states, where each wave function is decomposed into the eigenstates in the cases of (c) Eq > Ef

and (d) Eq = Ej, respectively. The filled, shade and open bars correspond to a peaked, a dipped
and an odd state, respectively.

are shown in Figs. 4 (c) and (d). In the condition E; > E; (Eg = —3.95y), we find that
the initial state is mainly expanded by two peaked states and three odd states. Here the
coefficients of the basis functions (eigenstates of the condition v # 0) are determined by
satisfying the uniform distribution of electron density similar to the model of Fig 3(a). Thus,
the time evolution of the electron density distribution inevitably shows the modulation of
electron density caused by the fact that each eigenstates have a different phase velocity in

time evolution. It is noticeable that there are only the peaked and the odd states around the
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Fermi level in this condition. Therefore, the hidden structures of the electron state (peaked
states) emerge during the time evolution as shown in Fig. 2(b). Note that the effect of the
coupling on discrete level is rather small because Ey is sufficiently far from the Fermi level in
this condition. Therefore, the mixing of the discrete level is limited and the electron tunneling
hardly occurs.

Contrary to the condition of E; > Ey, a clear tunneling is observed in the condition
E4 = Ey due to the large mixing between two-dimensional lattice and the discrete level. Here,
the initial state is mainly expanded by the dipped and the odd states as shown in Fig.4(d).
Thus, the hidden state is the dipped state instead of the peaked state in this condition.
IAccordingly, the resulting electron density distribution shows the dip formation as clearly

seen in Fig. 2(b) reflecting the characteristics of these eigenstates.

4. Summary

We theoretically study the time-evolution of the modulation of electron density for the
two-dimensional electron gas with a weakly coupled discrete level. We clearly show the tun-
neling event remarkably modifies the two-dimensional electron gas and the characteristics of
modulation is sensitively depends on the relative position between Fermi level of the two-
dimensional electron gas and a discrete level. In the condition E4 > Ey, the electron density
distribution forms the peak around the connecting site in two-dimensional electron gas. In the
condition E4 = Ey, the dip is generated due to the electron tunneling to the discrete level.
The origin of generating the dip and the peak formation is investigated by using the projection
analysis, where the initial wave functions (the eigenstates of H with v,q = 0 at ¢ = 0) are ex-
panded by the eigenstates of the condition yiq # 0 at t > 0. We show that the electron density
distribution of the eigenstates near the Fermi level play significant roles for the characteristic
modulations. In the condition E4 > Ef, the initial state is expanded by the peaked and the
odd states, on the other hand, in the condition E; = Ef, the one is mainly expanded by the
dipped and the odd states. We reveal that these hidden structures of electron state emerge
during time evolution. These dynamical properties in two-dimensional electron gas
could possibly affect the electron tunneling from the electron gas to the discrete
level. It indicates that the time evolution of the electron state in electron gas is

important issue for the precise control of electrons in the semiconductor devices..
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