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Particle Swarm Optimization – A Survey
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SUMMARY Particle Swarm Optimization (PSO) is a search method
which utilizes a set of agents that move through the search space to find the
global minimum of an objective function. The trajectory of each particle is
determined by a simple rule incorporating the current particle velocity and
exploration histories of the particle and its neighbors. Since its introduction
by Kennedy and Eberhart in 1995, PSO has attracted many researchers due
to its search efficiency even for a high dimensional objective function with
multiple local optima. The dynamics of PSO search has been investigated
and numerous variants for improvements have been proposed. This paper
reviews the progress of PSO research so far, and the recent achievements
for application to large-scale optimization problems.
key words: particle swarm optimization, swarm intelligence

1. Introduction

This paper serves as a survey on a group of optimization
algorithms known as Particle Swarm Optimization (PSO).
PSO was originally introduced by Kennedy and Eberhart in
1995 [1]. After its introduction, the simplicity and the flex-
ibility of the algorithm achieving a very efficient search of
near-optimal solutions even for problems with quite a tricky
search space landscape, has attracted many researchers who
try to analyze and improve it, and also those who intend to
apply it.

The original research by Kennedy and Eberhart started
out to acquire local agent rules for simulating the social be-
havior of a flock of birds or a school of fish. Inspired by the
works such as [2] by Reynolds, who programmed a flock-
simulating group of agents (boids) by sole description of
agent interaction rules, they started to try various interaction
rules among the agents. Soon, they found that some type of
interaction in the flock can benefit the efficiency of finding
an important location, such as food in the flock’s domain of
activity. They saw this nature effective as a novel algorithm
for general nonlinear programming, so they improved and
simplified the rule for updating the agent’s position, making
use of some local memory and information sharing. Thus
the Particle Swarm Optimization was born.

Since then, various modifications to the original PSO
have been proposed. In parallel, they are being applied to
various fields that require parameter optimization in a high-
dimensional space, favored due to the algorithm’s simplicity
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and its high efficiency in searching. This survey will try to
follow the progress of PSO research.

In the following, the original PSO will be reviewed and
the trends of research in analyzing and improving the origi-
nal algorithm in various aspects will be introduced in Sect. 2.
In Sect. 3, works in several major research directions will be
reviewed. Section 4 is devoted to current research trends to-
wards using the PSO in large-scale optimization problems.
Finally, in Sect. 5, the paper will be closed with concluding
remarks.

2. Particle Swarm Optimization (PSO)

2.1 PSO in Its Original Form

Particle Swarm Optimization (PSO) is a method for finding
the global minimum of a scalar valued objective function
f (x) ∈ R defined on domain D = Rn. The global minimum
will be referred to as x0 ∈ Rn in the following. Thus f (x0) ≤
f (x) for all x ∈ Rn. All the following discussions can be
applied to cases when the global maximum is sought, by
multiplying -1 to the objective function f .

In PSO, a group of N agents search through the domain
D. Each agent called the particle will be denoted by ci (i =
1, . . . ,N), and the whole set of particles is referred to as the
swarm S = {c1, . . . , cN}. In Fig. 1, a schematic of the search

Fig. 1 Particle Swarm in search of the global minimum x0 = (ξ1, ξ2)T =

(0, 0)T of the Rastrigin function defined on a 2 dimensional domain. White
circle indicate the position (xi) of each particle (ci).
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by the swarm is shown for an objective function defined on
a 2 dimensional domain.

Each particle in the swarm moves through the domain
D in search of x0 where function f will take the global
minimum. The searching trajectory of each particle is de-
termined by a simple law incorporating its individual ob-
servation, memory and information shared among the par-
ticles in its neighborhood. The neighborhood Si of parti-
cle ci is a given subset of the swarm (Si ∈ S), usually de-
fined in the proximity of ci on the particle’s indexing space.
The definition of neighborhood will be discussed in detail in
Sects. 2.2.2 and 3.2.

Particle ci holds its current coordinate in the search
space xi and its velocity vi. The fitness of xi is evaluated
with the objective function f and will be fed back to the par-
ticle as f (xi). Each particle also holds its maximally evalu-
ated coordinate so far, as pi. The point at which the particles
in the neighborhood Si scored best so far is transmitted to ci

as gi. Vectors pi and gi are often called the gbest and pbest
vectors, standing for the global best and the particle’s best
findings, respectively.

The particles move through the search space accord-
ing to the updating rules of their coordinates and velocity
defined as,

xi(t + 1) = xi(t) + vi(t + 1), (1)

vi(t + 1) = vi(t) + φ1R(pi − xi(t))

+φ2R(gi − xi(t)). (2)

Here, t and R denote the time and a random diagonal matrix
diag(ρ1, ρ2, . . . , ρn) respectively. Each diagonal element ρi

is a uniform random number in [0, 1] which is re-generated
upon every evaluation of R. There are also cases in which
a single random scalar ρ ∈ [0, 1] is used instead of matrix
R. Parameters φ1 ≥ 0 and φ2 ≥ 0 are to be determined in
beforehand.

As seen in Eq. (2), the velocity vi is generally updated
towards pi and gi, weighted by parameters φ1 and φ2, with
randomness induced by R or ρ. This nature will tend the
particle search to the direction where good solutions were
found in the past.

The parameters φ1 and φ2 determine the tendency of
velocity update. A large φ1 will shift the velocity towards
the particle’s best pi. Similarly, a large φ2 will direct the
particle towards the neighbor group’s best gi. In effect, par-
ticle ci will take an uneven swarming movement around

1
φ1 + φ2

(φ1 pi + φ2 gi). (3)

Recommended values of the parameters in the original pa-
per [1] was φ1 = φ2 = 2 to have the particle fly over the
bests by a 1/2 chance.

2.2 Analysis, Issues and Research Directions

After its initial introduction, several issues residing in the
original PSO have been pointed out by various researchers.

2.2.1 Stability and Convergence

One significant issue found out by many of those who have
applied PSO was its instability. Often, the trajectory of each
particle becomes a multidimensional oscillation of a limited
amplitude [3]. Under some parameter settings, the particle
velocity monotonically increases, and results in a so-called
explosion of the swarm [4].

Even when the swarm becomes concentrated around a
small region including a local minimum of f , final conver-
gence to the local minimum tended to be rare, or took a very
long time.

2.2.2 Neighborhood

Another aspect of PSO that has been investigated is the se-
lection of each particle’s neighborhood Si.

The simplest setup for the particle neighborhood is
to include all particles in the neighborhood; namely, Si =

S, (i = 1, . . . ,N). In this case, the particles have the tight-
est communication and the findings of the whole swarm is
immediately shared by every particle in the swarm as the
common gbest vector g = g1 = · · · = gN . The neighbor-
hood of this type, is called the gbest-type.

Another extremity of neighborhood definition would
be the total isolation, in which particles do not exchange
pbest information at all. However, it has been proved that
the swarm of this type (pbest-type) performs very poorly.

Intermediate approaches where a particle shares infor-
mation with a subset Si ∈ S is known to perform better,
generally. This setup is called the lbest-type in which the
shared best gi is the best among the experiences of particles
in Si; this shared vector is often called the lbest which stands
for local-best [5].

3. Modifications and Analysis

In accordance with the issues summarized in the previous
section, various modifications to the original PSO have been
proposed so far. Also, novel ideas from other disciplines
such as evolutionary algorithms have been imported to the
framework of PSO. Several among those directions will be
reviewed in this Section.

3.1 Stability and Convergence

3.1.1 Limiting Particle Speed

Under some settings, the swarm can become scattered in
a very wide area in the search domain, resulting in a very
high particle speed. In order to avoid such an explosion,
a practice to limit the maximum particle speed component
as vmax has been used. The velocity update rule with this
saturation is given by

v′id(t + 1) =

{
vid(t + 1) (vid(t + 1) ≤ vmax)
vmax (vid(t + 1) > vmax)
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(d = 1, . . . , n), (4)

where vi(t) = [vi1(t) · · · vin(t)]T [1]. Here, v′i(t + 1) = [v′i1(t +
1) · · · v′in(t + 1)]T is the modified velocity.

Alternatively,

v′i(t + 1) =

{
vi(t + 1) (v ≤ vmax)
vmax

v vi(t + 1) (v > vmax)
(5)

with v = ||vi(t + 1)||, may be used to maintain the velocity
direction.

Use of vmax often contributes to stabilizing the swarm
and improves the chance that the swarm will be lead to the
neighborhood of x0. However, convergence of the particles
to x0 is not guaranteed. Often it takes a long time for one
of the particles just happen to visit x′0 � x0 giving a near-
optimal reading f (x′0).

3.1.2 Inertia Weight

Another attempt to improve the stability of the search is
the use of inertia weight w, which controls the amount the
present velocity affects the velocity of the next time step.
This method was introduced by Shi and Eberhart [6]. Using
the inertia weight, the rule in Eqs. (1) and (2) become

xi(t + 1) = xi(t) + vi(t + 1), (6)

vi(t + 1) = wvi(t) + φ1R(pi − xi(t))

+φ2R(gi − xi(t)). (7)

Here, a large w will make it relatively hard to change the
particle’s movement direction. As a result, the swarm will
be scattered in a large portion of the search domain D. This
nature is desirable in the initial phase of the search when the
promising portion in D is still unknown.

As the initial exploration reveals the coarse landscape
of f (x), the search should be focused to smaller promising
regions for a finer search. In this phase, a smaller inertia
weight is more suitable. Scheduling the optimization to start
with w = 1, and to gradually reduce it (e.g. exponentially)
so that it tends to w = 0, is known to be a good practice.

3.1.3 Constriction

Clerc and Kennedy [4] investigated the PSO as a class of
dynamic systems that can be controlled by choosing the co-
efficient parameters in the system equation. They started in-
vestigating the nature of PSO as a multidimensional version
of the dynamic system governed by equations

v(t + 1) = v(t) + φy(t) (8)

y(t + 1) = −v(t) + (1 − φ)y(t). (9)

By assuming

y(t) =
φ1 p + φ2g
φ1 + φ2

− x(t) (10)

φ = φ1 + φ2, (11)

it is found that the system of Eqs. (8) and (9) is equivalent

to the 1-dimensional version of the PSO system defined in
Eqs. (1) and (2) with randomness omitted.

By putting

P(t) =

[
v(t)
y(t)

]
(12)

and

M =

[
1 φ
−1 1 − φ

]
, (13)

the system can be described as P(t + 1) = MP(t), whose
dynamics will be determined by matrix M. Through an
eigenvalue analysis of M, the authors found connections be-
tween the value of φ and some significant dynamics of PSO.
Among them are the cyclic trajectories of the particles and
the divergence of particle velocity.

Further on, they discussed that the original PSO system
in the form of Eqs. (8) and (9) is a special case of a general
system

v(t + 1) = αv(t) + βφy(t) (14)

y(t + 1) = −γv(t) + (δ − ηφ)y(t), (15)

where φ > 0 and coefficients {α, β, γ, δ, η} further modify the
dynamics of the system. The authors classify the systems
by the relations among the five coefficients, and show that
velocity explosion and convergence can be controlled by the
selection of these coefficients. Note that the system with
inertia weight corresponds to the special case of α = γ = w
and β = δ = η = 1.

Among such generalized PSO models, the Class 1”
system which has constraints in the coefficients as α = β =
γ = η and δ = 1, will have a system equation of

xi(t + 1) = xi(t) + vi(t + 1), (16)

vi(t + 1) = χ(vi(t) + φ1R(pi − xi(t))

+φ2R(gi − xi(t))). (17)

In this system, the convergence of the swarm to a local mini-
mum is guaranteed, by choosing the constriction coefficient
χ as,

χ =

⎧⎪⎪⎨⎪⎪⎩
2κ

|φ−2+
√
φ2−4φ| (φ > 4)

κ (otherwise)
(18)

where parameter κ ∈ (0, 1), slows the convergence as it ap-
proaches 1.0.

In the experiments in [4], optimization by various
methods were compared on some well known benchmark
objective functions such as the De Jong’s set [5], [7], Schaf-
fer’s f6, Griewank, Rosenbrock and Rastrigin functions [5].
Benchmark objective functions commonly used in evalua-
tion of evolutionary and swarm optimization algorithms are
listed in Table 1.

In their results, it was shown that appropriate use of
constriction parameters in the generalized classes of PSO
achieves convergence to the global minimum at high rate. In
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Table 1 Benchmark functions commonly used in evolutionary and swarm optimization research.

contrast, it showed that sole use of speed truncation (vmax)
was not sufficient. However, it was also shown that the joint
use of both techniques can further improve the search and
convergence within a certain number of update iterations.

3.1.4 Stability in a Stochastic Particle System

The analysis that lead to a now-common practice of using
the constriction parameter in [4] assumed a deterministic
system with no randomness. A recent work by Kadirka-
manathan et al. [8] analyzes the stability of PSO with
stochastic particle dynamics including the scalar random-
ness (ρ) in Eq. (7), by way of Lyapunov stability analysis.
They derived the condition of asymptotic stability as,

K <
2(1 − 2|w| + w2)

1 + w
(|w| < 1, w � 0) (19)

where 0 < φ < K holds for φ in Eq. (11). This result gives a
guide for selecting the parameters φ and w for stability and
convergence.

3.2 Neighborhood

Improvements to the original PSO in determining each par-
ticle’s neighborhood Si will be reviewed here.

3.2.1 Index Topologies

In the lbest-type PSO, neighborhood of particle ci is often a
set of particles in the vicinity of ci in the particle indexing
structure. In this case, the neighborhoods will have some
overlaps. Therefore, the lbest information (gi and g j) of dif-
ferent particles (ci and c j) will be mutually affected via the
pbest pk of particle ck which is included in both neighbor-
hoods (Si and S j). In Fig. 2 (a), an example of an indexing

Fig. 2 Examples of neighborhood definitions employed by the lbest type
PSO (in dashed lines). (a) Circular : Particles in immediate k = 2 neigh-
borhood in a circular index are set as the neighborhood Si of each particle
ci. (b) Wheel : The swarm has particle c0 which acts as the channel for
information sharing. Other particles have neighborhoods of limited subsets
always including particle c0. (c) von Neumann : Four immediate neighbors
in the particles indexed in a grid on a torus surface comprise the neighbor-
hood.

structure with circular topology is shown where Si includes
other particles within arc distance k.

Another method of lbest implementation is shown in
Fig. 2 (b). It is the wheel topology which uses a focus par-
ticle c0. The focus particle is special in that S0 = S. The
neighborhood of other particles always include the focus. In
this configuration, the focus c0 gradually moves towards the
global best found so far by the swarm. By its movement to-
wards the global best, the focus c0 will always indicate the
“global trend” of the search by way of its pbest po.

When compared with the gbest-type PSO, lbest-type
swarm tends to be slow in convergence, but is less likely to
be captured in a local minimum because remote neighbor-
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hoods (on the indexing structure) tend to search in a differ-
ent candidate regions [9]. In effect, this is equivalent to the
maintenance of the diversity which plays an important role
in avoiding early convergence of evolutionary algorithms.

In the experiments for several functions in Table 1,
Kennedy and Mendes tested various neighborhood types on
a Class 1” PSO [9]. The types included gbest, lbests with
k = 1 on a circular topology, k = 1 on a 3D-pyramid
topology, a wheel in Fig. 2 (b), von Neumann topology in
Fig. 2 (c), and a swarm divided into several isolated neigh-
borhood subsets. The findings from the experiments were as
follow.

• von Neumann lbest generally achieved best in conver-
gence speed and solution quality.
• 3D-pyramid topology scored second best.
• Isolated subsets and wheel topology gave moderate re-

sults.
• Circular lbest was slowest to converge with worse-

than-moderate solutions.
• gbest had the worst performance, being quick to con-

verge, mostly to one of the local minima.
• Results were problem dependent. No all-around supe-

rior neighborhood topology was found.

Other works on neighborhoods based on indexing
topologies include Lane et al. [10] finding Delauney trian-
gular grids effective in low dimensional search domains.

3.2.2 Locality in Search Space

In contrast to these static neighborhoods based on pre-
defined index topology, Suganthan [11] proposed to dynam-
ically redefine them using the immediate particle positions
in the search space D while running the PSO. The neigh-
borhood Si of particle ci was redefined as a set of parti-
cles inside a hypersphere in D centered at xi. In addition,
the radius of the hypersphere will gradually grow, eventu-
ally becoming a gbest-type PSO. Experimental results show
that this method found better solutions in average, when it
was compared with the conventional gbest-type PSO. Bink-
ley and Hagiwara [12] also used locality in the search space
by augmenting the gbest factor in Eq. (17) with a function
of immediate particle distances. They also found improve-
ments over the methods with index-based neighborhoods on
some benchmark functions.

3.3 Introduction of Genetic Operations

Ideas common in other evolutionary optimization algo-
rithms have been imported to PSO, and are known as hy-
bridization approaches.

3.3.1 Selection

Angeline [13] introduced a variant of PSO which addition-
ally incorporates the selection mechanism. A form of tour-
nament selection evaluating the current particle fitness is

performed, and all the particles will be sorted according to
their scores. Then the positions and the velocities of the
better half of the swarm are copied to the inferior half, but
maintaining each particle’s pbest vectors for particle diver-
sity. By this operation, the focus of the inferior half will be
turned to a more promising subset of the search space. In
the experiments, the PSO with the original dynamics was
compared with the same PSO with additional selection and
significant improvements are reported for some test objec-
tive functions.

3.3.2 Mutation

Mutation operations common in real-valued genetic algo-
rithms (GA) have been introduced to PSO as well. Injection
of randomness in the positional updates of particles have
been done using Gaussian mutation (Higashi and Iba [14])
and Cauchy mutation (Stacy et al. [15]). Improvements for
both benchmark objective functions and real-world prob-
lems have been reported. Someya [16] reports that the
search tendencies (exploratory vs. exploiting) could be con-
trolled by modifying an asymmetric normal distribution for
the density of randomness for the diagonal elements of R in
the last term of Eq. (2).

3.3.3 Diversity

Maintenance of diversity is also important in finding a
good solution in a high-dimensional search domain. De-
layed information propagation by sparsely connected neigh-
borhoods contributes in this aspect. Other modifications
specially aimed for the maintenance of diversity include
particle replacement from a dense cluster (Løvbjerg and
Krink [17]), use of repulsion force to avoid particle colli-
sion (Krink et al. [18]), and occasional switching of dynam-
ics among the sub-swarms (Al-kazemi and Mohan [19]).
Stochastic switching of particle dynamics with a similar aim
is found in Vesterstrøm et al. [20].

See Olorunda and Engelbrecht [21] for various defini-
tions of swarm diversity and their features.

3.3.4 Speciation

Introduction of species to the particles, namely speciation
is another technique for maintaining the particle diversity.
Iwamatsu [22] proposed the multi-species PSO (MSPSO),
and independently, Parrot and Li [23] proposed the species-
based PSO (SPSO). In these models, several fittest parti-
cles in the swarm will become the species seeds and will
include other particles in the neighborhood to its species.
Additionally, the seed particle will act as the lbest of each
species neighborhood. In both MSPSO and SPSO, isola-
tion of species and gradual migration of particles upon re-
speciation contributed to efficient search for the global op-
timum of multimodal objective functions. Also, SPSO has
been modified for tracking multiple optima of a dynamically
changing multimodal objective functions [23].
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3.4 Generalized Velocity Update Rules

In the original PSO, particle velocity update is only depen-
dent to the particle’s pbest (pi) and gbest (gi) as in Eq. (2).
Mendes et al. [24] extended this selective dependence to all
the particles in the neighborhood; namely to make each par-
ticle fully informed of the pbest of the particles in Si. The
modified update rule with constriction χ is,

vi(t + 1) = χ(vi(t) + φ(qi − xi(t)) (20)

where qi is a weighted sum of pj for all particles in Si. The
weights are set according to various aspects of the particles.
Such aspects include the evaluation of each particle’s pbest
( f (pj)) and the distance to particle ci (||xi− x j||). Liang et al.
[25] use a similar update rule as Eq. (20), with each element
of qi being chosen from the elements of pj (c j ∈ Si) via a
tournament selection.

3.5 Multiobjective Optimization

Modifications to PSO for solving multiobjective optimiza-
tion problems (MOP) have been introduced by several au-
thors. The objective in this case is to find the Pareto front
in the search space, as a set of points satisfying the Pareto
optimality.

In [26], Hu et al. applies PSO to MOPs by employing
a dynamic neighborhood scheme (as in [11]), with sequen-
tial optimization of objective functions, thereby finding the
Pareto front.

Coello Coello et al. [27] proposed the multiobjective
PSO (MOPSO) which keeps a repository of Pareto optimal
points in the search space, and uses one among them as the
gbest vector (gi) in the velocity updating of each particle.
In addition, a mutation operation to avoid the local minima
is used. Mutation is also applied to the system parameters
(such as w, φ1 and φ2 in Eq. (7)), for an extensive explo-
ration.

3.6 Multimodal Functions and Global Optimization

Although PSO is quite robust in escaping the local minima,
there is no guarantee that the swarm will find the global
minimum. Naturally the search becomes harder in multi-
modal objective functions. Parsopulos and Vrahatis [28] in-
troduced a sequential modification to the objective function
in the neighborhood of each local minimum found. The par-
ticles are additionally repelled from these local minima in
order that the swarm will eventually find the global mini-
mum.

3.7 Manipulation of the Search Space

Voss [29] proposed a dual-PSO system, in which two sets of
PSO runs in a localized subspace in D derived by principal
component analysis (PCA) of past pbest and gbest vector
collection, and in D itself. It is based on a heuristics that

a parallel search in a promising subspace can contribute to
an efficient search. In the experiments, improvements in the
search efficiency is reported.

3.8 Optimization in a Dynamic Environment

When the objective function changes dynamically, the PSO
system needs to detect and adapt to the changed environ-
ment. Again, maintenance of diversity in the swarm is con-
sidered to be the key. Hu and Eberhart [30] propose to occa-
sionally re-evaluate the objective function at the gbest found
so far. Upon detecting the change of the objective func-
tion, re-randomization of particle positions and erasing the
pbest information have been proposed for re-triggering ex-
ploration in a wide area.

Blackwell and Branke [31] use the multiswarm which
consists of multiple subswarms designated to converge to
different local extrema. Diversity among the subswarms
is maintained by exclusion which re-initializes a subswarm
converged at an extremum already taken by another sub-
swarm, and anti-convergence which re-initializes one of the
subswarms when there are no more exploratory subswarms.
Further, the diversity within the subswarm is maintained by
a modeled Coulomb repulsion among particles to prevent
the convergence of the subswarms. Also, as previously men-
tioned, the dynamic version of SPSO (DSPSO) by Parrot
and Li [23] also successfully tracks multiple moving optima.

4. Towards Applications to Large-Scale Optimization
Problems

4.1 Improving Exploration and Exploitation

Although numerous early works report PSO’s high effi-
ciency in finding a near-optimal solution in small-scale
problems (n ≈ 30 or less), PSO does suffer from the curse
of dimensionality in large-scale problems as in other opti-
mization methods employing parallel search [32]. The issue
here is how to balance exploration in the vast search space
and exploitation at the proximity of promising regions, us-
ing a limited number of particles. Most of the genetic oper-
ations reviewed in Sec. 3.3 contribute to exploration which
enforces a divide-and-conquer strategy in some way.

Division of the swarm into subswarms, or the multi-
swarm approach [31] are among such approaches. In Dy-
namic Multi-Swarm PSO (DMSPSO) by Liang and Sug-
anthan [33], random re-definition of small-sized (3-5 parti-
cles) neighborhood occurs, thereby forcing exchange of in-
formation among the particles. Recently, the modified DM-
SPSO with exploitation by Quasi-Newton method by Zhao
et al. [34]. achieved comparable to better results to other op-
timization algorithms in the large-scale optimization compe-
tition held at the CEC2008 conference.

As an example of other additional exploitation features,
Maeda [35] introduces PSO with local search using simulta-
neous perturbation. The method is reported to outperform
PSO with constriction in convergence efficiency for several
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problems.
As another approach of task division, Van den Bergh

and Engelbrecht [36] introduced Cooperative PSO (CPSO)
which divides the swarm to multiple subswarms assigned to
searches in particular low-dimensional subspaces. The com-
munication among the subswarms are achieved by sharing
the best-achieving components upon evaluating the objec-
tive function.

4.2 Parallel Implementation

As the problem scale grows, increasing the number of par-
ticles will certainly improve the chance of finding a good
solution. Several authors have pursued parallel implementa-
tion of PSO.

Schutte et al. [37] implemented PSO in parallel by di-
viding the swarm population to processor nodes. In their
setup, only the evaluation of the objective function f was
done in parallel in a synchronized manner. Experimental re-
sults using a cluster computer up to 32 nodes showed good
scalability provided that objective functions require near-
identical computational costs for evaluation.

Li and Wada [38] also assigned a subswarm to each
processor node running in parallel. In order to solve the
bottleneck for speed up in exchanging information between
the nodes, they proposed the delayed exchange scheduling
which can omit global synchronization. It is reported that,
by this improvement, an improved scalability was achieved
in a PC cluster.

In McNabb et al. [39], PSO was coded on a parallel
computing framework called MapReduce, and was evalu-
ated using a cluster with max. 128 nodes. Similar scalabil-
ity as former works were observed up to a certain number
of nodes. However, using more nodes, it is reported that im-
plementation and communication overheads dominated and
hindered further improvements.

5. Conclusion

This paper reviewed the progress of research on Particle
Swarm Optimization (PSO). It is obvious that only a tiny
portion of the literature could be referred to, and application
papers had to be totally omitted. Research on PSO, to im-
prove its performance, to modify it for various objectives,
and to apply it to various problems, is so divergent (an ex-
plosion, so to say). Over 1600 articles can be found in IEEE
publications alone (http://ieeexplore.ieee.org), over 450 ar-
ticles are found in CiNii database which reflects research ac-
tivity in Japan (http://ci.nii.ac.jp/en), and more than 177000
web pages in relation with PSO exist throughout the world,
according to Google (http://www.google.com). These num-
bers reflect the ever-increasing interest of researchers and
engineers in PSO.
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