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A MASCHKE TYPE THEOREM FOR HOPF
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Abstract. Let H be a Hopf n-coalgebra and let A be a right group
H-comodule algebra with a total integral ¢. In this article we
will find some sufficient conditions under which an epimorphism of
(H, A)-Hopf n-comodule splits if it splits 4-linearly. As an application,
we obtain a characterization for an {H,A4)-Hopf n-comodule to be
projective as an 4-module, generalizing the one of the Maschke type
theorem found in [D2].

1. Introduction

Let H be a Hopf algebra over a commutative ring R and A4 a right H-
comodule algebra. Doi ({D2] under review) gave some sufficient conditions under
which an epimorphism of (H,A)-Hopf module splits if it splits A-linearly. As
an application in the case when R is a field, he got that an (H, 4)-Hopf module
is finitely generated projective as an A-module if and only if it is a Hopf module
direct summand of M ® A for some finite dimensional H-comodule M.

In [Tur] Turaev introduced, for a group =, the notion of a Hopf n-coalgebra,
which can induce a z-category, i.e., group-category, and showed that such a
category gives rise to a three-dimensional homotopy quantum field theory with
target space K (=, 1). Virelizier [Virl] studied some algebraic properties of Hopf 7-
coalgebras; the results are then applied in [Vir2] to construct Hennings-like (see
[KR]) and Kuperberg-like (see [Ku)) invariants of principal z-bundles over link
complements and over 3-manifolds.

Now, it is natural to ask whether there exists a Maschke type theorem in the
generalized context of Hopf m-coalgebras. This question motivates the present
research.

In this paper we will give a positive answer to the above question.
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Let H be a Hopf n-coalgebra and let 4 be a right group H-comodule algebra
with a total integral ¢. In this article we will give some sufficient conditions under
which an epimorphism of (H, 4)-Hopf n-comodule splits if it splits 4-linearly, by
modifying Doi’s proof in our generalized context. As an application, we obtain a
characterization for an (H, A4)-Hopf n-comodule to be projective as an 4-module,
generalizing the one of the Maschke type theorem found in [D2].

2. Preliminaries and Basic Definitions

Throughout this paper, R denotes a commutative ring. We will work over R.
We always let 7 be a discrete group with a neutral element 1, and let ® denote
®pg- If U and V are R-modules, Ty, y: U@V — V& U will denote the flip
map defined by Ty y(u®v) =v®u for any ue U and ve V.

Similar to [Virl], A n-coalgebra is a family of R-modules C = {C,},.,
together with a family of R-linear maps A = {A, 3 : Cop — Co ® Cp}, 4, (called
a comultiplication) and an R-linear map ¢: C; — R (called a counit), such that A
is coassociative in the sense that, for any o,f,y e,

(Aup @ idc,)Aupy = (idc, ® g y) D py, (2.1)
and for all «,f e 7,

(l.d(jﬂr ® E)Aa'l = l'dcz = (6 ® idC’)Alya. (2.2)

REMARK. (Ci,A)1,¢) is an ordinery coalgebra in the usual sense of the word
(cf. [Sw] or [Mon)]).

Following the Sweedler’s notation for Hopf n-coalgebras introduced in [Virl],
we have that, for any a,fen and c e Cy,

Ay p(€) = cli,0) ® cap) € Co @ Cp.

The coassociativity axiom (2.1) gives that, for any o,f,yen and c e Cu,,

c,up(la) @ Capep @ .y = Ca @ Cpp @ Cpy2 (2.3)

which is written as c( 4 ® ¢2,p) ® ¢3,5)- Inductively, we can define c(1 ) ®
C2.0) @ - @ Cn, o,y fOr any c € Cypay.og,-

A rn-grouplike element of a n-coalgebra C is a family of elements x =
(X)yen € [1acn Ca such that A, g(x.g) = x, ® xp for all o,fen and &(x;) =1 (or
equivalently x; # 0). Note that x; is then an ordinary grouplike element of the
coalgebra C.
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Given a n-coalgebra C. A right 7 — C-comodule is a family M = {M,},., of
R-modules endowed with a family p¥ = {pfﬁ t My — My ® Cp}, pe, of R-linear
maps (the structure maps) such that for any «,f,y e,

(P ® idc,)pyy , = (idu, ® Apy)pls, (2.4)

and for any o e,
(idp, ® e)pl| = id,. (2.5)

Similarly, we use the Sweedler’s notation for coactions, for any «,f € n and
me My,

pfﬁ(m) = M.q) ® M1 p € My ® Cp.
Axiom (2.4) gives that, for any o, .y €n and m e My,

M0, 0.2 @ M0, 3 (1. & M(15) = M(0.2) @ M1y py @ M1 pyyayyy (2.6)

which is written as m o) ® m) g ® m(a,,). By iterating the procedure, we define
inductively m(g ) @ M(1,5) ® - - @ My 5,) fOr any m e Myyy,..4,-

REMARK. M; endowed with the structure map p;; is an ordinery right
comodule over the coalgebra C; (cf. [Sw] or {Mon]).

A m-comodule map between two right 7= — C-comodules M and N is a
family f = {f,: My, — N,},., of right R-module maps such that p;"fﬁj;/;:
(fx®idc,)pty for all a,fen.

In a similar way, we can define the notion of a left 7 — C-comodule and the
concept of a n — (C, C)-bicomodule.

The category of right 7 — C-comodules is denoted by .#" ¢ and their
morphisms are n-comodule maps. Similarly, we can introduce the categories
"=Cjt of left = — C-comodules, and the category "~C#™ ¢ of m — C-bicomodules.
For Me™S#, we will use the Sweedler’s notation, for any «,fen and
me Mg,

Mpaz./i(’n) =M-1.2) @My p € C; @ My.

Similar to [Tur] or [Virl], a Hopf n-coalgebra is a n-coalgebra H =
({H,},A e) together with a family S={S,: H, — H,:}
(called an antipode) such that

of R-linear maps

xem

each H, is an R-algebra with multiplication m, and unit element 1,, (2.7)
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for all a,femn, A,p and ¢: Hy — R are algebra maps, (2.8)
for any a e 7, my(Sy1 @ idy,)Ay-1 o = ela = my(idy, @ Sy-1)Byo1- (2.9)

Let H = ({Hy,my, 1y, },A, e, S) be a Hopf z-coalgebra. Then we have

(@) Sy1(hg) = Sp-1(g)S,-1(h) for any aen and h,g € Hy;

(b) Sy-1(14-1) = 1, for any aem;

(©) ApaS,ipt = Thy By (Sat ® Sg-1)A -1 g1 for any a,fen;

(d) eS; =e.

Note that (Hi,my, l;,A11,¢,S1) is an ordinery Hopf algebra (cf. [Sw| or
[Mon]) and that the notion of a Hopf n-coalgebra is not self-dual.

Let H be a Hopf n-coalgebra and M = {M,},., a right = — H-comodule
with structure maps p = {p, g}, pe,- The coinvariants of H on M are the
elements of the R-module

Mo = {m = (My)yen € HM“ | o p(Map) = my ® 1y for all o, fe n}.

LET

For any a e 7, let M be the image of the canonical projection of this set onto
M,. Similar to [Virl, Example 2.1], M®# = {MH},. ., is a right z-subcomodule
of M, called a m-subcomodule of coinvariants.

xeETR

DeriNrrioN 2.1, Let H = ({H,,my,1,,A,¢}) be a Hopf n-coalgebra and
let A={A4,,my 1,},., be a family of R-algebras. 4 is called a right = — H-
comodule algebra if there is a family p4 = {p;fﬂ : Aup — Ao,@Hﬁ}a‘/}E” of R-
linear maps such that

(4,p?) is a right = — C-comodule, (2.10)
p:ﬁ(ab) = a(oya)b(o’a) ® a(l’ﬂ)b(l,/;), for all Ot,ﬁ en and a,be Aa/;, (211)

p;fg(laﬂ) =1,®1 for any a,fen. (2.12)

In this occasion, we say that (4, p?) is a right © — H-comodule algebra. Note
that 4, endowed with the pl’i_‘] is an ordinery right H)-comodule algebra (cf. [D1]
and [Mon]).

Similarly, we can define the notions of a left 7 — H-comodule algebra and a
n — H-bicomodule algebra.

In what follows, let H be a Hopf m-coalgebra. Let 4 be a right 7 — H-
comodule algebra and let

C= {a = (ax)yern € HA“ Ipa’ﬂ(aa,g) =a, ® 1z for all a,fe n}.

QET
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We denote by .#7# the category of right (H,A)-Hopf n-comodules; its
object is a family M = {M,} of right A,-modules M, which is also a right
n— H-comodue such that

AET

pmﬁ(ma) = M0,a)2(0,x) ® M, pa, g)s for all me Ma , 4 E Aaﬂ. (213)

Its morphism is a family of 4,-module maps which is also a = — H-comodule
map.

REMARK. We remark that the category J%‘A’f‘ is an ordinary relative Hopf
module category studied in [D1].

ExaMPLE 22. 1) Obviously, 4 is an object in .#77¥.
2) For every Me #7 ", pM induces a family of R-linear maps
p=A{py: My — M\ ® H,},. Then we can view M @H={(M®H), =
M, ® H,}, ., as a right (H, A)-Hopf module by (m® x)-a =map, 1) ® xa(
for any me M, xe H,, ac A, and d,5(m @ x) =m® X(1,4 @ x(2,5 for all

me M, xe Hy, and then p: M — M; ® H becomes a morphism of Jl/l}‘”.

3. A Maschke Type Theorem for .#5 "

In this section we will prove that there exists a Maschke type theorem in the
generalized context of Hopf z-comodules.
Now, we have some definitions as follows:

DEerFINITION 3.1. A total integral is a family of R-maps ¢ = {¢,},.,: Hy —
A, such that ¢ is a n-comodule map, i.e., pof/;%,g = (¢, ®idc,)Asp and ¢,(1,) =
1, for any o,f€en.

DErFINITION 3.2, For M e #7%C, a trace map associated with ¢ is a family
of maps tr™ = {trM . M| — M,} defined by

1y (m) = mg 2B, (Sy-1 (M 4-1))) (3.1)

for any m e M.

PROPOSITION 3.3. For any me M), we have trM(m)e M“H. Moreover, the
condition ¢(1,) = 1, for any aen, implies that tr™ is the identity on M.

Proor. For any m e Mj, we have
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Pa 5t 5 (m))

(3.1
= pa,ﬁ(m(o,dﬂ)¢aﬂsﬂ"a“ (m(l,ﬂ”'ot")))

@2.11)

= m(0,08)0,2) BaSut (M g1y (2, 001))) ® 10,08 1,8)S1 (M) g1y 5 1))

=m0, By Sa-1 (M1, 2,01))) ® My, 1)1, (M1 iy 1y )

= m(0,1)¢aSot‘1 (m(l,a"))) ® 1p
= tri”(m) ® 1g,

where we have used the properties of the antipode and the m-comodule structure
for the second and third equations, respectively. ]

Now, we define A= {4,}: M| ® H, — M, by

Aa(m ® x) = Mg, )P (St (M) 1) Su(x)))

for any x € H,.
We will denote p{? : M, — M) ® H, by p, as follows.

LeMMA 3.4. For any aemn, we have A 0 p, = idy,.

ProoF. For any m e M, and o € n, one has
A © P (M) = m(0,1)(0,0)# (S 1 (M0, 1)(1, 1) S (M1, 0))) )
= m(o,y@(Sz-1 (M1 1)(1,2-1)S2(M1 H2.w))
=m0, P(Se1 ((m(1,1)141)))
= mpSy-1(1y-1) = m,

where one has used the properties of the antipode. |

Define the center of A as

Z(A) ={Z(Ay) = {xe Ay |ax = xa for all ae A,}}

xeET’

We now have the following two lemmas.

LEMMA 3.5, For any aen, if ¢,(H,) © Z(A,), then L, is an A,-module map,
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here M| ® A, affords the module structure given by Example 2.2(2). Moreover, for
any o e, the following diagram is commutative:

Hany

M ®cA, ——— M ®H,

M@ id,;,J J}.,

) Wi
MwH ®(A1 _IM Mx

where we define Mg, (M @ a) =may y, ®ag .y and Yy ((m) ® a) = mua for any
me M, and a€ A,.

Proor. For any aen, ae A, and he H,, we have

Aa(mag 1y @ bag )
= (mag, 1)) .9 P(Sa 1 (M 1) 5 1, Sx(bag1 x)))
= Mo, (0,110, 9P ( Sz 1 (M12 a1y 1) Sx(bag x)))
= Mo, (0,2 B( Sy 1 (M1 2 18112 HSx(da.1)(2.2))S2(B))
= m(o,,)a(/)(S, 1(177(1‘1 I)Su(b))
= nl(0.1)¢('sz"(nl(l,u 1)S2(b))a
= Ay (m @ b)a,
here we used the properties of the antipode in the fourth equation and the
condition: ¢,(H,) < Z(A,) in the fifth equation. Hence this proves that 4, is an
Ay-module map, ie., A (mag ) @ bagy y) = A(m @ b)a.
For the second assertion, we only note that Wy o (trM ® cidy,)(m ® a) =

rM(m)a and 2,(m ® 1,) = rM(m) for any me M,. So the diagram clearly
commutes from this and the formula i,(meag 1, ® a1 4) = A(m @ 1)a. |

LeEMMA 3.6.  For any x € n, A is a morphism in ..f/[‘;’“'” if either of the following
two conditions is fulfilled.

(i) A is faithful as an R-module and ¢,(A,) < R,

(ii) H is involutory (ie., S, S, =id for all e n), ¢,(H,) < Z(A,) for all
aen and

¢,(ab) = ¢,(ba) for all a,be Ay, nem.
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Proor. By Lemma 3.5, it suffices to verify that A is a 7 — H-comodule map.

If (i) holds true, then, for all xe H,j, o, fen we have ¢,(x1 q)xop =
$4p(X) (0,00 1(1,8) = Pup(x)1p since ¢ is a = — H- comodule map and ¢,(4,) = R <
AH. This implies that @z (Sp(x(2,5))Su(X(1,0)) = Bg-15-1 (S (X)) 0,51y L(1,2-1)- In
what follows, we claim:

X0, B (X)) 0,p710t) = Bt (Sap (X)) T G2
In fact, we have
X(1,0Bp-158(X2,) (0,57 01
= x(La)1(1‘a)¢ﬂ—1a-xa5m‘aﬁ(x(Z.oc”aﬂ))(O«ﬁ"a")
= X(1.) 8141 Saup(X(2,2-108)(2,08)) St (X2 1) (1.21))
= X 1)01,0Se 1 (X, 1)@t Sap(X(2,05)
= ¢[j‘“]a" a5 (%) 1,

as required.
We will next show that A is a 7 — H-comodule map. For all m e M, x € Hy,
one has

(A ® id)da,p(m ® x) = Au(m ® X(1,0)) ® X(2,p)
= m(0,ayBuSat (M(1,61)S2(X(1,0))) ® X(2,5)
= M(0,0) ® PoSu-1 (M(1,4-1)Su(X(1,2))) X2, p)
= m(o,a) ® ¢ocﬂﬂ" ﬁﬂ"or’(m(l,ﬁﬁ"a")Saﬁ/)‘“ (X(x,am')))lﬂx(z,ﬁ)

(3:2)

=" m0.2) ® (M pg101) S (X1 agp)) 1)
uppt Sptac (M1 gty Sappt (X1 agp1)) 2, p1a1 %28
= Mo,2) @ M1, -1)(1,8)S51 (X1, 0y 2.5 ) )X 2.0
¢“ﬁSﬂ_]0‘"l (m(lm")(Z,,B_'a'l)S“ﬁ(x(l,fl)(l‘fxﬁ)))
= m(0,0) ® M1, a-1y1, S5 (X2, 11,571 )X 2. D28
BupSg1amt (M1 a2, prtam1) Sap(X(1.48)))

= M(0,0)PupSg14-1 (M1 4o1y02 141y Sap(X)) @ M1 1-1y(1.p)
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= M0, 48)(0,0) a1 (M1 p15-1)Sup (X)) @ M(0,up)(1, )
= phiap(m ® x),

where we used the properties of Ay and S in the sixth equation; the association
of Ay in the seventh equation and the association of p™ in the ninth equation.
If (ii) holds, then A,(m ® x) = mg @, (xSy-1(m(1,4-1))), and so

Péf’ﬁftaﬂ(m ®x) = (0, 28)(0, a)¢aﬂ(XS/j“a~1 (m(l,ﬁ"o:“‘)))((),ot)
@ Mo, up) (1,825 (XS g1 (M1 g1 )1y
= m(0,58)(0,2) P (St (M1 g1 51y (2,01)X(1,29)
& m(o,ap)(1,5) 551 (M p1a-n0.5)%@.8)
=m0, a) B (Sot (M1, 513,671 X(1.0))
@ M1 ay1,- g M1 a-1y2, 51 ¥ 2.8)
=m0, 2)Pa(Seu-1 (M1, -1 X(1.0)) ® X(2.8)
= (Ay ® id)dg,p(m ® x).

Here we have used the properties of Ay, Sy, and the z-comodule map ¢ and
the condition: ¢,(ab) = ¢,(ba) for all a,b € A,, x e n in the second equation; the
association of p™ in the third equation.

This concludes the proof of the lemma 3.6. ]

Let M ={M,},., and N ={N,},., be a family of A4 = {A4,},.,-module
respectively. Let f = {fy: My — Ny} e, : M — N be a family of A-module
maps. By definition, an epimorphism f : M — N of A-modules consists of 4,-
module epimorphisms f, : My, — N,.

We now show the main result of this paper as follows.

THeOREM 3.7. Let H be a Hopf m-coalgebra. Let A be a right n— H-
comodule algebra with a total integral ¢, and suppose that (i) or (il) in Lemma 3.6
holds. Then an epimorphism f : M — N of (H, A)-Hopf n-comodules splits, if the
Ai-linear epimorphism fi : My — N, between the neutral components splits.

PrOOF. Let j = {j,: My — N,},., be a morphism of .#7 ¥ such that there
is an A;-module map p,: Ny — M, with pij; = idy,. Define an R-linear map
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={Py: Nu = Mo}, bY By = Au(p1 ® id)p{’,. Then for any aen, ne N, and
x € Hy, we have
ﬁ("‘x)( Aa(P1(n0,1) - X(1,1)) @ n(1,0)X(2, )
= da(p1(neo,1) - X(1,1) @ 1(1,0)%2,0))
= Au{p1(n0,1y) ® n(1,09)x (by Lemma 3.5)
p(n)x,

and so p is an A,-module map.
Next we show that p is a n — H-comodule map. Indeed, for all «,f € =,
ne N,p, we have

I

(13®id)P£ﬁ(”) = Aa(P1(n00,0)(0,1)) ® n0,2)(1,)) ® 11, p)
= Aa(P1(n0,1)) ® N(1.0p)(1,2)) ® N1 02, )
= (Ax ® id)d4,p(P1(n(0,1)) ® N(1,4p)) (by Example 2.2)
= p23Aap(P1(n(0,1)) @ n(1.5)) (by Lemma 3.6)
= pyaph(n).

In final, one has pyjx=A«(p1 ®id)p{',ju = da(p) ® id)(j1 ® idy,)pi, =
Awp, = idy,, completing the proof. |

Similar to [D2, Theorem 2|, as an application of Theorem 3.7, we have:

THEOREM 3.8. Let H be a Hopf n-coalgebra. Let A be a right = — H-
comodule algebra with a total integral ¢, and suppose that (1) or (ii) in Lemma
3.6 holds. Then an (H,A)-Hopf m-comodule P is projective as an A-module iff
P is an (H,A)-Hopf m-comodule direct summand of W ® A for some nm— H-
comodule W, where W ® A is regarded as an (H,A)-Hopf mn-comodule via
(w®a)b=wQ ab for any we Wy, a,b e A, and p" & —{pW®A (W®A),,—
(W®A),® Hp}, pey is given by pW®A(w®a) = W(0,2) ® (0,0) ® W1, 4(1.p) for
any o,fen, we Wy and a € Ap.

Proor. For an (H,A)-Hopf n-comodule W, we first show that W ® 4 =
{(W®A4),=W,®As},., endowed with the above structures is also an (H, 4)-
Hopf n-comodule. It is easy to see that each W, ® A, is an A,-module and to
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see that (id(wga), ®a)p;'/l®" = idiwga), for any aen. Also, for any o,8,y €7,
we W, and a e A,5, we have

(Pag” ® id)p,s (W ® )
= W(0,48)(0,2) ® A(0,08)(0,0) @ W(0,4p)(1,5)7(0.48)(1.5) & W(1,5)(1,7)
= W(0,00 @ A(0,0) ® WL g1/ B1)(15) & WA NI N(2.7)
= (idiwoa), ® Mg, Py s

and this proves that W ® A4 is a m-comodule. The condition of the = — H-
comodule algebra 4 will implies Eq. (2.13). Hence W ® 4 is an object of .#7% .

Finally, by the argument similar to [D2, Theorem 2], it suffices to prove the
only if part holds true since it is obvious that the if part holds based on W ® 4
being a free A-module, i.e. each W, ® A4, is a free A,-module for any o« € 7. Now
for x e m, let L, = P, be a subset that generates P, as an A,-module, and let W
be the smallest 7 — H-subcomodule of P satisfying W, > L, i.e., W, is an R-
submodule of P, such that pfﬁ(Waﬁ) c W, ® Hp for any o,fen. It is known
that if L, is a finite set then W, is finite dimensional. Thus we build a = — H-
comodule W = {W,},., and so W e .#% . Consider that the module structure
map ¢ ={¢,: Wy ® Ay = Py}yer, wW®ar— wa for any we W,, ac4,, is a
surjective morphism of .# ﬁ‘” . Now since P is 4-projective and by Theorem 3.7,
we have that P is an (H, A)-Hopf r-comodule direct summand of W ® 4, ie.,
each P, is an A4,-module direct summand of W ® 4 such that P is an (H,A)-
Hopf n-comodule.

This concludes the proof of the theorem. |
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