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Abstract. It is well known that in the dynamics of a piecewise strictly monotone (that is,
piecewise embedding) map f on an interval, the topological entropy can be expressed in
terms of the growth of the number (that is, the lap number) of strictly monotone intervals
for f n. Recently, there has been an increase in the importance of fractal sets in the sciences,
and many geometric and dynamical properties of fractal sets have been studied. In the
present paper, we shall study topological entropy of some maps on regular curves, which
are contained in the class of fractal sets. We generalize the theorem of Misiurewicz–Szlenk
and Young to the cases of regular curves and dendrites.

1. Introduction
Recently, there has been an increase in the importance of fractal sets in the sciences and
many geometric and dynamical properties of fractal sets have been studied. In the present
paper, we shall study topological entropy of some maps on regular curves, which are
contained in the class of fractal sets.

In [11], Seidler proved that the topological entropy of every homeomorphism on a
regular curve is zero. In [3], Efremova and Makhrova proved that the topological entropy
of every onto monotone map on a dendrite which satisfies some special condition is zero.
In [5], we investigated the topological entropy of confluent maps on regular curves. As a
corollary, the topological entropy of every onto monotone map on any regular curve is zero.
In [6], we evaluated the topological entropy of general maps f on regular curves X in terms
of the growth of the number of components of f −n(x) (x ∈ X). It is well known that in
the dynamics of a piecewise strictly monotone (that is, piecewise embedding) map f on an
interval, the topological entropy can be expressed in terms of the growth of the number (that
is, the lap number) of strictly monotone intervals for f n (see Misiurewicz and Szlenk [8]
and Young [13], and also see [7, Theorem 7.1]). In this paper, we generalize the theorem
of Misiurewicz–Szlenk and Young [8, 13] to the cases of regular curves and dendrites.

All spaces considered in this paper are assumed to be separable metric spaces. Maps are
continuous functions. For a space X, let Comp(X) be the set of all components of X.
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By a compactum X we mean a compact metric space. A continuum is a non-empty
connected compactum. For a set A, |A| denotes the cardinality of the set A. A map
f : X → Y of compacta is an embedding map if f : X → f (X) is a homeomorphism.
A map f : X → Y of compacta is monotone if for each y ∈ f (X), f −1(y) is connected.
It is well known that if f : X → Y is a monotone map, then f −1(C) is also a continuum
for any subcontinuum C of f (X).

A continuum X is a regular continuum (that is, regular curve) if for each x ∈ X

and each open neighborhood V of x in X, there is an open neighborhood U of x in X

such that U ⊂ V and the boundary set Bd(U) of U is a finite set. Clearly, each regular
curve is a Peano curve (that is, one-dimensional locally connected continuum). For each
p ∈ X, we define the cardinal number lsX(p) of p as follows: lsX(p) ≤ α (α is a cardinal
number) if and only if for any neighborhood V of p there is a neighborhood U ⊂ V of p

in X such that |Comp(U − {p})| ≤ α, and lsX(p) = α if and only if lsX(p) ≤ α and the
inequality lsX(p) ≤ β for β < α does not hold. We define ls(X) < ∞ if lsX(p) < ∞ for
each p ∈ X.

A continuum X is a dendrite (that is, one-dimensional compact absolute retract (AR))
if X is a locally connected continuum which contains no simple closed curve. It is well
known that each local dendrite (that is, one-dimensional compact absolute neighborhood
retract (ANR)) is a regular curve. Note that each graph (that is, one-dimensional finite
polyhedron) is a local dendrite. There are many regular curves which are not local
dendrites. Many fractal sets (see [2, 4]) are regular curves which are not local dendrites.
For example, the Sierpinski triangle S is a well-known regular curve with lsS(p) ≤ 2 for
each p ∈ S. The Menger universal curve and the Sierpinski carpet are not regular curves.

Let X be a regular continuum. A finite closed covering A of a regular curve X is
a regular partition of X provided that if A,A′ ∈ A and A �= A′, then Int(A) �= φ,
A∩A′ = Bd(A)∩Bd(A′), and Bd(A) is a finite set. We can easily see that if X is a regular
curve and ε > 0, then there is a regular partition A of X such that mesh A < ε, that is,
diam A < ε for each A ∈ A.

Let A be a regular partition of X. Moreover, A is called a strongly regular partition if
lsX(a) < ∞ for each a ∈ ⋃{Bd(A)| A ∈ A}.

Let X be a regular curve and A a regular partition of X. A map f : X → X is
a piecewise embedding map with respect to A if the restriction f |A : A → X is an
embedding (that is, injective) map for each A ∈ A. A map f : X → X is a piecewise
monotone map with respect to A if the restriction f |A : A → f (A) is a monotone map
for each A ∈ A.

2. Topological entropy and piecewise embedding maps on regular curves

Let f : X → X be a map of a compactum X and let K ⊂ X be a closed subset of X.
We define the topological entropy h(f,K) of f with respect to K as follows (see [1, 7, 12]).
Let n be a natural number and ε > 0. A subset F of K is an (n, ε)-spanning set for f with
respect to K if for each x ∈ K , there is y ∈ F such that

max{d(f i(x), f i(y))| 0 ≤ i ≤ n − 1 } < ε.
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A subset E of K is an (n, ε)-separated set for f with respect to K if for each x, y ∈ E

with x �= y, there is 0 ≤ j ≤ n − 1 such that

d(f j (x), f j (y)) > ε.

Let rn(ε,K) be the smallest cardinality of all (n, ε)-spanning sets for f with respect to K .
Also, let sn(ε,K) be the maximal cardinality of all (n, ε)-separated sets for f with respect
to K . Put

r(ε,K) = lim sup
n→∞

(1/n) log rn(ε,K)

and

s(ε,K) = lim sup
n→∞

(1/n) log sn(ε,K).

Also, put

h(f,K) = lim
ε→0

r(ε,K).

Then it is well known that h(f,K) = limε→0 s(ε,K). Finally, put

h(f ) = h(f,X).

It is well known that h(f ) is equal to the topological entropy which was defined by Adler
et al. (see [1]).

The following theorem of Misiurewicz–Szlenk and Young is well known (see [8, 13]
and [7, Theorem 7.1]).

THEOREM 2.1. (Misiurewicz–Szlenk [8] and Young [13]) If f : I = [0, 1] → I is a
piecewise embedding map (i.e. there is a finite sequence c1, c2, . . . , ck of I such that
c0 = 0 < c1 < c2 < · · · < ck = 1, each restriction f |[ci, ci+1] : [ci, ci+1] → I

is an embedding (that is, strictly monotone) map and each ci (i = 1, 2, . . . , k − 1) is a
turning point of f ), then

h(f ) = lim
n→∞(1/n) log l(f n),

where l(f n) denotes the lap number of f n.

Let f : X → X be a map of a regular curve X and let A = {A1, A2, . . . , Am} be a
regular partition of X. For each n ≥ 0, consider the itinerary set It(f, n;A) for f and n

defined by

It(f, n;A) =
{
(x0, x1, . . . , xn−1)

∣∣∣∣ xi ∈ {1, 2, . . . ,m} and
n−1⋂
i=0

f −i (Int(Axi )) �= φ

}
.

Put I (f, n;A) = |It(f, n;A)|. Note that I (f, n + m;A) ≤ I (f, n;A) · I (f,m;A).
Hence, we see that the limit limn→∞(1/n) log I (f, n;A) exists (see [12, Theorem 4.9,
p. 87]). Note that if f : I → I is a piecewise embedding map of the unit interval I as in
Theorem 2.1, then l(f n−1) = I (f, n;A), where A = {[ci, ci+1] |i = 0, 1, . . . , k − 1}.

First, we generalize the theorem of Misiurewicz–Szlenk and Young to the case of
piecewise embedding maps with respect to strongly regular partitions of regular curves.
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THEOREM 2.2. Let X be a regular curve. If a map f : X → X is a piecewise embedding
map with respect to a strongly regular partition A of X, then

h(f ) = lim
n→∞(1/n) log I (f, n;A).

We need the following Bowen’s result (see [7, Theorem 7.1]).

PROPOSITION 2.3. (Bowen) Let X and Y be compacta, and let f : X → X, g : Y → Y

be maps. If π : X → Y is an onto map such that π · f = g · π , then

h(g) ≤ h(f ) ≤ h(g) + sup
y∈Y

h(f, π−1(y)).

LEMMA 2.4. Let f : X → X be a map of a regular curve X and let C be a subcontinuum
of X such that f n|C : C → f n(C) is a monotone map for each n ≥ 1. Then h(f,C) = 0.

Proof. Let ε > 0 and n a natural number. Since X is a regular curve, we can choose a
regular partition Aε of X with mesh Aε < ε. Recall that Aε is a finite closed cover of X

such that if A,A′ ∈ Aε and A �= A′, then Int(A) �= φ, A ∩ A′ = Bd(A) ∩ Bd(A′), Bd(A)

is a finite set, and diam A < ε. Put

Bε =
⋃

{Bd(A)| A ∈ Aε}.
Let Lε = |Bε | < ∞. Suppose that Bε ∩ f i(C) �= φ for some 0 ≤ i ≤ n − 1. Note that for
each b ∈ Bε ∩ f i(C), f −i (b) ∩ C = (f i |C)−1(b) is connected. If f −i (b) ∩ C contains
no element of Bε , we choose a point c = c(b, i) ∈ f −i (b) ∩ C. If f −i (b) ∩ C contains an
element of Bε , we choose a point c = c(b, i) ∈ Bε ∩ f −i (b) ∩ C. Consider the set

F = {c(b, i)|b ∈ Bε ∩ f i(C), 0 ≤ i ≤ n − 1}.
If F = φ, then {c} is an (n, ε)-spanning set for f with respect to C for any point c ∈ C.
We may assume that F �= φ. Note that |F | ≤ n · Lε . By the proof of [6, Theorem 2.1],
we see that F is an (n, ε)-spanning set for f with respect to C. Hence, we see that
h(f,C) = 0.

COROLLARY 2.5. Let f : X → X be a map of a regular curve X. If C is a subcontinuum
of X such that f n|C : C → X is an embedding map for each n ≥ 1, then h(f,C) = 0.

The following proposition is well known as the boundary bumping theorem in
continuum theory.

PROPOSITION 2.6. [9, p. 75] Let X be a continuum and U a non-empty open set of X.
If D is a component of U , then D ∩ Bd(U) �= φ.

Proof of Theorem 2.2. Let A = {Ai | i = 1, 2, . . . ,m}. Put

B =
⋃

{Bd(A) | A ∈ A}.
First, we consider the following set:

∑
(f,A) =

{
(xi)

∞
i=0

∣∣∣∣Axi ∈ A and
n⋂

i=0

f −i (Int(Axi )) �= φ for all n = 0, 1, 2, . . .

}
.
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Then we see that
∑

(f,A) is a closed subset of the Cantor set {1, 2, . . . ,m}N , where
N = {1, 2, 3, . . . }. Put

∑
X

(f,A) =
{
(x, (xi)

∞
i=0) ∈ X ×

∑
(f,A)

∣∣∣∣ x ∈
∞⋂

n=0

n⋂
i=0

f −i (Int(Axi ))

}
.

Then we show that
∑

X(f,A) is a closed subset of the compact set X × ∑
(f,A).

Suppose that (xj , (x
j

i )∞i=0) ∈ ∑
X(f,A) (j = 1, 2, . . . ) and limj→∞(xj , (x

j

i )∞i=0) =
(x, (xi)

∞
i=0) ∈ X × ∑

(f,A). Let n be an arbitrary natural number. Then there is j0 such

that if j ≥ j0, then xj ∈ ⋂n
i=0 f −i (Int(Axi )). Hence, we see that x ∈ ⋂n

i=0 f −i (Int(Axi )).
This implies that (x, (xi)

∞
i=0) ∈ ∑

X(f,A). Hence,
∑

X(f,A) is a closed subset of
X × ∑

(f,A).
Note that if (x, (xi)

∞
i=0) ∈ ∑

X(f,A), then (f (x), (xi+1)
∞
i=0) ∈ ∑

X(f,A). Define
maps σ1 : ∑

X(f,A) → ∑
X(f,A), σ2 : ∑

(f,A) → ∑
(f,A) by

σ1(x, (xi)
∞
i=0) = (f (x), (xi+1)

∞
i=0) and σ2((xi)

∞
i=0) = (xi+1)

∞
i=0.

Then we have the following commutative diagram∑
(f,A)

σ2−−−−→ ∑
(f,A)

π2


 
π2

∑
X(f,A)

σ1−−−−→ ∑
X(f,A)

π1

� �π1

X
f−−−−→ X

where π1 and π2 are the natural projections. Since f is a piecewise embedding map with
respect to A and B is a finite set, we see that π1 is surjective.

We will show that if x ∈ X, then

|π−1
1 (x)| ≤ max{lsX(a) | a ∈ B}.

Let x ∈ X and (x, (xi)
∞
i=0) ∈ ∑

X(f,A). If f i(x) ∈ Int(Axi ) for each i ≥ 0, then
π−1

1 (x) = {(x, (xi)
∞
i=0)} and hence |π−1

1 (x)| = 1. Otherwise, there is a natural number
i0 ≥ 0 such that f i0(x) ∈ B and f i(x) ∈ Int(Axi ) for 0 ≤ i < i0. By induction, we choose
the sequence (Ci)

∞
i=i0

of subcontinua of X such that φ �= Ci − Bd(Axi ) ⊂ Int(Axi ), Ci0 is

the component of Axi0
containing f i0(x), and for each i ≥ i0 + 1, Ci is the component of

f (Ci−1) ∩ Axi containing f i(x). Note that lsCi0
(f i0(x)) ≤ lsX(f i0(x)) ≤ max{lsX(a) |

a ∈ B} and lsCi (f
i(x)) ≥ lsCi+1(f

i+1(x)) for i ≥ i0.
Suppose that for some i1 > i0 and A ∈ A with A �= Axi1

,

x ∈
i1−1⋂
j=0

f −j (Int(Axj )) ∩ f −i1(Int(A)).

Then f i1(x) ∈ Bd(Axi1
) and f (Ci1−1) contains a point of Int(A). Then we see that

lsCi1
(f i1(x)) < lsCi1−1(f

i1−1(x)). By continuing this procedure, we see that

|π−1
1 (x)| ≤ max{lsX(a) | a ∈ B},
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which implies that h(σ1, π
−1
1 (x)) = 0 for each x ∈ X. Then h(f ) = h(σ1)

(see Proposition 2.3).
Next, we show that h(σ2, π

−1
2 ((xi)

∞
i=0)) = 0 for each (xi)

∞
i=0 ∈ ∑

(f,A). Note that

π−1
2 ((xi)

∞
i=0) =

∞⋂
n=0

n⋂
i=0

f −i (Int(Axi )).

We will show that ∣∣∣∣Comp

(n−1⋂
i=0

f −i (Int(Axi ))

)∣∣∣∣ ≤ n · |B|,

where B = ⋃{Bd(A)| A ∈ A}. Define a function

u : Comp

(n−1⋂
i=0

f −i (Int(Axi ))

)
→ {0, 1, 2, . . . , n − 1} × B

by u(C) = (i, y), where i and y satisfy the following condition: f i(C) ∩ B �= φ and
y ∈ f i(C) ∩ B. Clearly, we see that u is injective. Hence,

∣∣∣∣Comp

(n−1⋂
i=0

f −i (Int(Axi ))

)∣∣∣∣ ≤ n · |B|.

Let ε > 0 and Aε/2 be a regular partition of X with meshAε/2 < ε/2. By the proof
of Lemma 2.4, we see that there is an (n, ε/2)-spanning set F for f with respect to⋂n−1

i=0 f −i (Int(Axi )) such that |F | ≤ (n · L′) · (n · |B|), where

L′ =
∣∣∣∣
⋃

{Bd(A′) | A′ ∈ Aε/2}
∣∣∣∣.

Hence, we see that if E is any (n, ε)-separating set for f with respect to⋂∞
n=0

⋂n−1
i=0 f −i (Int(Axi )) such that E ⊂ ⋂∞

n=0
⋂n−1

i=0 f −i (Int(Axi )), we can choose a
function T : E → F such that

d(f i(x), f i(T (x))) <

(
1

2

)
ε

for x ∈ E and each i = 0, 1, . . . , n − 1. Then T : E → F is one-to-one and, hence,

|E| ≤ |F | ≤ n2 · L′ · |B|.
By using this fact, we see that h(σ1, π

−1
2 ((xi)

∞
i=0)) = 0. Then h(σ2) = h(σ1). Since f is

a piecewise embedding map with respect to A and B is a finite set, we see that

I (f, n;A) =
∣∣∣∣
{
(xi)

n−1
i=0

∣∣∣∣ (xi)
∞
i=0 ∈

∑
(f,A)

}∣∣∣∣.
By [10, Theorem 1.9(a), p. 340], we know that

h(σ2) = lim sup
n→∞

(1/n) log I (f, n;A) = lim
n→∞(1/n) log I (f, n;A).

Consequently, we conclude that

h(f ) = lim
n→∞(1/n) log I (f, n;A).

This completes the proof. �
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By the proof of Theorem 2.2, we have the following.

THEOREM 2.7. Let X be a regular curve. If a map f : X → X is a piecewise embedding
map with respect to a regular partition A of X, then

h(f ) ≤ lim
n→∞(1/n) log I (f, n;A).

Let f : X → X be a piecewise embedding map of a regular curve X with respect to
a regular partition A = {A1, A2, . . . , Am} of X. Note that m = |A|. Define a m × m

matrix Mf = (a ij) by the following: aij = 1 if f (Int(Ai)) ⊃ Int(Aj ), and aij = 0
otherwise. Also, define an m × m matrix Nf = (bij ) by the following: bij = 1 if
f (Int(Ai)) ∩ Int(Aj ) �= φ, and bij = 0 otherwise. Let λ(Mf ) be the real eigenvalue
of Mf such that λ(Mf ) ≥ |λ| for all the other eigenvalue λ of Mf . Then we have the
following corollary (see [10, Theorem 1.9(b), p. 340]).

COROLLARY 2.8. Let X be a regular curve. If a map f : X → X is a piecewise
embedding map with respect to a strongly regular partition A of X, then

λ(Mf ) ≤ h(f ) ≤ λ(Nf ).

Example 1. (1) The assertions of Theorems 2.2 and 2.7 are not true for piecewise
embedding maps on Peano curves. Let X = µ1 be the Menger universal curve. We can
choose a homeomorphism f : X → X such that h(f ) �= 0 (see [5, Examples (2)]).
Then f is also a piecewise embedding map with respect to A = {X} and

h(f ) > 0 = lim
n→∞(1/n) log I (f, n;A).

(2) There is a piecewise embedding map f : X → X of a regular curve X with respect to
a regular partition A of X such that

h(f ) < lim
n→∞(1/n) log I (f, n;A).

In the plane R2, let p = (0, 0) ∈ R2. Take two sequences {an}∞n=1 and {bn}∞n=1 of points
of R2 such that limn→∞ an = p = limn→∞ bn, where p, an and bn(n = 1, 2, . . . ) are
distinct points of R2. Let p q be the segment from p to a point q in R2. We assume that
the sets p an and p bn (n = 1, 2, . . . ) have the only one common point p ∈ R2. Put

X =
∞⋃

n=1

p an ∪
∞⋃

n=1

p bn.

Note that lsX(p) = χ0. Let A0 = ⋃∞
n=1 p an and A1 = ⋃∞

n=1 p bn. Then A = {A0, A1}
is a regular partition of the dendrite X. Take bijections g0 : {an | n = 1, 2, . . . } →
{an, bn | n = 1, 2, . . . } and g1 : {bn | n = 1, 2, . . . } → {an, bn | n = 1, 2, . . . }.
Define a surjective function g : {an, bn | n = 1, 2, . . . } → {an, bn | n = 1, 2, . . . } by
g|{an | n = 1, 2, . . . } = g0 and g|{bn | n = 1, 2, . . . } = g1. Define a map f : X → X by

f ((1 − t)p + ty) = (1 − t)p + t ((1/2)p + (1/2)g(y)),

where y ∈ {an, bn | n = 1, 2, . . . }. Note that I (f, n;A) = 2n and
⋂∞

n=0 f n(X) = {p}.
Then f is a piecewise embedding map with respect to the regular partition A such that

h(f ) = 0 < log 2 = lim
n→∞(1/n) log I (f, n;A).
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Note that A is not a strongly regular partition of X. Hence, the assertion of Theorem 2.2 is
not true for piecewise embedding maps with respect to regular partitions of regular curves.

(3) Moreover, there is a homeomorphism f : X → X of a dendrite X such that

h(f ) < lim
n→∞(1/n) log I (f, n;A)

for some regular partition A of X. Let p, an, bn (n = 1, 2, . . . ), X and A be the same as
in (2). Put H0 = {an| n = 1, 2, . . . } and H1 = {bn | n = 1, 2, . . . }. Let K be any subset of
H0 ∪ H1 = {an, bn | n = 1, 2, . . . } such that K ∩ H0 and K ∩ H1 are (countable) infinite
sets. Let (x1, x2, . . . , xm) ∈ {0, 1}m (m ≥ 2). Take infinite subsets Gi (i = 1, . . . ,m) of K

such that Gi (i = 1, . . . ,m) are mutually disjoint, Gi ⊂ Hxi and K−⋃m
i=1 Gi is an infinite

set. Take a bijection g(x1,x2,...,xn) : K → K such that g(x1,x2,...,xn)(Gi) = Gi+1 for each
i = 1, 2, . . . ,m−1 and g(x1,x2,...,xn)

(
K −⋃m−1

i=1 Gi

) = K −⋃m
i=2 Gi . Put H0 = ⋃∞

i=1 Hi
0

and H1 = ⋃∞
i=1 Hi

1, where Hi
0 (i = 1, 2, . . . ) and Hi

1 (i = 1, 2, . . . ) are mutually disjoint

infinite sets. Put Kj = H
j

0 ∪ H
j

1 . Since F = {(x1, x2, . . . , xm) ∈ {0, 1}m | m = 2, 3, . . . }
is a countable set, we can put F = {sj | j = 1, 2, 3, . . . }. For each sj = (x1, x2, . . . , xm),
we obtain a bijection gsj = g(x1,x2,...,xm) : Kj → Kj as above. Define a bijection
g : H0 ∪H1 → H0 ∪H1 by g|Kj = gsj . Finally, we define a homeomorphism f : X → X

such that f (p) = p, f (q) = g(q) for q ∈ H0 ∪ H1 and f |p q : p q → p g(q) (q ∈
H0 ∪ H1) is the natural homeomorphism. Note that I (f, n;A) = 2n. Then f : X → X is
a homeomorphism of the dendrite X such that

h(f ) = 0 < log 2 = lim
n→∞(1/n) log I (f, n;A).

3. Topological entropy and piecewise monotone maps on dendrites
In this section, we generalize the theorem of Misiurewicz–Szlenk and Young to the case
of piecewise monotone maps with respect to strongly regular partitions of dendrites.
Let f : X → X be a map and x ∈ X. Then x is non-wandering if for each neighborhood
U of x in X, there exists n ≥ 1 such that f n(U) ∩ U �= φ. 	(f ) is the set of all
points which are non-wandering. It is well known that 	(f ) is a closed subset of X,
f (	(f )) ⊂ 	(f ) and h(f ) = h(f |	(f )) (see [10, Theorem 1.4, p. 336]). Recall the
following notation. For a map f : X → X of a regular curve X and a regular partition
A = {Ai | i = 1, 2, . . . ,m} of X, we put

∑
(f,A) =

{
(xi)

∞
i=0

∣∣∣∣Axi ∈ A and
n⋂

i=0

f −i (Int(Axi )) �= φ for all n = 0, 1, 2, . . .

}
.

Also, let σ(f,A) = σ2 : ∑
(f,A) → ∑

(f,A) be the shift map defined by
σ(f,A)((xi)

∞
i=0) = (xi+1)

∞
i=0.

Then we have the following theorem.

THEOREM 3.1. Let X be a dendrite. If a map f : X → X is a piecewise monotone map
with respect to a strongly regular partition A of X, then

h(f ) = h(σ(f,A)).

We need the following simple lemma. For completeness, we give the proof.
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LEMMA 3.2. Let X,Y and Z be dendrites and let f : X → f (X) ⊂ Y and g : Y →
g(Y ) ⊂ Z be monotone maps. If C is a subcontinuum of X, then g · f |C : C → g · f (C)

is also a monotone map and lsC(p) ≥ lsf (C)(f (p)) for each p ∈ C.

Proof. Note that if C′ and C′′ are subcontinua of the dendrite X and C′ ∩ C′′ �= φ, then
C′ ∩ C′′ is also a continuum. Hence, we see that f |C : C → f (C) and g|f (C) : f (C) →
g·f (C) are onto monotone maps. Then we see that the composition g·f |C : C → g·f (C)

is also a monotone map.
Suppose, on the contrary, that lsC(p) < lsf (C)(f (p)) for some p ∈ C. Then we

can choose a component D of C − {p} such that f (D) intersects to two components
E1, E2 of f (C) − {f (p)}. Then we see that f −1(f (p)) ∩ C is not connected. This is a
contradiction. �

Proof of Theorem 3.1. The notations are the same as in the proof of Theorem 2.2.
Let A = {Ai | i = 1, 2, . . . ,m}. Put

∑
(f,A) =

{
(xi)

∞
i=0

∣∣∣∣ Axi ∈ A and
n⋂

i=0

f −i (Int(Axi )) �= φ for all n = 0, 1, 2, . . .

}

and

Y =
⋃{ ∞⋂

n=0

( n⋂
i=0

f −i (Int(Axi ))

) ∣∣∣∣ (xi)
∞
i=0 ∈

∑
(f,A)

}
.

We see that Y is a closed subset of X and f (Y ) ⊂ Y . In fact, let {yj }∞j=1 be a

sequence of points of Y such that limj→∞ yj = y ∈ X. We can choose (x
j
i )∞i=0 ∈∑

(f,A) (j = 1, 2, . . . ) such that yj ∈ ⋂∞
n=0(

⋂n
i=0 f −i (Int(A

x
j
i

))). Since
∑

(f,A)

is compact, we may assume that limj→∞(x
j

i )∞i=0 = (xi)
∞
i=0. Then we see that y ∈⋂∞

n=0(
⋂n

i=0 f −i (Int(Axi ))), which implies that Y is a closed subset of X.
Consider the set

∑
Y

(f,A) =
{
(y, (xi)

∞
i=0) ∈ Y ×

∑
(f,A)

∣∣∣∣ y ∈
∞⋂

n=0

n⋂
i=0

f −i (Int(Axi ))

}
.

Then
∑

Y (f,A) is a closed subset of the compact set Y × ∑
(f,A).

Define maps σ1 : ∑
Y (f,A) → ∑

Y (f,A), σ(f,A) : ∑
(f,A) → ∑

(f,A) by

σ1(y, (xi)
∞
i=0) = (f (y), (xi+1)

∞
i=0) and σ(f,A)((xi)

∞
i=0) = (xi+1)

∞
i=0.

Then we have the following commutative diagram:

∑
(f,A)

σ(f,A)−−−−→ ∑
(f,A)

π2




π2

∑
Y (f,A)

σ1−−−−→ ∑
Y (f,A)

π1

�
�π1

Y
f |Y−−−−→ Y
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By Lemma 3.2 and a similar argument to the proof of Theorem 2.2, we see that if
y ∈ Y , then |π−1

1 (y)| ≤ max{lsX(a) | a ∈ B}, which implies that h(σ1, π
−1
1 (y)) = 0

for each y ∈ Y . Then h(f |Y ) = h(σ1) (see Proposition 2.3). Also, we see that
h(σ(f,A)) = h(σ1). Let x ∈ X − Y . Since B is a finite set and x is not contained in Y ,
we see that there is a neighborhood U of x in X such that for some m ≥ 1, f m(U) is a
point of B. If x ∈ 	(f ) − Y , then x is a periodic point of f and x is an isolated point
of 	(f ). Hence h(f |Y ) = h(f |	(f )) = h(f ). Consequently, we conclude that

h(f ) = h(f |Y ) = h(σ(f,A)) ≤ lim
n→∞(1/n) log I (f, n;A).

This completes the proof. �

THEOREM 3.3. Let X be a dendrite. If a map f : X → X is a piecewise monotone map
with respect to a regular partition A of X, then

h(f ) ≤ h(σ(f,A)) ≤ lim
n→∞(1/n) log I (f, n;A).

Then we have the following corollary.

COROLLARY 3.4. Let X be a dendrite. If a map f : X → X is a piecewise monotone
map with respect to a strongly regular partition A of X, then

λ(Mf ) ≤ h(f ) ≤ λ(Nf ).

If X is a regular curve with ls(X) < ∞, then each regular partition is a strongly regular
partition. Hence, we have the following.

COROLLARY 3.5. Let X be a regular curve with ls(X) < ∞. If a map f : X → X is a
piecewise embedding map with respect to a regular partition A of X, then

h(f ) = lim
n→∞(1/n) log I (f, n;A).

COROLLARY 3.6. Let X be a dendrite with ls(X) < ∞. If a map f : X → X is a
piecewise monotone map with respect to a regular partition A of X, then

h(f ) = h(σ(f,A)) ≤ lim
n→∞(1/n) log I (f, n;A).

Now, we have a slight generalization of the theorem of Misiurewicz–Szlenk [8] and
Young [13].

COROLLARY 3.7. If a map f : I → I of an interval I is a piecewise monotone map with
respect to a regular partition A of I , then

h(f ) = h(σ(f,A)) ≤ lim
n→∞(1/n) log I (f, n;A).

Example 2. Since the composition of onto monotone maps is also monotone, we see that
for an onto monotone map f : X → X of a continuum X, f n : X → X is also
monotone for each n ≥ 1. However, it is easy to see that there is a map f : X → X

such that X is a regular curve, f is not onto, f : X → f (X) is monotone and
f 2 : X → f 2(X) is not monotone. In fact, let A = [0, 4] be the closed interval of
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the real line R and let Pi (i = 1, 2, 3) be arcs such that P1 ∩ A = ∂P1 = {0, 1} and
Pi∩A = ∂Pi = P2∩P3 = {2, 3} (i = 2, 3). Also, let Sj (j = 1, 2) be simple closed curves
such that S1 ∩S2 = {4}. We assume that P1 ∩Pj+1 = φ = Sj ∩ (P1 ∪P2 ∪P3) (j = 1, 2).
Put X = A ∪ ⋃3

i=1 Pi ∪ ⋃2
j=1 Sj . Let f : X → X be a map satisfying the following

conditions (1)–(3):
(1) f |P1 : P1 → f (P1) = P2, f |[0, 1] : [0, 1] → f ([0, 1]) = [2, 3], and

f |[1, 2] : [1, 2] → f ([1, 2]) = [3, 4] are the natural homeomorphisms;
(2) f (P3 ∪ [3, 4] ∪ ⋃2

j=1 Sj ) = {4}, f (P2) = S1, f ([2, 3]) = S2; and
(3) f |P2 − ∂P2 : P2 − ∂P2 → S1 − {4} and f |(2, 3) : (2, 3) → S2 − {4} are

homeomorphisms.
Then we see that f : X → f (X) is a desired monotone map on the graph X.

Finally, we have the following problems.

Problem 3.8. In the statement of Theorem 3.1, is the following equality true?

h(σ(f,A)) = lim
n→∞(1/n) log I (f, n;A).

Problem 3.9. Let X be a regular curve. Is it true that if a map f : X → X is
a piecewise monotone map with respect to a strongly regular partition A of X, then
h(f ) = limn→∞(1/n) log I (f, n;A)?
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