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RESTRICTED ENERGY INEQUALITIES AND
NUMERICAL APPROXIMATIONS
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Introduction

Let {4,B;} be linear partial differential operators. Let Q(< R") be a
bounded domain with smooth boundary I'. Our boundary value problem is to
find ue L*(Q) satisfying

) {Au =f inQ,

Bu=yf onTl (jelJ)
for given data {f,f;}. We are particularly interested in a method of numerical
approximation of solutions of (P).

The problem (P) is closely connected with its adjoint problem (P~). The
adjoint problem is to find v e L?(Q) satisfying
(P*) {A*v:g in Q

Biv=g; onl (jeJ)

for given data {g,g;}.

Recently, it has become clear that a solution ue L*(Q) of (P) can be
constructed numerically, assuming an energy inequality

(E™) lloll = C(IIA*UH +> <3’%fvlr>y,> (ve HY(Q))

jeJx

Here we have two questions:

(1) In case when L?-solutions of (P) are not unique, how can we characterize
the solution, obtained in [1]?

(2) In case when LZ-solutions of (P*) are not unique, (E*) can not be
satisfied. Is there any numerical method to approach to one of solutions
of (P)?
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In this paper, in stead of (E*), we assume a restricted energy inequality:
(¢5) ol < Cll4™0|| (ve M*,Biolr =0 (jeJ)),
where M* is a subspace in H?(Q2) defined in §1. Then we will see that the
method in [1] is applicable. Moreover, we will see that the solution obtained by
our method is unique in a subspace 7 in L}(Q).

§1. Restricted Energy Inequalities

Let

A= a(x)e)

vism

A

be a differential operator with smooth coefficients defined in a neighborhood of
Q. Let

B = ijv(x)a; (jelJ,J={0,1,....m—1})
M=

be differential operators with smooth coefficients defined in a neighborhood of T.
We assume that I' is non-characteristic for {4, B; (j€J)}. Namely,

Z ay(x)n(x)" #0 on T,

|v|=m
> by(x)n(x)" #0 on T,
=/

where n(x) is a unit inner normal at x(eI).
Set

JUT={0,1,....m—-1}, JNJ=¢, J'={jlm—-1~jeJ},
By =(d/dn)’ (jeJ°).
Then we can define
Bi= Bu(x)d (je{0,1,...,m—1}),
Y

for which I' is non-characteristic, such that the following Green’s Theorem
holds.
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LemMA 1.1 (Green’s Theorem). Suppose that u, Aue L*(Q), then it holds
that

d/am) ulr> gmirys < Clull + | Aul))  (k=0,1,...,m~1)

and
(Au,v) = (u, A°0) = = > (Bjulr, By vl
jedJ
~ Y Bl Bl (e HPTNQ)),
jedJ*
where
A= 5 (-a)'aly), & =) (=08,
[lsm LY
NOTATIONS.
(1) (u,v) = (u, U)LZ(Q): llul| = ||”||1,2(Q)a

2y A=(1- A)'7%, where A is the Laplace-Beltrami operator on [,

(3) <u, 035 = (U,0) yorry = (Nu, A70) 2y, dg = |lttl| oy for wu,v e H(IT)
(g: real),

4) ue Ho(T'): H'(I') 2 v+~ (u,vp e C (0> 0).

Lemma 1.1 is well known for ue H™(Q). See Appendix of [3] in case when
u, Au e L*(Q).
REMARK. Set
Pu={Au,Bul|r (jeJ)}, Qu={u,—Bm1-julr (€T},
Po={A"0,%Blr (jeJ)}, Qov={v,%, vl (je Ni,
then the problem (P) denotes Pu = {f, f; (j€J)} and the problem (P*) denotes
P*v={g,g; (jeJ*)}, and Green’s Theorem is stated as follows.
GREEN’S THEOREM. Suppose that u, Au e L*(QY), then it holds that
(d/dn) ule> 4 s S Clull + [l 4ul) (K =0,1,....m=1)
and

[Pu, Q0] = [Qu, P"v],  (ve H'(Q)),
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where .

[F,Gl=(f,9)+>_{f9> for F={f.f; (je))} and G={g,9; (je )},

jeJ

[F,GL. = (f,9)+ > g for F={ff; (jeJ)} and G={g,9; (j€J")}.

jeJ*

NuLL SPACES. Set
K={¢el’(Q)|Pp=0}, K'={gel*(Q)|P'¢=0}.
Owing to Green’s Theorem, we have
K ={$eL(Q)|[04 P, =0 (Yoe H ' (Q))},
K*={$peL*(Q)|[Pu, Q"¢ =0 (Vue H" '(Q))}.
Therefore, K and K* are closed subspaces in L?(Q). Set
K ={feLl*Q)|(f.4)=0 (¥peK)},
K ={fel*(Q)|(f,¢)=0 (Ve K")}.
We assume
(A-I) there exists an integer p(= 2m — 1) such that
K, K* « H?(Q)

throughout this paper.
We define

M* =K NHYQ)={feHI(Q)|(f,4) =0 (VpeK")}

for an integer g (m < ¢ < p). Then M* is a closed subspace in H9(Q). Let
ue H4(Q), then there exist ¢ € K* and £ e M* such that

u=¢+& and |ul|® = |g]” + €)1*.
We say that restricted energy inequality (£*) holds, if it holds
(&%) llvl] < C<||A*vn +y <%;vir>#j) (ve M),
jeJ*

where y; =q—1/2 - j.
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We say that restricted energy inequality (&;) holds, if it holds
(65) foll = Cla™vl| (ve M*, Bivlp =0 (jelT")).
Since {B; (j=0,1,...,m—1)} and {# (j=0,1,...,m~ 1)} are Dirichlet sets,
we have ([4])

Lemma 1.2. Let s Z m.
i) Let fie H7'/*() (j=0,1,...,m—1), then there exists Ue H*Q)
such that

BU|r=/f (j=0,1,....m=1), U, £C > ey

je{0. 1 m=1}
ii) Let gje HV2 () (j=0,1,...,m—1), then there exists V e H*(Q)

such that

‘%f V‘l'zgj (j:O,I,...,ﬂl—* 1)1 HV!hé C Z <gj>S—l/2—j‘
je{0Tm=1}

Lemma 1.3. (&%) holds iff (&) holds.

ProOF. Suppose that (&;) holds. Let ve M*(c H4(Q)).
(1) Set
g=A've H"(Q), ¢ =% vlre H'2(T) (je*),

Then there exists V € HY(Q) such that

B V|p=g (JeJ), VI, = CZ {Gi2q-1)2-;
jeJ*

from (ii) of Lemma 1.2 (s = g).
(2) Set w=v—V, then we H4(Q) satisfies

{A*w:g—A*V,
!,’Z”j*w[rzﬂ (j=J%).

Since we H7(Q), there exist ¢ € K* and £e M* such that
w=g+g, vl =lel” + gl

Therefore & € M* satisfies
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{A*ﬁ =g-—A*YV,
B =0 (jeT)

Since (&;) holds, we have

ISl = Cll4*¢ll = Cllg— 4" V|| = C'(Ilgll +3 <gj>q-1/2-j)~

jeJ*

(3) In the same way, since ¥ € H9(Q), there exist Y € K* and 7€ M" such
that

V=gt VI =0+
Hence we have
v=w+V=0+y)+C+n), ¢+yek’, S+neM’.
Since ve M*, we have
v=~¢47.

Hence we have

loll = €1 + 1wl = el + 11V = C(Ilgll + <gj>q—l/2—j>' 0

jeJr

We assume
(AID) (&)
throughout this paper. Then we can define a Hilbert space # as the closure of
M* by the norm [ ):

(o) = | 4"0]* + ) <Bolrdr .

jeJ*

Inner product of s# is defined by

(w,v] = (4*w, 4*v) + ZJ <@j*wlr,%j*v|r>ﬂj.
jel

For a fixed f € L*(Q), define
f:H#s3v— (v,f)eC
then f is a continuous linear functional on . In fact, it holds

[ DTl = CLAA (ve #)
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from Lemma 1.3. Therefore, owing to Riesz’ Theorem in 4, there exists w € J#
such that
(fiv) =[w,v] (ve ),

where we say that we 4 is a Riesz function of f (e L*(Q)).

§2. Existence and Uniqueness

THEOREM 2.1.  Assume (A-1) and (A-11). Suppose that f € K*-. Let w e # be
a Riesz function of f. Set u= A*we L*(Q), then u satisfies

(Po) {Au:f in Q,
° Bulp=0 (jeJ),
and

By julpr = _A2ﬂ/93j*w|r (jeJ).
Proor. (1) Since w e # satisfy
Uo0) = (A0 A°0) + 3B ulr Aol (06 ),
u=A*w satisfies
(fyv) = (u, A%v) = ZJ (%’j*wlr,.%fulr)ﬂi (vesf)...... D.
jel*
(2) Moreover, we have
(fy0) = (u,A*v) = XJ; (B wlr, #vlr>, (ve HIQ))...... OF
jel*

In fact, let v € H9(Q). Then there exist ¢ € K* and £ e M* such that v = ¢ + ¢
Since £ e M* = #, we have from (D

(f18) = (u, A7) =Y (B wir, BIEIrD,,
jeJ*

We remark that ¢ satisfies

A'¢=0, Hdr=0 (jeJ7),
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and (f,¢) =0. Hence we have
(fs0) = (u, 470) = D LB wir, Bvlr Dy,
jeJ*
(3) From (D', we have
(fiv) = (u, 470) =0 (ve 2'(Q)).

which means

Au=f in 2'(Q).

Therefore we have

(Au,v) = (u, A7) = > < Bwlp, B vlpd,, (e HIQ))...... D"

jet
(4) Owing to Green’s Theorem, we have

(Au,v) = (u,470) = =Y (Butlp, By _olr>

jed
=) (Bl B vy (ve HHQ)) ... Q.
jeJ*

Hence, from (D" and (), we have

> <A, B eIy, = =D <Byule, By ol

jeld* jelJ

N Z CBi-1-julr A vlr>  (ve HY(Q), ¢’ =max(g,2m - 1)),
jelJr

which means
Bj”‘r =0 (] € J)v Bﬂ'*l—ju'y = _AZ/Jjggj*w‘I" (] € J*> ]

COROLLARY 2.1. Assume (A-1) and (A-I1). Suppose that {f e L*(Q),
fie H"V2I(T) (je J)} satisfy

(#) 1)+ 5By dlr>=0 (peK™),
jelt
that is,

(#) S}, Q"¢ =0 (deK).
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Let Ue H™Q) satisfy {B;U|r=f; (jeJ)}. Set u=A"w+ U, where w is a
Riesz function of f — AU. Then ue L*(Q) satisfies (P).

ProOF. Since K* < H*"~1(Q), we have
[PU, Q"¢ = [QU, P"¢], =0 (peK"),
owing to Green’s Theorem. Namely, we have
{AU,BUIr (jeN}{d. By 1 j8lr ()N =0 (k)

which means

(AU, §)+ > S By le> =0 (peK*).
jeJ
Set F=f — AU, then we have
(F.g)=(f — AU = (/.0)+ DSB8y ($e K.
jedJ
Therefore, we have F e K**, iff {f, f;} satisfies (£).
Now we apply Theorem 2.1, then there exists v = A*w e L?(Q) satisfying
Av=F, Bup|r=0 (jel),
where w is a Riesz function of F. Hence u=v+ Ue L*(Q) is a solution of
(P). ; |
Now we define a subspace t in L*(Q):
T= {ue L*(Q) | Aue LX(Q), (u,8) + D (By-iilp, Byt -, =0 (Vhe K)}.
jed*
We remark that KNt = {0}, because v e KNt satisfies

(u, u) + Z <Bm_]_ju|r, B'n—l-ju|r>—u, =0.
jed*

THEOREM 2.2. Assume (A-l) and (A-11). Suppose that f e K*L. Let w be
a Riesz function of f. Then u = A*w €t and u is a solution of (Py). Moreover, a
solution u of (Py) is unique in .

Proor. (1) From Theorem 2.1, we have
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Qu = {u,—Bp-1-july (j€J")}
= {4*w, N# B wlr (jeJT")},
that is,
Pw= (AW, B}wle (jeT)}
= {u,~A"# Bn_1_julr (jeJ}.
(2) Since w, A*w e L*(Q2), we have, owing to Green’s Theorem,
[P, 0*w] = [0, P'W], (4 H*(Q)).
Since K = H?*""1(Q), we have
(04, P*w], =0 (€ K),
that is,
(4,u) + Z, (Bt j#lps A Bpoijuley =0 (€ K),
JjeJr

which means u € 1.
(3) (Uniqueness) Let u; and u, be solutions of (Pg), belonging to z. Then
u=u ~uy € KNt. Since KNt = {0}, we have u = 0. O

Finally, we consider a method to construct a function belonging to X — {0}.

Lemma 2.1. Let Ue H™(Q) satisfy {BiU|.=0 (jeJ)} and U ¢1. Set
¢=A"w+ U, where w is a Riesz function of —AU. Then ¢ K — {0}.

Proor. From Theorem 2.1, we have ¢ = A*w + U € K. On the other hand,
from Theorem 2.2, we have 4*w € 7. Then we have ¢ ¢ 7. In fact, if we suppose
¢ e, then U= ¢— A*we 1, which contradicts to U ¢ 7. The fact ¢ % 0 follows
from ¢ ¢ . O

LEMMA 2.2, Assume that there exists ¢ye K — {0} such that ¢y(x) >0
(x€Q). Let U be a non-negative function satisfying
Ue H"(Q)— {0} and supp|U]E Q,
then U ¢ .
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Proor. We have U ¢ 1, because

(U, ¢) + Z (Bm-1-jUlr, ™Y B 1ol = (U, ) > 0. a
jeJ*

§3. Numerical Approximation

Let us say that {ox (k=1,2,...)} is a basis of #, if any finite subset
of {vx (k=1,2,..)} is linearly independent and the space spanned by
{vp, (k=1,2,...)} is dense in .

The solution u, obtained in §2, can be approximated by the method proposed
in [1], that is,

TueoreM 3.1.  Assume (A-1) and (A-11). Let u= A*w, where w is a Riesz
function of given f e K**. Let {vx (k=1,2,...)} be a basis of #. Set

A*Ul
uy = (fro0), - (Low)TR' L0 s
A*DN
where
(vi,01] -+ [v1,0W]
'y = : :
(ow,1] -+ [vw,0n]
Then

uy —u (N — ) in L*Q).

Proor. (1) (Theory of Fourier Series in ) Let {v{*,v;',...} be Schmidt’s
orthonormalization of {vj,vs,...} in #. For we s, we have

wy = Z [w, 0 vy —w in 3,
1SkEN
that is,

0
wy = ((w,o1),...,[w,oa)TH | ¢ | = w in #,

Un
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where
Ty = (v, 0)); k=1, v
Moreover, since wy — w in 3, we have
uy = A*wy — A*w=u in L}Q).
(2) Especially, since w € # is a Riesz function of f, that is,
[w,v] = (f,v) (veH),
we have
w,or] = (f,o,) (k=1,2,...).

Hence we have

wy = ((Foo) o (Lon) TR 5|
vy
A*v
uy = A*wy = ((f, o), (Foow)TR' | 1 | 0

A*vy
Since the boundary of Q is smooth, we have
Lemma 3.1. Let diam(Q) < an (¢ > 0). Then
{explia™'a-x)|ae Z"}

is a basis of H?(Q).

As is shown easily, we have

Lemma 3.2. Let {vx (k=1,2,...))} be a basis of HI(Q). Set
vk = + & (e K G e M),

then the space spanned by {&, (k=1,2,...)} is dense in #. Therefore, we
can obtain a subset {éj’ (j= I,2,...)}={ékj (j=1,2,...)} such that {fj’
(J=12,...)} is a basis of K.

Let {v] (j=1,2,...)} ={o, (j=1,2,...)} be a subset of {vy (k=1,2,...)},
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corresponding to {éjf (j=12,..0} ={& (=1,2,...)} in Lemma 3.2. Remark
that it holds

([éks fs])k,,‘-:x,z,“.,zv = ([Uk, Us])k,szl,z,,,,vjv»

(A imra. v = (A0 gz 2,

and

yooo

Hence we have

CoroLLARY 3.1. Assume (A-1) and (A-II). Let u= A*w, where w is a
Riesz function of feK**. Let {vx (k=1,2,...)} be a basis of HY(Q). Let
{v; (k=1,2,...)} be a subset of {vx (k =1,2,...)} chosen in the above way. Set

A*v)
uy = ((f>0), (Lo 0 |,
Atvy
where

,,,,,

Then
uy —u (N — o) in L*(Q).

Finally, we consider the approximation of ¢ € K — {0} in Theorem 2.3.

THEOREM 3.2. Assume (A-1) and (A-II). Assume that there exists
do e K — {0} such that ¢y(x) >0 (xe Q). Let U be a non-negative function

satisfying
UeH™Q) - {0} and supp|U] E Q.

Let {vy (k=1,2,...)} be a basis of #. Set

dy=U—((AU,01),...,(AU, oI ¢+ |,

where
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Then
gy — ¢ (N — o) inL*(Q),

and ¢ e K — {0}.
§4. Examples

ExampLe 1. Consider Neumann problem:

—Au=f in Q,
{(d/dn)u =f1 onl,

where Q € (—x,n)". Then K(= K*) is a space spanned by 1.

Lemma 4.1. It holds
(60) lull = CllAu||  (ue M, (d/dn)u|r = 0),
where
M={ueH*(Q)|(u1) =0}
Proor. Let {¢, (k=0,1,...)} be a complete set of eigen-functions, cor-
responding to eigen-values {4, (k=0,1,...)} such that
—A¢y =ty in Q, (d/dn)g, =0 on T,

and (4;,4;) = S, where 0=2g <4 S A <.
Let ue M satisfy

—Au= feL*Q) inQ,
{(d/dn)u =0 onT.

Then, owing to Green’s Theorem, we have

(f i) = (u, 8)  (k=0,1,...).

Therefore, we have f e K+,

u= Z(l/ﬂk)(f, O ) P

k#0

and
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lall® = > 1221 )P £ AP,

k#0

where ¢ = |4]. O

Let 5 be a Hilbert space, defined by the completion of M by the norm [ ]:
| [0 = [|Av]| + {(d/dn)o|>P -
Since {e** (ke Z")} is a basis of H?(Q),

fe** — |l (1) (ke 2" - {0})}

is a basis of #. From Theorem 2.1, Theorem 2.2 and Corollary 3.1, we have

PROPOSITION 4.1. Suppose that f e L*(Q) and (f,1)=0. Let we # be a
Riesz function of f in #. Set u= —Aw, then ue L*(Q) satisfies

—Au=f in Q,
{(d/dn)usO on T

and (u,1) + <ulp, 1)/, = 0. Moreover, set

v = ((faeik.x))[)dk]éNa

Ty = ((¢*, " Vo n.0<si N

= (|k|*|s|>(e™~, &%) + (k- m)(s - 'l)<€ik'x|raeis'x|r>1/2)o<|k|§N,o<|s|§Nv

Vi = (8" Yo gn = (k12" )ocpsns

and
uy = fnTy' V,

then it holds

uy —u (N— o) in L}Q).

ExampLE 2. Consider Dirichlet problem:

(mA—=lou=f inQ,
{u:fo onl,

where Q @ (—=,n)" and 1, is the least eigen-value for the eigen-value problem:
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{——Au =Au in Q,
u=20 onT.
Then, K(= K*) is a space spanned by ¢, where ¢, is an eigen-function cor-
responding to the eigen-value Ag.
LEmMmA 4.2. It holds
(¢0) lull = Cll(-A = Ao)ull (e M,ulr=0),
where M = {ue H*(Q) | (u,¢,) = 0}.
Proor. Let {¢; (k=0,1,...)} be a complete set of eigen-functions, cor-
responding to eigen-values {4 (k=0,1,...)} such that
_‘A¢k = Ak¢k in Q, ¢1( =0 on T,

and (¢, ¢y) = O, where 0 < Ag< Ay € <.
Let u e M satisfy

{(—A —do)u=fel}Q) inQ,

u=20 onT.

Then, owing to Green’s Theorem, we have

(f ) = (e — 20) (. 4)  (k=0,1,...).

Therefore, we have f e K+,

w=3 (= 4)" (fs )b

k#0

and

el = > (e = 20)2I(f, )1 = 2N 1117,

k#0

where ¢ = |4 — Aol O

Let 5 be a Hilbert space, defined by the completion of M by the norm [ ]:
(1 = (=& = Z0)o* + <elrdi oy o
Since {e** (ke Z™)} is a basis of H*(Q),
{&k(x) = "% — (%%, ¢y)gy (k€ Z™)}
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is a basis of #, we have from Theorem 2.1, Theorem 2.2 and Corollary 3.1, we

have

PROPOSITION 4.2.  Suppose that f e L*(Q) and (f,¢,) = 0. Let we # be a
Riesz function of [ in #. Set u= (=A — do)w, then ue L*(Q) satisfies

{(—A——Ao)u=f in Q,
u=20 on I’

and (u,¢o) + {(d/dn)ulr, (d/dn)dy|r>_1-1j2 = 0. Moreover, set
S = (/" Npens
Ty = (("% " Diyen.nen
= ((k]* = Z0)(Is* = Ao) (€™, ™) + <™, €™ 11 2) i v, <o
Vi=((-A~- io)é’fk'x)\klélv = ((Jk|* - io)eik"")|k1§N»
and
uy = "fnIy' Vu,

then it holds
uy —u (N — ) in L}Q).
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