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Abstract
We represent the convergence rates of the Riemann sums and the
trapezoidal sums with respect to regular divisions and optimal divi-
sions of a bounded closed interval to the Riemann integrals as some
limits of their expanded error terms.

1 Introduction

The Riemann sums and the trapezoidal sums of functions defined on a
bounded closed interval are well known as approximate sums of the Rie-
mann integrals of the functions. In this paper the author represents the
convergence rates of the Riemann sums and the trapezoidal sums as some
limits of their expanded error terms.

Let [a,b] be a bounded closed interval. We take an n-division A of [a, b]
defined by

Ara=s59<5<--<58,1<s,=b.

We denote by D, the division of [a, b] defined by s; = a+i(b—a)/n and call
it the regular n-division. For a function f defined on [a,b] and 5,1 < & <'s;
we define the Riemann sum R(f;A,¢;) by

n

R(f;A,&) =Y (si — si-1) f(&)-

i=1
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The width d(A) of A is defined as d(A) = max{s; — ;-1 | 1 <i <n}. The
Riemann integral of f is defined as

b
| f@)de = lim R(F:AE)

and textbooks on calculus usually show that this limit exists for a continuous
function f. In this paper we consider some limits of expanded error terms
like

2

n [ e - Bra&)|, | [ e - RO

as n — 00. Chui [1] obtained such a limit of an expanded error term.

Theorem 1.1 (Chui) If f is twice differentiable and f” is bound and almost
everywhere continuous on [a,b], then

lim n? {/abf(x)dx - R (f, D, ;(Si—l + 82))}

(b—a)*

_ (b—a)2 g _ ! !
_ T/af(x)dx o) = f(a)).

In [1] the above theorem is formulated for the interval [0, 1].

We consider not only regular divisions D,, but also optimal divisions for
lower Riemann sums and trapezoidal sums, so we explain about optimal
divisions. We take a continuous function f defined on [a, b]. For any division
A of [a,b] we take s;_1 < & < s; which satisfies f(§;) = [min | f and define

S8i—1,5%

the lower Riemann sum
R(f; A,min) = R(f; A, &).
The set of all n-divisions of [a, b] is compact and
A — R(f; A, min)

is continuous, so there exists an n-division A% at which the above function
attains its maximum. This n-division A# is optimal for the lower Riemann
sum R(f;A,min). It may not be unique, but the sum R(f; A# min) is
unique. Thus we can consider R(f; A% min). One of the main theorems of
this paper is as follows:



Theorem 1.2 If f is a function of class C* defined on [a,b], then

T}Lrgon{/(lbf(x)dx— R(f; A% mln}: (/ |f' (z 1/2dx>.

The trapezoidal sum T'(f; A) of f is defined as
i 1
T(f;A) =3 (si — Si—l)g(f(si—ﬂ + f(si))-
i=1
We can obtain the limit of the expanded error term of the trapezoidal sum
as follows:

Theorem 1.3 If f is twice differentiable and f" is bound and almost every-
where continuous on [a,b], then

mnﬁ{/U<Mm—(fD>}

n—oo
// ( B a)2

() - f(a)).

We consider an optlmal d1V1Slon for the trapezoidal sum.

[ fwyie =15

A —

is continuous, so there exists an n-division A!# at which the above function
attains its minimum. This n-division A% is optimal for the trapezoidal sum

[ fwyde =T a8)

T(f;A). It may not be unique, but is unique. Thus
we can consider it.

Theorem 1.4 If f is a function of class C* defined on |a,b] which satisfies

f">0o0r f" <0, then
12 (/ |f// 1/3d$> )

In the case where f(z) = 2% on [—1, 1], if we take any division A of [—1,1] all

of whose points are symmetric at 0, then A satisfies / flx)dx=T(f;A) =0,
-1

lim n
n—oo

[ payde — (0| =

0

however its trapezoidal sum on [—1,0] may not be close to / f(z)dz. So
-1

we only consider the case where f” > 0 or f” <0.
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2 'Trapezoidal sums for regular divisions

In this section we treat regular divisions of intervals and prove Theorem 1.3.
We can prove it in a way similar to that of Chui [1]. First we assume that
[a,b] = [0,1]. For each positive integer n we define a function v,, defined by
the following graph.

This is a function of bounded variation which satisfies

1 1 1
5 < () < 5 v,(0) = v, (1) 5

The Riemann-Stieltjes integral of f with respect to v, is given by

() /01 F(#)dvn (1) = kilf (i) _ n/ol £Vt
Thus we get )
:L/Olf(t)dvn(t) — iéf (i) —/Olf(t)dt
= T D)+ 5 (1) = J0) = [ S

Since f is Riemann integrable and v,, is of bounded variation, we have

[ @ty = [Faelh— [ vt
1

= G =50 - [t
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and
T(5:0) ~ [ f0t =~ [Condf) =~ [ Pyl
We define .
un(2) = [ ety

which satisfies

un(O):un<k>:O (k=1,...,n)

n

and is periodic with period 1/n. From the above results we have

w2 {155 0,) — [ sy

n

= n/olun( “( dt—nZ/(k/n [ (t)dt

:nz/l/n ( k;1>f”<t+k—>dt
1

_ Z/l/nnun f”<t+>dt
_ Z/ w, )f”(erk_l)dx
_ / g":lf,,<x+k—1>dx

For 0 < 2 <1 we have

(5)= [ (G =5
Uy | — | = - —n = )
n 0 2 2n

In particular u,(1/2n) = 1/8n. We define a function w by

;(:B—ﬁ) 0<z<1).

w(z) =

Then we get




Using w we obtain

1 1 T\ r+k—1
Hrtro) - [ rwdrf = [u () r d
w {10, - [ 0 ()2 (7
N N Sy |
= - d
IR, ( ) ) :
! —1
= [w@r(f;D, T )dm
0 n
Therefore we obtain
! ! k-1
lim n? {T(f;Dn) -/ f(t)dt} — tim [ w()R <f“;Dn,“n> dr
1 _
= / w(z) lim R (f”;Dn, a:—i—k:l) dx
0 n—o0 n
1 1
— / w(z) / F(t)dtd
0 0
1 ! " 1 !/ !
= 5 | o= S - o),
which completes the proof of Theorem 1.3 in the case where [a,b] = [0, 1].

We can get the general statement of the theorem by the variable change
r=a+ (b—alt.
3 Lower Riemann sums for optimal divisions

We prove Theorem 1.2 in this section. We need the following lemma obtained
by Gleason [2] and Lemma 3.2 in order to consider the lower Riemann sums
for optimal divisions.

Lemma 3.1 (Gleason) Let ¢(t) be a nonnegative continuous function de-
fined on [a,b]. For any positive integer n there exists a division of [a,b]:

a=8<8 < " <S_1<S,=2b

such that all of



are equal to each other. We denote by J, the equal value. Then we obtain

b
lim nJ, —/ o(t)dt.

n—oo

Lemma 3.2 For any function of class C* defined on [a,b] we have

[ faxde = 0 aymin 5(0) < 50— o pax | F @)

The estimate in this lemma is well known, so we omit its proof.

Proof of Theorem 1.2 We first prove the following inequality.

limsupn(/bf(x)dx—R(f;Af,mm)_ </ |f'(x 1/2dx> )

We apply Lemma 3.1 to the function |f’(x)|'/?

S1, 82, ..., Sp—1 of [a,b] such that all of

and obtain a division AY :

(si — si-1) Jnax, [f(@)? (1<i<n)

Si—1,5¢
are equal to each other. We denote by J, the equal value. Then we obtain
b
lim nJ, :/ |f ()Y ?d.
By the estimate of Lemma 3.2 we have

/ab f(z)dx — R(f; Ay, min)
- i (/:_1 f(z)dx — (s; — 5,_1) min f(@)

i=1 [si—1,5i]

IA

L3 (50— 500 max [£/(2)] = D%

=1 [si—1,si] 2

Thus we obtain

limsupn (/ab f(z)dx — R(f; A#,min))

n—o0

(
b
< limsupn (/ f(z)dx — R(f; Ay, min)

. n? 2 1 1/2
< hmsup?Jn §1Lm (nJ,) /|f de | .



In order to complete the proof of Theorem 1.2 we have to estimate

(/ f(a)dz — R(f; AF mm))

from below. We prepare the following lemmas for this purpose.

Lemma 3.3 Under the assumption of Theorem 1.2, we define wy by

wi(r) = sup{[ [f'(@)[ = [F' W | z,y € [a,0], [x —y| <7}

Then wy is a continuous function defined on [0,b — a] which is monotone
increasing and satisfies lirr(l)wl(r) =0. If f'(z) # 0 in a subinterval [p,q| of

la,b], then for any & in [p,q] we have the following inequality.

[ f@yds = (a = pmin £(z) = 50 = 9?17 ©)
< ;wl(q -p)la—p)”

By the use of the mean value theorem we can prove this lemma.

Lemma 3.4 Under the assumption of Theorem 1.2, for any ¢ > 0 there
exists a positive integer N such that for any n > N and any n-division A of
[a, b] we have the following inequality.

n</abf<x)dx—R(f;A,mm>_ (/ f(x de) —e

Proof For the proof of the lemma, we show the following statement: For
any 0 > 0 there exists a positive integer r such that for any n-division A of
la, b] we have the following inequality.

(n+r)1/2 </ab f(j;)dx — R(f;A,mm) > 21/2/ |f md:v (b—a).

Since the function x +— x'/2 is uniformly continuous on [0, 00), there exists

61 > 0 such that for any x and y in [0, 00) if |z —y| < &; then |z/2 —y'/2| < 6.



We take a subinterval [p, q] of [a, b] and suppose that f'(x) # 0 in [p,q]. We
can use Lemma 3.3 and get

/pq f(z)dr — (q —p) r@’iql]lf(ﬂc)
(¢ —p)?

7@ < e )

for any £ in [p, ¢]. Because of continuity of w; and w(0) = 0, there exists
n > 0 such that 0 < z < 5 implies wy(2)/2 < §;. Thus ¢ — p < n implies
w1(q — p)/2 < ;. Therefore we have

(/pq f(x)dz — (g —p) ﬁ%ﬂ%}?f(x))lm

q—7p

L,
B 21/2\f ©1"? <,

that is,

. 1/2
‘(/p f(x)dw—(q—p)r[g’iqﬁlf(xv —211/2|f’<€)|1/2(q—p) < (g —p).

Since f is uniformly continuous on [a, b], for the above § > 0 there exists
B > 0 such that |x —y| < 3 implies |f'(x) — f'(y)| < 6% We denote by Z(f’)
the zero set of f’:
Z(f') ={x € [a,0] | f'(x) =0}
and define the S-neighborhood Z(f’)s of Z(f’) by

Z(f)p={y €la,b] | Fr € Z(f) | —y| < B}

Then for any y in Z(f')s we have |f'(y)| < 6 and f’ is not equal to 0 on the
complement of Z(f")s. By the definition of Z(f')s we can see that Z(f')s is
a disjoint union of finitely many intervals. We denote by r; the number of all
endpoints of the intervals constructing Z(f’)s. For n > 0 obtained above we
take a positive integer o satisfying (b — a)/ry < n and set r = ry 4+ ro. For
any n-division A of [a,b] we can add at most 5 points to A such that the
width of each subinterval is less than or equal to . Moreover we add all the
endpoints of the intervals constructing Z(f’)s and denote the new division
by
A:sg=a,s,...,s =Db.
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By the definition of A" we have t < n +r and s; — s;_1 < 7. Each interval
[si—1, si] satisfies [s;_1,s;] C Z(f")g or [si—1,si] C [a,b] — Z(f")s. In both
cases, according to the first mean value theorem for integration we can take
s in [s;_1, s;] satisfying

[ 7@ = P ).

In the case where [s;_1,s;] C Z(f")s

holds. In the case where [s;_1,s;] C [a,b] — Z(f")s, [’ is not equal to 0 in
[si-1, 8i], thus

21/2\f ()" (si — si-1)

N 1/2
< (/81 f(z)dz — (s; — s;—1) min f($)> +0(s; — si—1).

[si—1,5:]

Finally the same inequality holds in both cases. We add the above inequali-
ties for i = 1,...,t and get

stz || P @) s Zzwu<ﬂW@—&4>

< Z </si1 f(z)dx — (s; — s;—1) min f(x))l/Q +d6(b—a). (x)

i=1 [si-1,8:]
We apply the Cauchy-Schwarz inequality to the first term of () and get
t

Z(/ f(x)dz — (s; — s;-1) min f(@)l/z

[Siflwgi}

t ) 1/2
/2 (Z (/_ x)dr — (s; — 8i-1) [s{nigz] fla )))
b 1/2
= /2 (/ f(z)dx — R(f; A’,min)> .

IN
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From these we have
I b 1/2
W/ |f' ()2 de < ¢112 (/ flx)dr — R(f; A’,min)) +6(b—a).
The inequality
b
/ f(z)dx — R(f; A, min </ z)dr — R(f; A, min),

the estimate obtained above and t < n + r imply
1/2

gtz || @ dr =60 ) < (n )7 (/ (o) — RUfA mm)> |

Using the result obtained above, we prove Lemma 3.4. Since the function
x — 22 is continuous, for any € > 0 there exists £ > 0 such that if

1 b
7 | 1 @) e 2 <€

</ |f'(x 1/2dx> —x2§§.

So we take § > 0 which satisfies §(b — a) < £. We can apply the result
obtained above and get a positive integer r such that for any n-division A of
[a, b]

then we have

& > 0(b—a)
> 1 i 1/2 1/2 b AL mi 2
= W/a |f'(x)|“dr — (n +7) /af(x)dx—R(f, , min) ,

which implies

‘> (/ I 1/2dx> () (Lbf(x)dx—R(f;A,min)>-

We can substitute the optimal division A% for A in the above inequality and

get
(n+7) (/abf(x)dm — R(f; A¥,min ) > (/b |f’(:v)|”2d93>2 -5

11



Since

ﬂg@?@m—<fﬁnmﬁza

we can choose a positive integer N such that for n > N

0§7’</abf(:p)dx— R(f; A¥ mm)) <

holds. Thus for n > N we have
b
n </ f(z)dx — R(f; Af,min))
> (n+r) (/bf(x)dx — R(f; Af,mm)> €

> </ e de) e

Therefore for any n-division A of [a, b] we have
n(/bf(x)dx—R(f;A,min)> > (/ f(x)dx — R(f; A" rnm))
(@)~

which completes the proof of Lemma 3.4.

DO ™

v

Proof of Theorem 1.2 We have already proved

2
lim sup 2 (/bf(w)dw - R(f; Aﬁmin)) < ; </b |f’(m)|1/2dx>

and by Lemma 3.4 we can see that

</ |f/(x UZdz) <lir{rli£fn</abf(x)dx— R(f; A¥ m1n)>

Therefore the limit of the left-hand side stated in the theorem exists and the
equation holds.
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4 Trapezoidal sums for optimal divisions

We prove Theorem 1.4 in this section. We need Lemmas 3.1 and 4.1 in order
to consider the trapezoidal sums for optimal divisions.

Lemma 4.1 For any function f of class C? defined on [a,b] we have

(b= 0] ().

[ s = (@) + 16)0 - o) < -

By the use of the mean value theorem we can prove this lemma.

Proof of Theorem 1.4 We first prove the following inequality for any
function f of class C? defined on [a, b].
I ’
< — " 1/3 )
__H(Lifun m)

We apply Lemma 3.1 to the function |f”(z)|'/® and obtain a division A :
S1, 82, ..., 8p—1 Of |a,b] such that all of

limsup n

n—oo

[ sade = T(ss )

(51 = si-1) max, @) (1<i<n)
Si—1,5¢

are equal to each other. We denote by J, the equal value. Then we obtain

b

Jim n, = [ (@) da.
By the estimate of Lemma 4.1 we have
b

/fmw—ﬂﬁMn
< Z

1 n
32 — i)’ max{|f"(z)| | i1 <@ <55} = ﬁin

Fl)de = S(F(si0) + (50 (si = s10)

IN
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Thus we obtain

lim sup n?

n—oo

[ sz - (5 A7)

[ fydr — (5 8%

< limsupn?

n—oo

n? 1 1 [ b .\
< limsup —J? = — lim (nJ,)* = D (/a \f”(x)\”%x) :

In order to complete the proof of Theorem 1.4 we have to estimate

n2

[ F@yde —T(7;2%)

from below. We prepare the following lemmas for this purpose.

Lemma 4.2 Let f be a function of class C? defined on [a,b]. We define wo
by

wa(r) = sup{[ |/"(z)| = [f"W)I| | z,y € [a,0], |[x —y| <7}
Then ws is a continuous function defined on [0,b — a] which is monotone
increasing and satisfies lir% wo(r) =0. If f"(z) >0 or f"(x) <0 in a subin-

terval [p, q] of [a,b], then for any & in [p,q] we have the following inequality.

[ f@ydz = 5(50) + F@)a = )| - 75la =PI (©)

1

< —wlq—p)(g—p)

3
12 '

By the use of the mean value theorem we can prove this lemma.
Lemma 4.3 Under the assumption of Theorem 1.4, for any ¢ > 0 there
exists a positive integer N such that for any n > N and any n-division A of

[a, b] we have the following inequality.

n2

[ s - 15 A)\ > L ( A |f"<a:>|1/3da:) —e
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Proof For the proof of the lemma, we show the following statement: For
any 0 > 0 there exists a positive integer r such that for any n-division A of
[a, b] we have the following inequality.

1/3

b 1 b
()| [ f@yde = T(18)| 2 i [ 17/@)de = 56— a)

Since the function x +— x'/? is uniformly continuous on [0, 00), there exists

61 > 0 such that for any x and y in [0, 00) if |z —y| < &; then |z!/3 —y'/3| < 6.
We take a subinterval [p, ¢] of [a,b]. We can use Lemma 4.2 and get

[ #@)iz = 5(0@) + F@)a )
(¢ —p)?®

1 1
~ SO < T5ena—p)

for any & in [p,q|. Because of continuity of wy and wy(0) = 0, there exists
n > 0 such that 0 < z < 7 implies wy(2)/12 < 6;. Thus ¢ — p < n implies
wa(q — p)/12 < §;. Therefore we have

1/3

[ #@)iz = 5(56) + F@)a - »)

q—7p

O <3,

1 "
- 121/3 |f

that is,

1/3 1

= @1 a = p)| < (g —p).

[ $@yiz = 556) + F@)a - p)

For n > 0 obtained above we take a positive integer r satisfying (b—a)/r <.
For any n-division A of [a,b] we can add at most r points to A such that
the width of each subinterval is less than or equal to n. We denote the new
division by

A:sg=a,s,...,s =0b.
we have t < n+r. According to the first mean value theorem for integration
we can take s} in [s;_1, s;] satisfying

/:i |f”<$>|1/3dx = |f”(3§)|l/3(3i — 5i1)-

15



By the estimate obtained above we get

1
ol D1 = i)

1/3
<

—+ 6(81 — Si—l)-

/:l f(z)dr — ;(f(si—l) + f(s:))(si — si—1)

i—1

We add the above inequalities for ¢ = 1,...,¢ and get

]' b 1 ! ]' / /
i | @ = 3 P s si)

=12
t
<y
i=1

1/3

+3d(b—a). (*x)

[ s = 550 + Fs) s = s

We apply the Hélder inequality to the first term of (x*) and get

t
2
=1

/:1 f(z)dz — ;(f(si—l) + f(s:))(si — si-1)

S t2/3 (i:

=1

1/3

/S flz)dz — ;(f (sic1) + f(s:)) (s — si-1)

>1/3

1/3
23

[ Fyde (5.

From these we have

1/3

1 b
W/ " ()P de < 31 +6(b—a).

[ Fyde (5.2

The inequality

/ab f(x)de — T(f; A)

<

[ sy —1(5;)

the estimate obtained above and t < n + r imply

Y

L ' 1/3
W/ |f"(x)|Y3de — 6(b—a) < (n+7)%3

[ F@yde— (s )
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Using the result obtained above, we prove Lemma 4.3. Since the function

x +— o2 is continuous, for any € > 0 there exists ¢ > 0 such that if

1 b
§> o | 17/ @] e~

// 1/3 .3
2—12(/|f dm) v

So we take § > 0 which satisfies 6(b — a) < £. We can apply the result
obtained above and get a positive integer r such that for any n-division A of

[, 0]

then we have

1/3

)

E>d0(b—a)> 21/3/ | (2) |3 dx — (n 4 )3

[ Fwydr —T(7;)

which implies

> 35 ([ @) - e

We can substitute the optimal division A for A in the above inequality

and get
1 (b ’
> T " 1/3 -
> - (/a £ (@) dx)

[ f@yiz — (55 08) =

we can choose a positive integer N such that for n > N

[ s = 7).

DO ™

(0412 | [ fldde — T(f;A%)

Since

lim sup(2nr + r?)

n—oo

b
0 < (2nr +1?) /a flz)dz —T(f; ATF)| <

< £
2
holds. Thus for n > N we have

2

n > (n+71)?

[ f@yiz =58 -

> 1 b " 1/3d ’
> ([ 1) -

17

[ Fye - (5 8)




Therefore for any n-division A of [a, b] we have

n2

[ f@ye =T a)

> 1 b " 1/3d ’
> 5 ([rerea) -

which completes the proof of Lemma 4.3.

[ fojas = r5:8)| = w2

Proof of Theorem 1.4 We can combine the inequality

< 1 b " 1/3d ’
<5 ([ 1)

and Lemma 4.3 and see the assertion of the theorem.

lim sup n?

n—oo

[ fyiz - (5 8)
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