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FOURIER INTEGRAL OPERATORS OF INFINITE ORDER
AND APPLICATIONS TO SG-HYPERBOLIC EQUATIONS

By

Marco CAPPIELLO

Abstract. In this work, we develop a global calculus for a class of
Fourier integral operators with symbols «(x,£) having exponential
growth in Ri"f. The functional frame is given by the spaces of type
S of Gelfand and Shilov. As an application, we construct a para-
metrix and prove the existence of a solution for the Cauchy problem
associated to SG-hyperbolic operators with one characteristic of con-
stant multiplicity.

Introduction

In this paper we consider some classes of symbols «¢(x, ¢) of infinite order, i.e.
growing exponentially at infinity together with their derivatives, and we inves-
tigate the related Fourier integral operators. Pseudodifferential and Fourier in-
tegral operators of infinite order have been studied by L. Cattabriga and D. Mari
in [2] and by L. Cattabriga and L. Zanghirati in [3], [4], with applications to
hyperbolic Cauchy problems in the Gevrey classes. The operators under con-
sideration in [2], [3], [4] have characteristics of constant multiplicity, without Levi
conditions or with Gevrey-Levi conditions on the lower order terms. For related
results of well-posedness in the Gevrey classes, see S. Mizohata [21], K. Taniguchi
[26], K. Shinkai and K. Taniguchi [25], K. Kajitani and T. Nishitani [15], K.
Kajitani and S. Wakabayashi [16]. In our work, we consider symbols having an
exponential growth with respect to both the variables x and & over all R*. Our
alm is to give a suitable tool for studying hyperbolic equations with coefficients
and data globally defined in the space variables and obtain results of global
existence of the solutions. In particular, we are interested to the Cauchy problem
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for SG-hyperbolic operators. SG-operators were studied in the past by several
authors, for example C. Parenti [22], E. Schrohe [24], H. O. Cordes [5]. More
recently, S. Coriasco [6], S. Coriasco and P. Panarese 7], S. Coriasco and L.
Rodino [8], have investigated the Cauchy problem for SG-hyperbolic operators
with characteristics of constant multiplicities, proving results of well-posedness in
the frame of the Schwartz spaces &, %" under a so-called SG-Levi condition. In
Section |, we introduce some spaces of functions which are well known in the
literature as spaces of type S, see I. M. Gelfand and G. E. Shilov [9]. Such spaces
represent a global version of the Gevrey classes and seem to be the natural
domains of our operators. In Sections 2, 3, we define some classes of symbols of
infinite order and develop the calculus for the related Fourier integral operators
proving a composition theorem. Finally, in Section 4, we consider the Cauchy
problem for a SG-operator with one characteristic of constant multiplicity and
prove the existence of a solution by means of the construction of a parametrix,
expressed as Fourier integral operator of infinite order in our classes. The con-
ditions we assume on the lower order terms are weaker than the SG-Levi
condition in [6), [7], [8].

1 Spaces of Functions

In this section we give some basic results concerning the spaces of functions
we will deal with in the paper. We refer to [9], [10], [19] for proofs and details.
We will denote by Z the set of all positive integers and by N the set Z, U {0}.
Let 0 be a positive real number, § > 1 and let 4,Be Z,.

DerFINITION 1.1.  We denote by Sg:f(R") the space of all functions u in
C*(R"} such that

sup sup APB V()0 x*dPu(x)| < +oc.
2 feN" xeR"

We set

S{RM = | SyZR™.

A BeZ,

PrOPOSITION 1.2. Sg‘f(R") is a Banach space endowed with the norm

Iull 45, = sup sup A~XB P (alp)~fx*dbu(x)|. (1.1)
2feN" xeR"

By Proposition 1.2, we can give to SJ(R") the topology of inductive limit
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of an increasing sequence of Banach spaces. We remark that this topology is
equivalent to the one given in [9]. It is useful to give another characterization of
the space SJ(R"), providing another equivalent topology to SJ(R"), cf. the proof
of Theorem 2.9. below.

PropoSITION 1.3. S{(R") is the space of all functions ue C*(R") such that

sup sup B‘V"{ﬂ!)‘()e”""Wﬁafu(xﬂ < 4w
FeN" xeR"

for some positive B, L.
PrROPOSITION 1.4. The following statements hold:
(i) SY(R™) is closed under the differentiation;
(i) SY(R") is a nuclear space.
REMARK 1. We have
Gy(R") = SH(R") = G*(R"),

where we denote by G'(R™) the space of all functions ue C* (R") such that, for
every compact subset K < R"

sup B7H(pNY Y sup |0fu(x)| < +o0
feN" xek

for some B = B(K) >0 and by G{(R") the space of all functions of G*(R") with

compact support.

We shall denote by Sg’(R”) the dual space, i.e. the space of all linear con-
tinuous forms on SJ(R"). From (ii) of Proposition 1.4, we deduce the following
important result.

THEOREM 1.5. There exists an isomorphism between Z(S)(R"),S{(R")),
space of all linear continuous maps from SJ(R") to Sy'(R"), and S§'(R*"), which
associates to every T e L(SS(R™),SY(R™)) a form Ky e S§(R™) such that

(Tu,v) =<Kr,v@up
for every u,ve SY(R"). Kr is called the kernel of T.

Finally we give a result concerning the action of the Fourier transformation
on SY(R™).
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PROPOSITION 1.6. The Fourier transformation is an automorphism of S§(R")
and it can be extended to an automorphism of Sg'(R").

2 Symbol Classes and Fourier Integral Operators of Infinite Order
In the following we will use the following notations:

x> = (1+x)Y* for xeR”

_ [0y dp
Vx(ﬂ* (—6—;"“’0)(,,)

DY =Dy ---Di» for all e N",xe R", where Dy, = —idy,, h=1,...,n.

Given two complex-valued functions f, g, we will use the notation f >~ g to mean
that there exists a constant C > 0 such that

CHf < lg(x)] < Clf ().

Finally, we will often use the notations e; = (1,0), e2 = (0,1), e = (1,1).
Let g, v,6 be real numbers such that | <py<vand 8>pu+v-—1.

DEFINITION 2.1. For every A >0 we denote by T\, o(R™; A) the Fréchet
space of all functions a(x,E) € C*(R™) satisfying the following condition: for every
>0

lally, = sup  sup ATV (BN TIEN ()
2BeN" (x,&)eR™

expl—e(|x|'"’ +1£]"/")] | DEDYa(x, &)| < +o0
endowed with the topology defined by the seminorms |||, ,, for ¢ > 0. We set

rgv,(,(Rz'*) = lim “’;’v‘a(R""‘;A)

A=+
with the topology of inductive limit of Fréchet spaces.
In the sequel we shall also treat symbols of finite order. Let us give a precise

definition for such symbols. Let u, v be real numbers such that 1 < 4 < v and let
m = (m),m,) be a vector of R

DEFINITION 2.2.  For every B > 0 we denote by F#’T’V(Rz" ; B) the Banach space
of all functions a(x,&) e C*(R™) such that
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lalp = sup  sup BVl (p)™
a,feN" (x &) e R™

EYTA ey matIBL |D§Dfa(x, &)| < 400
endowed with the norm || - ||g and define
r7(R™) = lim I (R™;B).

B——r+oo

We observe that I'7,(R™) = TP, ,(R*) for every me R* and for all
O=p+v—1.

DEFINITION 2.3. A function ¢ € F;,V(Rz") will be called a phase function if it
is real-valued and there exists a positive constant C, such that

Cyl¢xy < (Vep) < Gyl (2.1)
C,lEY < (V) < Gy (2.2)
We shall denote by P the space of all phase functions.

Given ael, vg(Rz") and ¢ e 2, we can consider the Fourier integral op-
erator

Augus) = [ e"<0al, 0(0) %, ue SYR?) (23)

where we denote d¢ = (2r) ™" d&. A relevant particular case is given by the choice
p(x, &) = (x, &>, corresponding to the pseudodifferential operator with symbol

a(x,&) in T, (R
Au(x) = JR" e a(x, Ea(E) d&

In view of Proposition 1.6 and Definition 2.1, the integral (2.3) is absolutely
convergent. To study the operator 4, ,, we need the following preliminary prop-
osition and lemmas.

PROPOSITION 2.4. Let g, ,(R*; B) for some B > 0. Then, for every o, in
N", there exists a function ky g(x,&) € C*(R*) such that

Dgpfeiw(x,é) = e"”x':)ka’ﬂ(x, &)
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and
|k p(x, €)| < (2°4B max{||p]| 5, 1) (ja]118]1)°

max{0, a|~1} <x>/1+1—|/3| max{0, |1} <£>k+1vu|

= (n))’ = (k1)*
Sor all (x,&) e R*.

In the following lemma we collect two well known formulas for factorials
and binomial coefficients. The proof is omitted.

LeMMA 2.5. We have:

(k+ )l <2 jlk! VjkeN (2.5)
) _ (1o n ,
o' |=p

Proor oF ProposiTiON 2.4. We argue by induction on |x+ ff|. For o=
p =0, the assertion is trivially verified. For |x+ f| # 0, we have

D¢, DEDFe?*%) = DEDE#*8g; p(x, &)
. o B ’ ’
= ¢/?(%:¢) Z <oc’> (/},)ka_“,./,_ﬁf(x, E)DY 0, DF p(x.E).
a'<y
B<p

By the inductive hypothesis, applying (2.5) and observing that 6 > max{u,v}. it
follows that

> ( :‘) ( ﬂﬁ,)ka_aaﬁ,ﬂ«x,é)Dg’a:.Dﬁ'w(x,é)

a' <a

B<p

o4 ﬁ o / ’ v iy i
< Z(a,)( ﬁ,>||goHBB' FEI QI 1) #(B1) "¢y ey T
o' <a
B <p
- (2°4B max{||p]l 5, 11" F o — o100 (15 - 1)’
max{0, z—a'|~1} (1= lp=p max{o, 1B-5'1-1} (EYkHI-la=x]

o (h)° = (k?
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< 7 (2% max{lpl 5, 1)
r ax{0, [x~a'|-1} hr2-1)
x 1 ! ’ ()mx <Y>
— (oo — o1 T
_§<a’>4'*'(’ - Y
[ max{0,|f-4'1-1} k+1-]q|
A (p) amtme-pm Y ]
B A =S
Now, by (2.6):
max{0, [x—a'|-1} h+2-1f]
o ’ o <X>
— (o' Yor — o'|! e
Z() ETCICEEIDEND D
|| |°‘]> 1 ) max{Oglalﬂwl}<\_>hu--\/;1
= = () (Je = p)t* A
,Zo( pJar ; (h)"
mdx{|a| 1,0} h+2—|f] oo max{|a.0} ,_ \ h+1-|f|
< > 14 0 {x)
S(lcx[! — < =(lof + 1)! o
2 (hh)? ;04 3 ,Zo (A"
Analogously, we have
ﬂ max{0, |#-f"|-1} <é>k+1—-|1|
> () g hie -5’ L abiila
[f’g/} k=0 (k)
4 ()max{O,V!{—]} <é>k+l—|a|
< 3‘(!/3“) Z W—

k=0

from which (2.4) follows. By estimating similarly D, DZD#e**<) we conclude

the proof.

O

REMARK 2. Proposition 2.4 implies in particular that for every L' > 0 there

exists a constant Cp. > 0 such that

|Dfet ] < CLIT (1IN

for all pe N" and for all (x,&) e

IDEDE O] < CPFP ([l g1 P (x) (et

for all o, N" and for all (x,&) e R*

KON (2.7)
R?". Similarly, we have the estimates
<r>l(9+<r>lﬂ (2‘8)
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Let us set, for > 0,
O ={(x,&) e R : {x) < 1,{&) < 1}
Of = R™\Q:.
LEMMA 2.6. For any given R>0 and p> 1, we can find a sequence of
nonnegative functions ;(x,&) € C (R™) such that oo ¥(x, &) =1 on R,
supp Yo = O3z
supp ¥;  Qap(j+1)e\ Qarye
and

sup | DZDY;(x, &)| < CPHIAFT (1) #(B1) (R sup(j¢, 1)] 1
RZn

Sor all a,fe N".

PrROOF. Let ¢ e C¥(R™) such that 0 < ¢ < 1,

1 if (x,&) e Qs
#(x, &) = {0 if (x,8) e Q3

and

sup |DEDAg(x, &) < M @) ()"
RZn

for all o, e N". Let us set

gj(x,c)=¢<§;,7§;), is 1

Finally, we define
Wo(X, é) =41 (x> é)
l//_](xvé) =gj+l(xvf)—gj(x7é)’ .]Z 1'

This sequence satisfies the conditions of the Lemma. We can assume that ; are
nonnegative choosing for example ¢(x, &) = ¢,(x)¢,(£), where ¢,,¢, are non-
negative functions which radially decrease. O

Lemma 2.7. Let ¢ € ? and denote by d(x,&) the function (V:p)* — iA:gp.
Then, 1/d e T",” (R™).
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Proor. From (2.1), it follows that

d(x,8)| 2 <Vep)® = C, 2<% (29)
From (2.9), arguing by induction on the order of the derivatives of d, it is easy to
verify the assertion. The details are left to the reader. O

Let us now consider the operator .#; defined by
Me = D(1 — Ay) (2.10)
where D denotes the multiplication operator by 1/d. We observe that
./iléei”’(""i) = p'?(x.O)

and that
e ="(1-As)'D=(1-A:)D.
Lemma 28. Let pe 2, ael), (R A), ueSHR") and {y;},., be a
puartition of the unity as in Lemma 2.6 with g = 0. Then, there exist positive
constants B, C,K, L such that, for every ¢ >0 and for every jyNeN, x,f e N"

[DEDEC )N [y (x, &)alx, E)a(E)]|
< Klall  ,CH VB2V (Ja)) (1811 T (2N)1) ey 72N e pm (=D (9 11

Sfor all (x,&) e R™.

Proor. The proof can be obtained by induction on N choosing B, C suffi-
ciently large in the inductive hypothesis. We omit the details for sake of brevity.
.|

THEOREM 2.9. Let pe 2. Then, the map {a,u) — Au,u is a bilinear and
separately continuous map from I;Z'VA,,(RZ”) x SY(R") to SY(R") and it can be
extended to a bilinear and separately continuous map from T, o(R*) x SY(R™)
to SY(R").

PrOOF. Let us fix a e F/‘fvvf,(R"’") and show that u — A, ,u is continuous
from S}(R") to itself. Basing on Proposition 1.3, we fix Be Z,, L >0 and
consider the bounded set F determined by C >0

sup e |8Pu(x)| < CBP(B1)”

xeR"
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for all ue F, Be N". Estimates of the same type are valid for # in view of
Proposition 1.6. To prove the continuity with respect to #, we need to show that
there exist Ay, By € Z, and a constant Cy > 0 such that
sup |x*DP A, u(x)| < Cod” B (a1p1)? (2.12)
xeR"
for all «,f € N" and for all ue F. Let {y;},;,, be a partition of the unity as in
Lemma 2.8. We can write, for any fixed xe R",

x*DF(4, u)(x) = x“DﬁZJ Oy (x, E)alx, Eia(€) d&. (2.13)
j=0

Now there exists j(x) € N such that 2Rj(x)? < (x> < 2R(j(x) + 1)?. Integrating
by parts with the operator .#; defined by (2.10), we can decompose the sum in
(2.13) as follows:

x*DE Ay gu(x) = Dap(x) + bap(x),

where
J(x)
g = 3w DE [ o0ty . Ehal. i)
j=0
and

Dop(x) = ) x*Df Ln Py (ox, E)alx, E)a(E) dE.

7>i(x)
Let us estimate the two terms. By Lemma 2.8 and Remark 2, for every L’ > 0,
there exists C;: > 0 such that for every ¢ > 0

J(x)
()] < > eyl Z( >J |DEF 0 | DE (42) [ (x, &)alx, E)a(E)]| dE
Jj=0 B =p
J(x) ) ﬁ , ,
< Kllall. S BY@))' S ( ,)c*f‘ (g1
Jj=0 B'<p F

. <x>|a|+1—2jea<x>”"J (Eye~LL/ =Y g
R”

where the constants are the same appearing in (2.7) and (2.11). We observe that,
on the support of ¥, and hence on the support of /i3, we have

<x>;a]+ler:<X>'/g < M[Allal('““)gey
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if we choose ¢ < (1/3R)"". Furthermore, for j < j(x). (x>™¥ < (4R**)7. Thus,
choosing L' < L and & < min{L — L, (3R)""/"}, it turns out that

(2.14)

2,3\ /
| 1 B-e
)] < M2AZ B (118" S (26
g 4R
where the constants A4, B;, M> > 0 are independent of u e F. Choosing R suf-
ficiently large, we obtain the required estimate for J,5. Arguing as in the previous
case it turns out that there exist positive constants M, 4>, L” such that

| ap(¥)] < Z oy ( 5) L" | DI 10 DE [y (v, E)a(x, €)i( €)]] dE

J=jlx) B'<p

Y ; , meENLE Ly
sMWhMWWWWWE}”L@N’“ ae.

i)
Now, for j > j(x), we have (x> < (2R);", so (&) = (2R);j". Thus

J
g5} < Mallall 5 (110" Z(,MNJ 215

0

which gives (2.12) for R sufficiently large. Furthermore, from (2.14) and (2.15),
we deduce that also the map a — 4, ,u is continuous for any fixed u € SY(R").
This concludes the first part of the proof. To prove the second part, we observe
that for u,ve SJ(R"),

J Ay pu(x)0(x) dx = j u(&a (&) dE
Rn RII

where

a. (&) = J e a(x, &)v(x) dx.
&"

Furthermore, by the same argument of the first part of the proof, it follows that
the map v — «, is linear and continuous from S/(R") to itself. Then, by Prop-
osition 1.6, we can define, for u in S;(R"),

(Auot)(v) = a(a,). ve SHR").

This is a linear and continuous map from SJ'(R") to SJ'(R") whose restriction
on SY(R") coincides with 4,, defined by (2.3). It is easy to prove that it is
continuous also with respect to a for a fixed u in S'(R"). 0
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DeFINITION  2.10.  An operator in Z(SE(R"),S¢(R")) is said to be O-
regularizing if it can be extended to a linear and continuous map from SY'(R")
to SP(R™).

PROPOSITION 2.11. If a€ SY(R™), then A, , is O-regularizing.
PrOOF. Let us consider the kernel K associated to 4., given by
K(x,y) = J 100D g £) gz,
RPI

It is sufficient to show that K e S§ (R?). This will easily imply that Ay is 0-
regularizing. By Proposition 2.4, for every h,k,5,7ye N", we have

xky”DfD)fK(x, »)

= (- l)lylxky" Z ( é) JR" e“i<y‘:>fny/ei"'(""f) . Df”’?’a(x,f) d¢
B'<p

B
(1)t 3 (/5' )J ¢~HnD PAET DI 1058 . DIH g, &)] a

!
i \B
A y!
= (1) Pk (ﬁ> iy
(=) Eﬁ B' ) siehon ity (7“/11)!( )
h<y

et )7 DR DI a(x,8) de,

Hence, by Remark 2, it follows that for every L’ > 0 there exists C;+ > 0 such
that

A

T oyt s 8l
[-Fe2:7¢3:

x*y"DIDIK (x, y)| <
hy+ha+hy=h
h<y

) k1 ,—~(L—L")|x|"* [Pl |1 = (L=L e
x> e &> e dé.
Rn
Choosing L' < L, it turns out that
[x*y*DEDIK (x, y)| < My MY a2 (migeipiyt)?

for some positive constants M;, i =1,2,3 and for all (x, y) € R*". Then, K is in
SS(R™). O
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To conclude this section, we give a notion of asymptotic expansion for
symbols from T /fv,g(Rz").

DEFINITION 2.12. Let B,C > 0. We shall denote by F%, ,(R*;B,C) the
space of all formal sums 3. o a;(x,&) such that aj(x,&) € C*(R*™) for all j >0
and for every ¢ >0

sup sup sup Cl=V=2 ()= g N E T B
j20 2,BeN" (x,¢)eQ®

BiH+Y 1

cexpl—e(|x|""" + 1)) DEDEay(x, &)| < + 0. (2.16)

Consider the space FSY, © o(R*™, B, C) obtained from ZS #,(,(RZ”;B, C) by
quotienting by the subspace

E = {Zaj(x, §)e L7, o(R¥: B, C) : supp(aj) = Qpjwr Vj = 0}.

Jjz0

By abuse of notation, we shall denote the elements of FS7, ,(R*": B, C) by formal
sums of the form 37, ,a;(x,&). The arguments in the following are independent
of the choice of representative. We observe that F. ;v{,(R"’,B, C) is a Fréchet
space endowed with the seminorms given by the left-hand side of (2.16), for
e > 0. We set
FS7, o(R")= lim FSy, ,(R*;B,C)
B, C—* +

Every symbol ael"/’f_",,(,(Rz”) can be identified with an element > .., of
FS‘:-V_U(RZ"), by setting ap =a and g; =0 for all j > I.

DerNITION 2.13. We say that two sums )7, qa5,3 504 from FS;, o(R*")
are equivalent (we write 3 .. oa;(x,§) ~ 3 .o 0a/(x,£)) if there exist constants
B, C >0 such that for all ¢ >0

sup  sup sup  CTPIBERY () THB TN AT (e RN (BTN

NeZ, xfeN" (x,¢) eQBN“H \

~exp[—£(|x|1/0 + [c[]/” )|D < +0.

D_{?' Z(aj - a))
J<N

Treorem 2.14.  Given a sum 3, ga; € FS¥ (R*™), we can find a symbol a

uv, o
in TS, o(R*™) such that
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a~>Y a in FS7, o(R™).

jz0

PrROOF. Let us consider the functions g; defined in the proof of Lemma 2.6
with p=pu+v—1 and let us set

(PU(X,é) = 1
p(x, &) =1-g;(x,¢), j=zLl

We want to prove that if R is sufficiently large

& =3 px,Ea(x,8) (2.17)

j=0

is well defined as an element of I, “ o(R™) and a ~ 2oiz0d in FSI JR™).
First of all we observe that the sum (2.17) is locally finite so it defines a
function a € C*(R*"). Consider

DiDfa(x, &) = ZZ( )( )D/’“’D“ Taj(x,&) - DID%g;(x. &)

jz0ry=sa
o<p

Choosing R = B/2 where B is the constant in Definition 2.12, we can apply the
estimates (2.16) and obtain

(DEDfa(x, &) < CHHAFTARIC I exple(|x] ' + [¢]V)] S Hywp(x.€)

IR
where
=B -a)!
f#uﬁ(xwf)=;;{(“ ul y!([s(! !
5<p

. CY-Iv-1l (j!)/l”“l<x>|6|—j<é>|}'l—j|D2Déy¢j(x‘ &)|.

In view of the properties of the functions ¢;, we have easily

I-Ij“/f(xa é) < C{dHlﬁHl (a!)/"l (ﬁ') v—1 (%)'l

for some positive Cy, C, with C; independent of R. Enlarging R, it follows that

ZHM? X, &) < CEHIPET Gyt (g1 y(x, &) € R

j=0
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X

from which we deduce that e I'; .. o(R*"). 1t remains to prove that a ~ >i=04
Let us fix N e N\{0}. We observe that if (x,&) € Qfpy,i.i, then

a(x, &) — Zaj(x,cf) = Z @;(x, &)aj(x, &).
J<N JEN
Thus we have

Z D:DEp;(x, &)aj(x, &)

jzN

< CHH LB ey VN ey~ exple(x) 7+ 167N Y Hina(x,8)
j=N

where

[ = N (B =)
pli!

Hinyp(x, &) = Z

rsa
(5'_<_/)’

L Yl Gyl (,\“)""HN“"'(@\7']'*N‘j|DﬁDng(.Y, ).
Arguing as above we can estimate
Hpnap(x. &) < €V (vt (et g1y !

and this concludes the proof. O

PropoOSITION 2.15. Let pe P and ae I:’Z"v_f,(Rz") such that a ~ 0. Then, the
operator Ay, is O-regularizing.

To prove Proposition 2.15 we need a preliminary result.

LemMma 2.16. Let M,r,p,B be positive numbers, o> 1. We define

rN nr
h()= inf M7 VY

AeR*.
o<N<Eve  ANle 7

Then there exist positive constants C,t such that

h() < Ce™™". ) eR™.

Proor. See [23] for the proof. ]
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PrOOF OF PrROPOSITION 2.15. By Definition 2.13, it follows that for every
& > 0 there exists a constant C, > 0 such that

IDEDEa(x,&)| < C,CHHWI(at)# (1) ¢e> M x) M exple(|x| '/ + &1/

CW (N
. inf —
0N < BE+Cen) D ({E) + (xD)
for every (x,&)e R*, a,fe N" and for some B,C > 0 independent of o,p,e.
Applying Lemma 2.16 with p=r=pu+v—1,4=<{&>+<{x> and taking into
account the condition 6 > u+v—1, we deduce that for all >0

|DZDAa(x, )| < CLCHHP (o) (1) el ek

170y

(2.18)

for a certain positive 7. For 0 < e < 1, it follows that a e SJ{R*"). We conclude
invoking Proposition 2.11. O

We remark that Definitions 2.12 and 2.13 have an analogous version for
symbols of finite order of Definition 2.2 and that all the results of this section
hold also for such symbols.

3 The Composition Theorem
We give here our main result which will be applied in the sequel to the

solution of the Cauchy problem for certain hyperbolic operators.

THEOREM 3.1. Let u,v,8 be real numbers such that | <u<v, 0 =u+v-1
and let

n

A () = J exq(x, EYi(E) de,

Pu(x) = | e p(x, ie) de

where pe P, ae I’/fv‘e(Rz"), pE F/TV(RZ") for some m = (my,m;) € R*. Then
PA, , is, modulo G-regularizing operators, a Fourier integral operator with phase
o and symbol q(x,&) € I"lio‘,y(,(RZ"). Furthermore,

9(x,&) ~ > _qi(x,&) in FSY, o(R™)
. jz0
where

gi(x,€) = Y () D((0Fp) (x, Veg(x, p, E)a(y, ), (3.1

lel=J
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and

1
Tepl, 3. 8) = L (Vo) (y + (x = ), &) du.

ReMARK 3. From Theorem 3.1, we can recapture the standard composition
Sformula for pseudodifferential operators. Namely, if p(x,&) = {x,&), then PA, , is

a pseudodifferential operator with symbol q(x,&) € T, o(R*™). Furthermore,

9(x,&) ~ S ()02 plx, &) Dla(x, &),

o

In particular, if aeTV,(R™), then q(x,&) e/ (R™) and q(x,&) —a(x,&)-
p(x,&) is in LT m=¢(R¥M). We shall give elsewhere full details of this global
pseudodifferential calculus, ¢f. L. Zanghirati {27], S. Hashimoto-T. Matsuzawa-Y.
Morimoto [12], L. Rodino (23], T. Aoki [1]; the composition formula above is
sufficient for the applications in the next section.

Lemma 32, Let g;, j 2 0 be defined by (3.1). Then, 3,4 q; € FS5, ,(R*").

Proor. Let 4,Be Z, such that p e F;v(Rz”;A) and pe Ffl,(Rzn; B). Let us
first show that there exists C > 0 such that

|D§D€[D5(agp)(xv V}x(”(x» ) é))'v—v”
< C(BC,) (47 max{llp]l .. 1}42BC,(n + 1))
(] + D) (ol + [BE (™ A ey a1 (32)

for all (x,&) € R*, ,B,7,0 € N", where C, is the constant appearing in (2.2). We
argue by induction on |x|. The case o =0 can be treated in turn by induction
on |B|+|y|l. The assertion is easily verified if f=yp=0 for any ce N". If
(B,7) # (0,0), fixing the attention on the case y # 0 and applying (2.5), we have,
for some he{l,...,n},

|DDE(8g p)(x, Ven(x, €))| = |DL DEDy, (82 p) (%, Vep(x, )

<> (5) X (7 )erent )

=t g'<p Y <y—en

(DY DEF (25" p) (x, Vg (x, ©))]
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< nC(BC(,,)“”1Ll <¢=>ml-l}'l~ldl<x>mz—|ﬁ|

>3 (/I;) > (,, o ) ol A 12408113 (15 (5 — ] 1 o)1

B'<pB Y <y—en

SUB'INUB = B'DY (4% max{||g|| ;, 1}42BC,(n + 1))/F=F1+=1-1

< Copy BG4 max{lgl o, 1347 BC,(n + 1)
my—|y|~lal m— | B e
eIy E<ﬁ)(|ﬂ 8~ B
Y —¢€n m _ 1 _
y}:( L B =+ e

Now, applying (2.6),
1
> (' IH* IY—V1+|0I+1)”‘————,,
MM( Y ) (n+ D
= 1 n+1
< + |o|)* E —_— | + |o
(|)’| l |) P (n+ I)P (l}l | |

In the same way we have
S (B usmras-pnr—— < s < 2080
jep P e P

from which we deduce (3.2) for o = 0. For what concerns the case a # 0, from
the conditions on p,y and the inductive hypothesis (3.2), we can directly estimate

|DgD€[D$(agp)(x, vx(ﬂ(x, Y 6))]‘_r]|

n 1
= DgD_,/: l:D;"‘eh ZJ (l — t)(Df,l\hqo)(y +7(x — y),f) dt

=1 Y0

(@87 p) (%, Vuolx, 9, ©))

yDﬁZ > ( )Ll ) e

=] o/ <a—ey

' (Di,wﬁﬂ(m(x’ é)D;z—g‘-e}, (5g+81p)(x1 Vep(x, y, é)l,-m-] .
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We leave the details to the reader. From (3.2), applying Leibniz formula and the
hypothesis on a, we deduce that Z]>0‘IJ e FS* - Ll R2n). .

LEMMA 3.3. Given t > 0, let

Then, for every € > 0 there exists a constant C = C(t,¢) > 0 such that

C el < my () < Celtrn™” (3.4)

Jfor every n = 0.

See [13] for the proof.
In the following we shall also denote for 7,6 > 0, xe R",

m; o(x) = )11,(0(,)6)2),

ProOF OF THEOREM 3.1. We start by writing explicitely P4, , in the form of
oscillatory integral. To this end, let y € S(?(Rz") such that x(0,0) = 1. We have,
for any ue SJ(R"),

P A, yu(x) = lim J ¢ "I pc, ) (S, Sn)(Au)(y) dydy

3—0

= lim ”e"¢‘~"-f’+<"'-»v-">’p<x, na(, Ex(6y.0n)il(€) dydnde

a—0 ]

= lim [ et (“ eVIIED p(x )ay, E)7(09,6n) dydﬂ)ﬁ(é) ae

d—0
where

l//(.‘f, V. Z_,:, ’7) = ¢(y1 é) - qa(x,f) + <X - ’7>

Let us prove, sketchily, that the limits exists and does not depend on the choice
of y. First, for every re N, we have

JJ eiu/(.\-,y,é.r/)p(x’ ma(y.Ex(dy,on) dydn

= ”e“‘""~“"’>“”"“*”’<f7>'2’p(-n (1 = Ay)" (e aly, &)x(0y, dn)] dydy.
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If 2r =m; +n+1, then (D ¥ p(x,n) e I“A(,fv"“”'"Z)(Rz"), so it is integrable with
respect to #. Furthermore, by Proposition 2.4 and Remark 2,

(1= A)) [e®Da(y, &) (8y,0n)] = e b, 5(3,&,7)

where b, s is such that for every ¢ >0
D8, s(,& 1)) < Co., BA(BY) exple(]y]'* + 1€/%)) (3.5)

for some C,, >0 independent of §. Moreover, integrating by parts with the

operator
l o

o'q
Z 20 (1- A'f)q

" mago(y) % (q")

P29

we obtain

j je"““*fv")p<x, na(y, E)x(6v,6n) dydn

o0
-3 af ”ei(w(y,ﬁ)»w(x‘i)—cv,n» !
= (g% may +( )

(1= Ag) [P (>~ p(x,m)br s(v, &, m)] dydn
From (3.5), it follows that
(1= A" Py~ plx, m)br (3, E )] = Py 5(x, y, E,7)
where ¢, . s(x, y,&,7) is such that
leq.r(x, 2, E I < CorME (g) ¥ ey >~ expl <y + 8197 +1¢]'")] (3.6)

with M, independent of ¢,5,¢,0. Thus, for ¢ < M ! and & < 0!/ by applying
(3.6), Lemma 3.3 and the standard dominated convergence theorem, it follows
that

PAy yu(x) = j ex-Eg (. E)i(&) e,

n

where

4(x,&) = lim ”e"‘“”'%<x, na(y, )x(Gy.on) dydy

-0

=
_ Z o? JJei((a(y‘é)-(P(X‘i)“(,VJI)) .__}____
24 @) m39,0(y)

(1 = A e Sy~ p(x, m)byo( 3, )] dyvdy. (3.7)
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We shall write
o) = [[ e ptxniay, ) dyd (3.8)

giving to (3.8) the meaning of (3.7). Thanks to the definition above, such integral
can be treated in a standard way as an oscillatory integral and we will write it in
the sequel in the form (3.8) to simplify the notation.
Let & be a positive number such that k£ € (0,1) and let y;, € GJ(R"} such that
1 (o) =1 1if o] < k/2 and y(0) =0 if |of = k.
We can decompose
q(x,&) = qo(x, &) +ro(x, &)

where
L ory S &) y—-x - . \
qo(x, &) = |[|e Xk a(y.¢)plx,n) dydn
. )
and
- [ i R ) — X v
o) = [[emnen (1 - (%7) ) a(y.E)p(x.) dvdn,

Let now e¢€(0,1) and @, e G5(R") such that @, (o)=1 if |o] <¢/2 and
D, (0) =0 if |o] = e

Then
qo(x, &) = qi(x, &) +ri(x,¢)
where
e ) — X - V.o(x, o
¢i(x.&) = ”e"”‘*-«"*"”xk("<x>x>d>,,- (” <'g’>“ é))a()&s’)l’(.\', n) dydy
and
r (.\", Q‘:) = J’Jeh/"\."r‘:.’])){k <y<;>r) <1 - cDe: (%))a(% tf)l’(\' ’7) d_}/d’]

We observe that

p(x, &) —o(y.&) = {x— », Vap(x, », &)

The change of variables
s=y-x. {=n-Vlurl)
e e ot C+ Vep(x, X + 2, 8) — Vep(x, &)
cor=[Jeon (o
atnd) = [[e 2 (zs)o &

x a(x +2.8) p(x, { + Vag(x, x + 2, &) dzd(.

gives
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If we define

_x)®<ﬂ-§+VMWJM9—VWUfU
{x) &>

x a(y, E)p(x,n — &+ Vep(x, p, &),

b, »\L_,,n>~xk(

we have
di(x, &) = J je""*%(x, N2 EE 4O d=dl.

A Taylor expansion of # in the last argument near { = 0 gives

blx.x+ .88+ = Y (o) (OB (v x +2.8.)

o < j

1

+U+D Y J(l —O)N(@b)(x.x + 2 EE+ 1) di

0

lxl=j+1
from which
gi(x.&) = () (DIIb)(x L,n)'_‘,:_\,
la <) n=t
1
VD SCIR LR
f2]=j+1 0
with

ru(x, &) = JJe)’“z‘QD ((7“/7)(\ x+ 2.8, &+ 1) d=di.

We observe that y, is identically 1 in a neighborhood of y =x and ®, is
identically 1 in a neighborhood of # =¢&, » = x, so

Z(qr lD P)x.Vip(x. v.&))a Ja(v.€)),
2l </

1

WIESTID SRCIRY NP SO

lal=j+1 0

= Z%(\,g +(j+1) Z (=1)” J (1= ) ru(x.&) dr.

Jaf=j+1
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Let now {y;} be a partition of the unity as in Lemma 2.6, with o =+ v~ 1.
Then

Qi(x.8) =D y(x & Zq;, L&)+ rax,8)
where
1 .
ra(x,¢) = Zv,bj(x,df) Z () '+ I)J (1 = 1)/ry(x, &) dt.
=0 el =7 +1 0
By the definition of the y;, it follows that
9(x.8) =Y g, E)pp(x, &) + ra(x.8)
h=z0
where ¢, are the cut-off functions defined in Theorem 2.14. Finally, we have

2

g(x.8) =3 gul(x, &)y (x. &) + Z i(x.8).
hz0 =0
By Proposition 2.11, it is sufficient to show that r, e SY(R*), i=0,1,2, to
conclude the proof. Namely, we have to prove that for every i = 0,1,2, there
exist positive constants A;, B;, C; such that

sup X&' DIDE(x, &) < Gl B i (3.9)
(x.&)eR™

for all /', a,feN".

Estimate of ry.

In order to simplify the notations, we will prove the estimate (3.9) only for
x = f = 0. The case («.f) # (0,0) can be treated using the same arguments. Let
Y, j=0 be as in Lemma 2.6 with o =0 and /./"e N". We have

e d) = vyt e” [[eneeren (1 (225 atr apton) v,

j=0

For every fixed xeR” there exists j(x)eN such that 2Rj(x)! < (x) <
2R(j(x) + 1)”. Then, we can write

*E ro(x,E) = Tup(x, E) + Jage (%, &)
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where

Ju(x, &) = ;zpj x, &)x'E" “ xyé'ﬂ(l - Xk(y <;>x>>a(y,§)p(x,r7) dydn
and

Jur(x,&) = 1;12 W (x, &)x'E" ”e"“"“"y’f””(l —xk<%§))a(y, &)p(x,n) dydn.

On the support of 1 — y,((y —x)/{x)), we have |y — x| > k/2{x)>. Hence, for
every r€ NV,

J(x) 0 g _
Jur(x, &) = (x, &)x! a xyiﬂ)( - (y_*» ,
TECEDMTLELDY el L= (2 ) a9
o = [ mag(alx — y|*) T AT p(x, ) dydy
where
© 4
map(olx - y2) =Y ——;x = y¥
gq=0 (ql)

according to (3.3). Choosing r such that 2r > m; +n+ 1, it follows that for all
>0

(3, &)lmas(olx = y*)7 1A p(x, 1)
< A3BI(gl) (s e glem o i

for some constants A4s, B,c > 0 where B is independent of 4,0 and ¢ is inde-
pendent of §. Choosing ¢ < B™! and 6 < ¢, we have

J(x)

i (x, &) < A5 Y Iy (x, Il lemeeo @™,
j=0

Now, for j < j(x), we have {x) = 2Rj?; moreover, on the support of Y;, we have
(x> <3R(j+ 1) and <& <3R(j+1)?. Then, choosing 6 < (3R)™"/*,

oC(2R) 11:]

() < B eSS
j=0

which gives (3.9) for R sufficiently large.
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Let us estimate Jyy(x,&). Let .#, be the operator defined by

My = L. (1-4,).
V(. E)>° = iAyp(p, &)

We have

J211 X, l: Z l/’, X, é lf JJ Koy, &) —o(x, &) +<{x. 1) p(x,n)

7>j(x)

) [ omat 01— (s ))J ban

By induction on j, we can easily show that for every je N

T . ‘ 2
(4,) [e"ﬂ"'ﬂa(y, 8 (1 s (~—~V<x>") )] TN

h=0

where kj are smooth functions satisfying the following condition: for all 6 >0
there exists a positive constant 4;s such that

|DEDED] Dk (x, y, &, 1) < AsCHHHIRIHAT (a1t |1 a]!) (2] — )Y

EYTH I expla(| vV + 1]V (3.10)

for all «,f,y,0e N", (x,&) € supp(¥;), (yyn) e R¥, and for some C >0 inde-
pendent of J. Moreover, C is also independent of the parameter R in the ex-
pression of the ;. Hence, arguing as for Jyy, we have

J>jlx

€)= 3 e ! ZJ | et o) it

- 3 a3 e el

J>jlx h=0 g= ()

AT px, mykn(x, v, &) dydn

Choosing r(h) = min{N € N : 2N > h+ m; + n}, in view of (3.10), the integral is
convergent. Furthermore, for j > j(x), on the support of y;, we have (£} > 2R}
hence

(. 1 < s 3 Wyl IO <2R a) e

J>j(x)
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with C; independent of R. By the conditions on the support of y; we conclude
that for R sufficiently large,

o (3, E)| < ArBRE (11D’
for all (x,&) e R*". This gives (3.9) for ro.

Estimate of r;.
Also for r; we can write

%) =Y ¥(x.¢) JJ“’i‘”(“"-"*f"’)a(J’,é)p(-\’»ﬂ)

jz0

y-x _ uM)) i
X’f( x> ) (1 (D"( & dvdn

with 1//_/- as in the estimate of ry. The change of variables p = n — Vp(x, &) gives

nxg) = ulxé ”“’o Hp(x.0+ Vap(x. )

j=0

i (y<;;) (1 - (<é>>> e

o(x,3,&,0) = (¥ = x,0+ Vip(x,8)) + (x,$) — 0(»,).
By the assumption (2.2), there exists C3 > 0 such that
[Vywl| = lo+ Vep(x, &) = Vup(y, &)] < Ci(Ked + <(5D)- (3.11)

Moreover, on the support of y, we have |y — x| < k(x), so, if k is sufficiently
small, there exists Cy > 0 such that (x+ t(y — x)) = C4<{x) for every r€[0.1].
Hence

where

n

[Vep(x, &) = Vip(3, &) < >

Jom=1

1
J (02, @) (5 + T(¥ = X), &) (Xm — ym) dT
0

< C71(nB)*2%||g|| 5<&> < Csk<ED

with Cs independent of k. Finally, on the support of (1 — @,(p/<{&>)). we have
lo] = €/24&>, so there exists Cs > 0 such that |g| = Cs<o). Thus

[Vyw| = o] = |Vap — Vyp| = Co<0> — Csk (&>

C C
=S+ (G- ok o>
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Choosing 0 < k < Cee/4Cs, it follows that there exists M > 0 such that
o) +4&) < Vo] < Mo + ().

Let U be the operator defined by

(U) a)'k

= 3
[Vyool” 1=

which satisfies the relation Ue ™ = ¢~**, Then, integrating by parts, we have

Z l//j x, & JJ —iw(x, 0, &, p) p(x‘é)—|- V‘\.(y(x, é)) (1 - O, (%))

j=0

Uyt !:a(,l’,f) << >)} dydp

where s(/) is a positive integer which will be fixed later depending on j. We want
to show that for every > 0 there exists 45 > 0 such that for every ye N, se N,

D('v)* { me( <‘>,>”

< AsC (s 4 [P Cod + <) ™ expld((¥) ! + 1¢1V")] (3.12)

for every x,y,£eR" and for some C >0 independent of y,d,s. We start by
observing that if y e N”, [y| = 2, then dlw = —)p. Moreover, it is easy to prove
by induction on [y| that there exists C, > 0 such that

o7 < MECH(y) o)) + &)

| ‘u)|

for all x, . &, 0e R", with y,((y — x)/{x>) # 0. Using these estimates, we can
prove (3.12) by induction on s. Finally we observe that

[p(x, 0+ Vip(x,0))] < Gp(<od + <) ™ Cxd™.

Choosing s{j) = |m| + |maf +n+ 1 + j, we deduce that

_o (2] oy LA
|p(xﬂQ+Vx(ﬂ(xﬁf))||1 (Dfi<<é>)| ) [a() S <<Y> )H

<A@ m)MI TN Y™™ expld((V2 + k)<xy) Vet
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for some positive M; independent of j. Choosing é < (3R(v/2 + k))_l/ ? it turns
out that for every [,/'e N":

e ()l < AR m) D [y (e, OB (111 (M) (7)< <8 .
=0

We conclude invoking the fact that {x>¢(&>~/ < (2R)™/j~/% on the support of
y; and choosing R > Me*/2.

Estimate of r,.
It remains to prove that r; € Sg (R*). To this end, we begin to prove that
for every é > 0 there exist 45 > 0 such that

IDEDYIDS(0,0)(x, », &, + 10| < Bty (Bt

e

gyl eymlel =B eym expla(<xd M 4+ (2y 04 ¢EVY)] (3.13)

for all a,8,7 e N", (x,&) e R”, (z,{) e R*, te [0,1] and for some B> 0 inde-
pendent of «, f3,7,d. First of all, we observe that on the support of y; (z/{x}), we
have {x + z) > ¢{x) for some positive constant ¢. By this consideration, it is easy
to prove that for all § > 0 there exists A;s > 0 such that

\DADUDya) (3, 8)y |
< AMB|laI+|ﬁ|+|7|(y!)/l(“!ﬁ!) v<é>—17|<x>~]a]—|ﬂ\ exp[5(<x>‘/”
+<M0 (V) (3.14)

for all o,f,ye N" and for all x,z,& € R" with y,(z/{x)) # 0 with B; >0 in-
dependent of «,f,7,6. Furthermore, there exists B, > 0 such that

D# |:D)D:Xk (?;;)} ‘

for all «,f e N" and for all x,ze R".
We need an estimate of the derivatives of DJ(9, p)(x, Veo(x, y, &) + 1),
We claim that there exist positive constants Ag, By such that

< B[2a|+!/3|+1(a!ﬂ!)v<x>'—|°‘f—|ﬁ] (3.15)

yEXHD

|DLDE[DX(37 p)(x, Vi (x, 3, &) + 10)]]
< Ag(4%(n+ 1)A¢B;Bo)lal+lﬂ|+lr|32)al

(I LoDl + |1 ¢Eym M=l oy me=led-IAl (3.16)



Fourier integral operators of infinite order 339

for all «,B,7,0 e N*. We prove (3.16) by induction on |a|. For a =0, we can
argue in turn by induction on |f+y|. If =y =0, we have

107 0) (x, Tp(x, 3,6) + 1] < AoBY (0! <x)™ <t + Veplox, x +2,E)y™ 7.

We observe that on the support of @,((Vip(x, y,&) — Vap(x, &) + 10)/<{ED) the
following condition holds:

Vap(x, 3,8) = Vaop(x, &) + 1] < e8>
from which we deduce that
Vap(x, 1, 8) + 10 < [Vep(x, &) + 1+ 68> < (1 + &+ Cp)<&E>
where C, is the constant appearing in (2.2). Moreover
e, 1,8) + 10 2 V2 (V) = () 2 V2 (G, = a)<E = C'(E

if we choose ¢ sufficiently small. Thus, there exist positive constants Ay, By such
that

(07 p) (x, Vs (v, x + 2,8) + 10)] < AoB (o)) <™ Iy

for all 6 e N" and for all x,z,¢ e R". Let us suppose that (3.16) holds for a =0
and |# + 7| < H; we can get the same estimate for « = 0 and | + y| = H arguing
as in the proof of Lemma 3.2; details are omitted for sake of brevity. The case
x # 0 can be proved by similar arguments. Finally, using induction we can also
prove that there exist A», B> > 0 such that

DD [fo [(&‘,’CD,;) (f? — &+ Vep(x, ¥, &) — Vapp(, 5))”
' \

&>

< A BRI () o]y ([ + [BDYCEY T ey (317)

for all a,B,y,0e N" and for all x,z,& € R". The estimates (3.14), (3.15), (3.16)
and (3.17) give directly (3.13). Now, integrating by parts, it follows that

1 . —
ra(x,¢) = Z‘#j(-"v U+ Z (“!)VIJ (1=o Z qaqm ”e"@s) mza.ln(:)

j=0 z|=y+ 1 0 oo (q!)

(1= AT = A (DOFb)(x, x + 2,&,E + 1])] dzdC.

Using (3.13) and arguing as before, we obtain the estimate (3.9) also for rp. This
concludes the proof.
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REMARK 4. With the same notation of Theorem 3.1, if a~3 ; q4; in
FS%, o(R*"), then

h

gx, O~ 3 3 (@) DH(@ER)(x, Vep(x, y,E))ar(, ),

h20 r=0 |¢|=h—r

v

REMARK 5. In the following, for every m = (my,m;) € R*, we shall denote by
I (R™) the space of all functions a(x,&) e C*(R®™) such that
sup  sup  CTEApnTI¢EyTmHE ey A DEDE G (x, )] < + 00
anBeN" (x,&)e R
Jfor some C >0 independent of «,f. We remark that I“l’f‘I(Rz") is a subspace of
I“/Z",(RZ”) Sfor any choice of u,v with 1 < u <v. Hence, the results of Sections 2, 3
hold for pseudodifferential operators with symbol in I']’f’](Rz").

4 The Cauchy Problem for SG-hyperbolic Operators with One
Characteristic of Constant Multiplicity

Let u be a real number such that x> 1 and consider the operator

m .
P(t,%, D1, Dy) = (D: = A(t,x, D))" + > aj(t,x, D) (Dy — A(t, x, D))"
J=1

where we assume that for some 7' > 0 the operators A(7, x, D), a;(t, x, D) satisfy
the following conditions:

At x,&) is real-valued and e C™'([-T,T],T¢,(R™)) (4.1)
a(t,x,¢) € C([=T, T, T (R™)),  j=1,....m (4.2)

for some p,qe(0,1] such that p+ ¢ < 1/(2u—1). As an application of the
calculus for Fourier integral operators developed in the previous sections we want
to prove the existence of a solution for the Cauchy problem

{P(t,x, Dy, Dyju= f(t,x) (t,x)e[-T,T]x R" (4.3)

Dku(s,x) = gi(x) k=0,....m—1,xeR"

for some s e [-T,T], where f e C([-T,T],S{(R")) and gi € SJ(R"), k =0,....
m—1, with p+¢ <1/0 < 1/(2u—1). We want to express the solution by means
of a parametrix given by a matrix of Fourier integral operators with symbols in

r;f(ﬁl‘y. (;(RZ")-
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The first step is to determine the phase function p. As standard, possibly after
shrinking T, ¢ will be determined as solution of the eikonal equation

%g? = ’l(tvxa wa(L X, '7)) (t, X) € [—-T? T] x R" (44)

with initial condition at se [-T,T]
9., = <X
Let us consider the Hamilton-Jacobi system

{x(z) = -Vil(t,x,&) te[-T,T]

E(1) = VeA(1, x,&) (4.5)

with initial conditions at se [-T,T]

for some y,# € R". In view of the assumptions on 4, there exists a unique solu-
tion (x(¢,s; y,1),&(¢, 8 v,1)) of (4.5). Furthermore, the solution is defined on the
whole interval [~7,T] and it satisfies the condition

= >, D=

See [5] and Propositions 4.8 and 4.9 in [6]. We want to prove the following result.

PROPOSITION 4.1. Under the assumption (4.1), the solution (x(i,s;y,n),
E(t, s, p,m)) of (4.5) satisfies the following conditions:

xe C"([-T, T): I (R™M),
&e C"(-T, TP, T (R™)).

Let / be a compact interval of R and denote by [/ 4 the cartesian product of d
copies of I.d = 1.

Lemma 4.2. Let m= (m;,m)eR? p>1 and ae Ck(I",FL:f’Q(RZ")). Con-
sider the vectors q=1(q1,-..,qn), p={(P1,-..,Dn), Where g; € C"(Id,I“;ZQ(Rz”))
and pje Ck(14, I“g‘:‘g(Rz”)), j=1,...,n, are real-valued symbols such that
{q) = <{x> and {p)y ~<&). Then, for every r € N9, 0 < |r| <k, there exist positive

constants A,, B, such that
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sup | DEDLD;(818%a)(1,4(t, x,€), p(t, x, )|

teld
< ArBlraI+Iﬁl+l>'I+lr>'|(1a| + 18] + |y + |5|)!g<f>mrlal—\yl <x>mz—l/fr—lrﬂ (4.6)
Jor all (x,&) € R*, o, B,y,0 € N". In particular, a(t,q(t,x,&), p(t,x,&)) belongs to
Ck(]d r” (R2n))'

1o

Proor. To simplify the notations, we will prove (4.6) for r = 0. The general
case does not present further difficulties. We argue by induction on |x + f8]. For
o=pf=0, we have

|(C7g5fa)(t,61(t, x, &), p(t,x,8))| < ABb’Hlﬁl([yl + 6 )!g<p>m|~\y|<q>mz-[o‘\
< AoBY P (7] + o) 1e¢ey T ey

for all y,0 e N", relI4. On the other hand, we can assume that there exist
M, K > 0 such that

|DEDEpy(1,x, &) < MEHV (o 1)<y HI G~V
|DEDY g2, x, )| < MK (@) <y ey V]

for all j=1,...,n The case (a,8) # (0,0) can then be treated assuming by
induction that for some he N

sup |DEDE(dL%a) (. (1, x,&), p(t, x, )]

reld
< AoB]" 4 - 2¢(n + 1) MKBy)*
(e 181 Iyl 4 oDyl W ey (47)
for all (x,&) e R*", »,6e N", |a+ | <h and differentiating || + 1 times with

respect to x,&. The arguments are the same used in Lemma 3.2. 0O

Proor OF ProprosiTION 4.1. Let us write the solution of (4.5) in the form

{X(l,s; yon) =y +xolt,s; y,n)

f(t»S;,V,’?) =H +50([ss;y3’7)

According to standard arguments, we set
Xy (tsiyon) = =[l{@ Ay dr j=1,....n
& (s v =[l@ )y de  j=1....n
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and for £ > 1,

k - —
{Xéj)(t,s; yon) = —=[102)(1; y + x5 (2,5 p,m), 0 + € (5 p,m) de

k Jo— _
E0(t,5 p.m) = [L0y )1y + x5 (0,5 p,m),n+ & (0,55 9,m)) dr.

We know that the sequence (x(ok),é(()k)) converges to (xp,&;) when k — +oo0.

Hence, to estimate (xq,&) it is sufficient to estimate the terms of the sequence
uniformly with respect to k. We claim that there exist positive constants My, K
such that

|DEDEDI DI (1,5, 9, M) < MoK (jo + )1y Iy W (48)

IDEDEDIDIE (1,5, y,m)| < MoKPHP(ja] + 1B Ty (4.9)

forall j=1,...,n, o,fe N", 0 < h, r < m and the inequalities hold for all & in
Z.,y,neR" and |1 — 5| < T,p, for a suitable constant 7, independent of &, y, 7
and such that 0 < T, < T. For simplicity, we consider only the case h=r=10
and prove only (4.8), the proof of {4.9) being similar. For k =1, by (4.1), we
have

IDEDEX) (1,55 p,m)| < |t = s| A BE P (far] + B1) >~y W

for some constants 4,, B; depending on A. This implies (4.8) for |t — 5| < 1. For
k > 1, suppose that (4.8) and (4.9) are true for k£ — 1 and prove them true for k.
Applying the arguments in the proof of Lemma 4.2, we can prove that there exist
Ay;, Bya > 0 independent of k such that

k—1 k—1
\DEDE (s 2) (13 y + xy V) n + &)

< Au(8(n + 1) MoKB) ™™ (fa] + |81y < py ! .

This implies (4.8) for |1 — 5| < Top = MoA7}(8(n + 1)MoB;)""**!. From (4.8) and
(4.9), we obtain an estimate of the solution of (4.5) for all re[s— Ty, 5+ Tyl
We want to extend this estimate on the whole interval [—~7",7T]. To this end, let
t*e[—T,T] and consider the shifted system

Xj = —(0,2)(1; X, E)

E=0,A0XE  j=1...n (4.10)

X(s)=y"E(s)=n"
where y* = x{(t*,s; y,n), n* = &(t*,s; v,n). Repeating the previous arguments for
(4.10), we obtain the estimates (4.8) and (4.9) for Xp = X — y*, E¢ = E —y* with
the same constants Mo, K, T.g. Thus, choosing * € s — Ty, s+ Tug(, in a finite
number of steps and choosing suitably larger constants My, K, we obtain the
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estimates (4.8) and (4.9) on the whole interval [~T, T]. Analogously, we obtain
the estimates for 0 < r < m. These give the continuity of the derivatives with
respect to r up to the order m — 1. The continuity of the m-th derivative directly
follows from the equations (4.5). Finally, by (4.1) and by the regularity with
respect to ¢, it follows that the solution (x(z,s;y,%),&(t,s; v, n)) of (4.5) is con-
tinuously differentiable up to the order m also with respect to s. O

By Proposition 4.1 and Lemma 4.2, we are able to prove that the solution
p of (4.4) is in CY[~-T", T’]Z,I’fl(Rz”)) for some positive T’ < 7. In fact, we
observe that the solution x(1,s;y,7) of (4.5) is invertible with respect to y for
tels— T,s+ T for some T < T, because

ox

.,

Denoting by y = (¢, s, x, %) the inverse function, it is easy to prove using the same
arguments of the proof of Proposition 4.1, that § C"([-T", T’]2 S (R*")) for
T' < T. Finally, we set as standard in the Hamilton-Jacobi theory

W55 yon) = ovnd + [ (5 (w5 ), €655 )
— (Ve (@5 x(z, 5 p,1), E(x, 55 pam)), (7,55 1)) di
and

(D(I,S; xw’?) = lp(t7S;(?(taS§ X, 77)”7)

By the assumptions on 4 and by Proposition 4.1, it turns out that  belongs to
cm™(|-T', T')?, I“,fl(Rz")), then by Lemma 4.2, the same holds for 9. Moreover, ¢
is a solution of (4.4), cf. [17] for classical pseudodifferential symbols, [6], [8] for
C* SG-symbols.

In order to find a parametrix for the problem (4.3), it is convenient to
reduce the equation to a first order system. To this end, we denote by A, , the
pseudodifferential operator with symbol {x>9(&>P in F,(“}’q)(RZ") and by A(‘ p‘ 2
its inverse given by the product of operators (D)>7?{(x>"¢ with symbol in
07 (R*™) and set

uy = A pu

up = A2 (D = Au

................................... (4.11)
Up-2 = A(qu) (D; — ;{)m~2u

Upey = (D — 2)™ 'u
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Using these formulas, it follows that
Dou(t, x) = AL, x, D )ui(t, x) + A(p g tiv1 (8, X) + [A(';qu)ﬁiv}‘](A(‘pl,q))m—l_iu,-(t,x)
for i=0,...,m—2 and

m

Dyt (t, %) = A1, Dt (8,%) = > ai(t,x, DA ) ey + 12,5,

J=1

Denoting by ¢!~ = [A(”!’,“;)”",/I](A("p"q))”“’“i, i=0,...,m~ 2, the equation (4.3)

is equivalent to the system

D\U=AU+ QU +NU+F

where
4o A0 - - 0
0 4 0
U= O N= |
Upp—1 00 - --- 4
0 A(/M!) 0 0
0 0 A(p,q) 0
O = |
0 A(qu
a"’(A(;,q))ln_] a’”“l(A(—/)l~q))m_2 ""”2(’4(—1'lvt1))mJ 4
A | B 0 0 0
0 o™t 0 0 0
N | C F=
...................... o 0 0
0 0 0 0 f
with initial conditions
/’l()(x)

U(s,x) = Up(x) =
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where A (x) € SY(R"), k =0,...,m — 1, depend on the functions g; according to
(4.11). We observe that all the coefficients of Q have order (p,q) and those of N
have order (0,0). Then we can write the system in the form

{L(t, x, D, Dy)U = F (4.12)

U(s,x) = Up(x)
denoting by
L(t, x,D,,Dx) = D[ -A-M

where M is a matrix of operators with symbols my € C([-T',T’), T (% H(R?)),
Jiok=1,...,m We start by considering the homogeneous system and look for
an m x m matrix E(t,5) = {Ex(t,5)} ;"’kzl of Fourier integral operators with phase

function ¢(z,s;x,%) given by the solution of (4.4) and satisfying

{L(z,x, D, D\)E(t,s) = R(t,s) t,se[-T' T (4.13)

E(s,s) =il

where R(t,s) is an m x m matrix of Fourier integral operators with kernel in
C(=T', T"1*, SY(R*)) and I is the m x m diagonal matrix diag[l, ..., 1], where
1 is the identity operator on S§(R"). As standard we determine the symbols
ew(t,s;x,n), jok=1,...,m, starting from their asymptotic expansions >_,., c(”
Applying Remark 4 and recalling that d,p = A(t, x, Vyp), it follows that (LE)»I,‘_
has symbol by(z,s;x,5) ~ thobﬁ,’\,’)(t,s; x,%) where

n
By (t,53,) = Diely) (1,5:%,7) = 3 (05, 1)(6;, V) D) (1, 5., 7)

r=1
m
= q(t,s;x,m)el) (tsix,m) = > my(t:x, Vap)el (1,5,x,7)  (4.14)
I=1

and, for 7 >1,

h
By (1, 53x,1)

n

=Dl (t,5:5,1) = > (05, A)(:X, Vup) Dy el (2, 5:..7)

r=1

— g(1, 5%, 7)e k Ut s x,n) — ij/ (t;x wa)e(')(t,s;x,n)
=1
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h—1

=30 ST (@) DR (8 x, Ven(t, 5 3,2, m)ey) (1,5:2,1m),

r=0 |a|=h—r+1

h—1

*ZZ ST (o) DE(0gmp) (1%, Ve (1, 5%, 2,1))efy (5 2,m)), - (4.15)

I=1 =0 |aj=h—r
for all x,n € R" and for all t,se[-T', T'], where

n

i 2 . 2 .
g(tsix,m) = =5 D (e, 1) (1%, Vo) (35, 08, 5, %, 1),

r,s=1

By Leibniz formula, it follows that

by (2,5:3,m) = Die (1,5, %,7) — S (@ 2) (%, Vep) Dl (1,5 %,1)

r=1

— gl x el esxm) = S0 (s, Vep)el) (1,555,
I=1

m h—1

SN ST ppnersaltisixm)DEe) (1,5x,m) (4.16)

=1 r=0 |B| <h—r+1
where
Pphergi(six) =681 >

o —
azf B a
laj=h-r+1

Ao F(BEAV(8 x, V(8,5 %, 2,m)))_

+ Z D?"g((é’gmﬂ)(t: x, Veo(t, 5%, 2,m))),
2

=X

It is easy to prove that
Pphorgt € C=T", T}, TF D (R2m) (4.17)

and that

sup D) D2pg h—rj(t,s; %, 1)
(s el-T7'. 7

< ABIyI+I51+h—r+1 (|}‘| + h— r)!y

(18] + b — r = |8+ DR — )T Ky rr=Wep et lfi=Rl - (4.18)



348 Marco CAPPIELLO

for some positive constants 4, B. Furthermore, for [f|=h—r+1,

Poneriiltisim) =0 L (@A) (5 x, Vap(t, 55 x,m)).
Then, in this case, pg s, ;1€ C([—T", T, 1"1( lh+’ Y(R?)) and

sup  |D)DSpghrji(t,s; X, 7)|
() el-T", T

< ABMHPIE 5|1y My TR (4.19)

If x = x(¢,s;y,1) is the solution of (4.5), then (4.14) and (4.16) give

i ) "
B (2,53 y,m) = (De = 42,5, ,m)ER) (2,5 v, 1)

m
- (0
- ij[(t,S; Vs ﬂ)e§k)(ta 5V, ’7) (420)
=1
and
h
by (1,5 y,m)
= (D: = 4t,5 3, m))& (1,5 y,m) - Zmﬂ(t 5 7,12y (1,5 y.n)
/=1
m  h—-1 "
~ ~(r .
=330 Y et ymDEG (st szm)m) o (421)
I=1 r=0 |g|<h—r+1 B
where

b (55 p,m) = bl (1,5, x(4,5; . 1), )
& (t,5 ) = ejk’(t, 53 (8,55 y, 1), 1)
(e, s; y,m) = m(t; x(t, 83 y,1m),&(1, 85 y,1))
Pgoher ji(85 ¥51) = Ppoa—r,j1 (1, 5,x(2, 5, y,11), 1)
q(t, 8 ,m) = q(t,5:x(1,8,y,71), 1)
for j,k,l=1,...,m, he N. The functions e(k satisfy (4.13), if é ek are solutions
of the cquations

B (s ym)=0 Vi k=1,...,mh=0 (4.22)
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with initial conditions
& (s,5, y,1) = id}o]

for ,se [-T',T'], y,ne R". Let us define

t

fh)(f Sy, = ek (t $39,7) - exp [——iJ g(z,s; v,7) a’r}, h>0  (4.23)

s

It turns out that e,f) are solutions of (4.22) if the functions j % are solutions of

m
D, k ts »n) — 51(, 83 Y, f,k (t,s5;93,m) =0 (4.24)
J -

and
7o . A0
(1,5 v0m) — Z/izﬂ(t,s; w5 ) = anr(tys; von)  (4.25)

with initial conditions
h ohok .
Fs,s yon) = i80f, h20,jk=1,....m
where

m  h-1
g (tsipm) = > S° dpnerga(ts yon) DI (15 ym)  (4.26)
=1 r=0 |p|sh-r+1
for some c?,;;, r;.1 which satisfy (4.18) and (4.19) for some constants 4 > I,
B > 1, in view of the fact that g(¢,s; y,7) is in I"O 0’(Rz") for all t,se[~T',T].

LemMMA 4.3. The functions f;f(ol, solutions of (4.24), satisfy the following
condition: there exist A, =1, ¢ > 0 such that

(D5 DYF (15 yom)| < APl Gry Ty
ja+ | . . It _ Sli
-explem? e = s Y DT (4.27)
i=0 :
Dy DID. Y (1,5 . m)] < AZH PGy Ty V!

|2+ B+1

il
el =) 3 T @
i=1 h

Jor all t,5e[-T".T'], (y,n) € R™.
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Proor. For a=f =0, (4.27) follows directly from well known estimates
for the solutions of the Cauchy problem for ordinary differential equations. See
Lemma 4.1 in [11]. Assume that (4.27) is true for |a+f| <N and let re
{1,...,n}. Then, D, f;,((o) are the solutions of

m m
#0) = F0y = . 70
DtDYr-fj"k - Z mﬂDyr-f;l(( - Z D,Vrmﬂ ’ -f[k
1=l I=1

(0
Der]:](c )(S,S; )’,77) = 0
for j,k=1,...,m. Denote by f;}co)(t,s, 7; y,1) the solution of (4.24) such that
” _
j;ﬁc (t,5,75 p,1) = 1(5}‘.

We observe that jj.fto)(t, s,7; ¥, 1) satisfies (4.27) for |o+ f] < N, replacing |7 — ]
by |t — 7| in the right-hand side, cf. [4]. Then

t m
0 (0 - ~(0
D, [0t p,1) = j S 70 s, 7 y Dy (z, 55 y.m) i) (253 y,n) d

S l=1

which we can estimate inductively obtaining (4.27). Similarly, we argue on
D, f;.,(co). The estimate (4.28) can be obtained directly from (4.27) and (4.24). [

To find an estimate for the functions Ji.ih), h =1 we observe that

m 1

~(h (0

s y,m) = Zj IO 8,7y, mgner(z, 5 y,m) dT, h=1.  (429)
=195

LEMMA 4.4. For h > 1, the functions f;.f(h)(t, 85 ¥, 1), solutions of (4.25), satisfy
the following condition: for every p'e|p,1/6], q'€[q,1/0] with 2u—0)/0 <
p'+q <1/0

IDEDLF (8,5 3,m)] < A4 25" m? A, AB) P (o] 4- ] + 21

()OO Gy I s PR expl(c + 1) Pt — 5]

|o+B]+3h |t— sli

D P (4.30)

1
=0 L

for all (y,n)eR*™ with <n>2=h" and {y>=h® and for all «,feN", t,5 in
[-T',T'], where A, B are the constants appearing in (4.18) and (4.19) and A,, ¢ are
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the constants appearing in (4.27) and (4.28). Moreover, there exists Ay > 0 such
that

IDDED, f{1 (1,5 y.m)| < ATV (o) 4 1B 4 2Bt () P )

Sy TPy I expl(e + 1) <ndP (e ~ 5]

ot +3h-+1 It — |
S Py D (4.31)
i=1 '

for all (y,n)eR™ with {n)=h" and (y>>h" and for all «,f e N", ;s in
[T, T"].

ProoF. In order to prove (4.30), we argue by induction on h > 1. For A = 1,
by (4.18), (4.26) and (4.27), it follows that

|D2{Dﬁ!]l/k(f7 ) ’7),

Z > Z( ) > (;‘)ID;/DﬁJL?ﬁ,],/,I(T»S; o)l

=1 |Bl<2y'<y d'<é
. D)'—)"Dri-ﬁ’+/3 7(0) -y
I n y f]k (T,S,),if)l

< Am( A B)" PGy Ty P expledy? <oyl = )

Jy+0]+2

(i+1) g(i+1}) | Ii
EP DR

2 Z( ) Z(;)Uy—y’H 0= 8/ + 1B (Iy'] + 1) = 18] + 3)1~
Bl<2y'<y 5'<é

y (2.5), we have (|y'| +18| — |B] + 3)1* < 26 =W =3 (|| 4 187 — |B] + 2)14,
from which we deduce that

)
)7 =1+ 16 =T+ BT + 10'] = 18] + 3)1
2x()z6)

< 292 24Py 4 Jo] + 21 D7 27 < 23 (2 2Py 1 Jo] 4 2)1,
ipl<2

Hence
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DI DS g1 (z, 5 y,m)| < 224" Am( A, B)} (2 - 244, B) (7] + 0] + 21

-y MLy PR expledn Py T = ]

[} +}o}+2 |z — SI"

S Py e (4.32)
i=0

il
Furthermore, by (4.27), it follows that
DD (15,75 y. )|
< AP Ay~ )Pl expl(e + 1P le =1l (4.33)
for all j,/=1,...,m. By (4.29), combining (4.32) and (4.33), we deduce that
IDEDE 1,55y, )| < A4 27 m2, AB) VI (o] 4 1] + 2)1¢
ATy TP expl (e + DX ) = 5]

| +]B]+2 pli+1) q(i+1) pt .
. Z 0 i'<y> J |t —s]" dt

i=0 s

for all (y,n) e R*, t,s€[-T',T'], «,f € N", which gives in particular (4.30) for
h=1. For h>1, by (4.26), we can decompose

h=1

DIDgn (T8 1) = Y (Ayonor k(T8 3,0) + Opoonrt k(7,55 3,7))
r=0

where

n
v 0 TR
Aok (T, y,0) =Y 2 3 (y’) > (5, )DJ D2 dg her.u(z, 55y, 1)

I=1 || <h-ry'<y §'<é
D DI f (2,5 y,m) (4.34)
and
m y ) o
Gy.6,hrt.k(T,8 Y1) = Z Z Z( ,) Z (5,>D; Dﬁ dﬂ,h_r./,!(f,s; ».n)
I=1 |fl=h—r+1y' <y 7 8'<é
DI DI i (2,5 y, ). (4.35)

Assuming (4.30) true for r = 1,...,h — 1 and observing that || + 3r < 3h ~ 1, by
(4.18) and (4.27), it follows that
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[A)‘.(S.h.r.f,k(fv 85 ¥, ’7)'
< A%m(4 - 22" m? 4, A BRIy r)l-*(r!)“"p'+‘f’)<;7>*'ﬂ*”< yy eI

Iy1+10]+3h—

Ii

~exp[(c + D)<y e — ] Z <;7>P (D ¢y a' D) ylt =l o

i=0 !
. ph-r+l Loun, 2 18| ¥ 1 , o
’ wl;— A As) V’ZSy<7',>2(/t+—])iy_'|(|?|+h olls

o 1
(5 s (01 == B+ 0y = 1+ 1 =8+ 181+ 2010
§'<é

By (2.5), we have (|6'| +h—r— |B]+ 1)1# < 200" +h=r=B+D (|67 4 b — r — |B])14.
Then, applying Lemma 5.1 in [14], it turns out that

’ d 1
g(i)ﬂ“ “'”y'+h”)wz(a')m(|‘5’|+h~r~|ﬁI+1)!#
rsy

8'<s

=y +10 -6+ Bl +2r)¥

r- ry_1
< 2. gHhr B (y,) st (V1A= 0¥y = 'L+ 161 + b+ )l
Y'sy

< 42K =B () 4 18] + 2}1)!!,(|§’|1+2h )n
—r

Now, observing that

-1
(|51| + 2h> Ul _ r)!-—l (r!)—y(["+q') < (h!)“)(l"‘*'ql)
h—r
and that
> 2742k 4, 4B < 274 24 mP 4,4 B)"
B <h-r

we obtain

h-1

Z 14y.6,h,r.0. k(7,8 y,17)]

r=0

< A2m(4 - 29 m2 4, AB)TRIE (o) 18] 4 212
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- (ht)TOPH) Gy =B s =Bk expl(c + 1) <Py 9T — 5]

[+[6]+3A~1 i+1) 41) It — Sli
p gurl)y 7 71
2 Py i
h—1
.4.0" Z(zyB)h—r+l(4 . 2/4+nm2A0AB)3(r—h)
r=0

from which, in particular, we deduce that

h—1
Z M-y,é,h,r,/,k(fy 55, 1)]
r=0

< (4 2 A, AR 5] 1 15 4 2

(TR Gy TS B expl (e 4 1) <Py dle — 5]

Iyl+8]+3h—1 B g o= s
R (4.36)
=0 :

for all (y,7)e R* with (4> =hY and (y) = A’ and for all 7,s in [-T',T’],
y,0 € N". Let us now estimate (4.35). By applying (4.19), (4.27) and the inductive
hypothesis, we obtain

h-1

Z lay,6,n,r,¢,6(T, 85 ¥,17)]|

r=0

< Amlyy MRy PR expl(c + 1) <Py — 5]

[7]+]81+3h-1 | | Al
ny? TS 4574 22 g, g gt
=0 r=0
.Bh—r+1(r!)_9(p'+q’)(|y| + 18]+ h+r+ 1 Z 1.

VBl=h—r+1
In view of the fact that (> > h? and (y) > h?, it follows that
()"0 (| 18]+ b+ 1+ DI < (Jy] +16] + 2h) 14 (R — 1)1702"+0"

< (9] + 18] + 2m) (RO Gy ()



Fourier integral operators of infinite order 355

Moreover, assuming A, sufficiently large in (4.27) and (4.28) and arguing as
before, it is easy to prove that

h—1
4 2(4 . 2ﬂ+ﬂm2A0AB)I}'l+k5|+b+3r+l
r=0
1 )
. Bh—r+l < 4 . putn 2 v B l}‘|+|()[+4h‘
_Z 1_8/11712( 27 m A, 4B)
|Bl=h—r+1
Then, it turns out that
h—1
> oysnrrk(t.s y.n)l
r=0
A w2 Iyl 4161+
< ﬁ(‘l -2 m AaAB>
(7] 18] 4 2O ) Gy Sl gy 1o exp|(c + 1)<ndP<d T — s]
17}+)0]+3h~1 i
e gyyreen 2 (437

!
=0 I

Arguing as in the case 1 =1, by (4.33), (4.36) and (4.37) we obtain (4.30). The
estimate (4.31) directly follows from (4.25) and (4.30). 0

LemMa 4.5, For h > 1, the functions ]i'.ih)(t, 85 ¥, 1), solutions of (4.25), satisfy
the following estimates:

DD (1,55 y,m)] < A4 - 204" 4, AB) VI () 11| 4 2)1(ht) =P 40

T VIR expl(e 4+ )Pt - ]

|2+p)+3h

D te=sf (4.38)

!
i=0 2
and

\DFDID" (1,55 yom) < AP (] 4 1]+ 20t ()

gy Ry I expl(e 4 1)<y - 8]

Ja+Bl+3h+1 i~1
P+ |2 -l

> T (4.39)
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for all (y,n) € R* with <n) = h? and {y> < h® and for all t,5 in [-T',T"], o, f
in N", where p',q' are the same of Lemma 4.4.

PrOOF. As in Lemma 4.4, it is sufficient to prove (4.38) by induction on
h, observing that, for (> = h% and <y> < h?, we have (n>? (p>¥ < (yHP*.
Then, arguing as in Lemma 4.4 and applying (4.30) and the inductive assumption
(4.38) for r=1,...,h~1, we deduce that

h—1
> et s y.m)]

r=0

A ,
< g4 24 m2 4, A B)HOIE (1) 116 + 2m)1#

()T Gy HR s P expl(e 1)< Py Y e — 5]

[7]+19]+3h~1

<,7>(P’+q’)(i+1) |z - S|I

. (4.40)

|
i=0 E

Furthermore, observing that
(M XEF (| 410 + h+r 4+ DI < (9] + 18] + 2h)1#(h — 1)170"+4)
< (Iy]+ 18] + 2m)!1H (1) =) e+
for {#) = #Y and arguing as in Lemma 4.4, we have

h—1
S 10y s k(T8 v,1)]

r=0

< _é_ (4- QHtRL2 4 AB)|3'|+I5I+4’!
~ 8m ¢

(Il 18] 4 21 (h) 0P Gy s TR expl(e 4+ 1)< yP )yt — )]

[y|+10]+3h—1

(P HaED) [r—sl’ )

il

(4.41)
i=0

The estimates (4.33), (4.40) and (4.41) imply (4.38). O

REMARK 6. By the same arguments of Lemma 4.5, it is easy 1o prove that the
Jollowing estimates hold:
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IDEDEF (15 p,m)] < A4 274" m2 A, AR (o] || 4 2y ()~

Ty expl(e 4+ 1)<y ) e = 8]

|a+)+3h

"+ llt |
Y pri (4.42)

— i!
and

|D;D5iji'/((h)(l‘, s .1 < A\lalﬂmﬂhﬂﬂozl + 18] + 2/1)!/:(]21)—(I(p’+¢1’)

-y Ty TR expl(c + 1) <Py - 5]

la+f]+3h+]

' +q' )i It - Sl
Z <y>(l +q") _(l__l__)_'_ (4.43)

i=1

Sor all (y,n)eR™ with (y>=h" and {nd> < h’ and for all t,s in [-T', T,
a,f e N", where p'.q" are the sume of Lemmas 4.4 and 4.5.

THEOREM 4.6.  There exists an m x m matrix E(t,s) = {Ex}\_, of Fourier
integral operators with phase function ¢(t,s;x,n) as before and symbols ey (t,s; x,n)
in CY([-T', T, !f,,H_ﬂ‘U(Rz")) Sfor all jk=1,....m, which satisfies (4.13).

Proor. We observe that the condition (24— 8)/0 < p'+¢4' <1/8 in Lemmas
4.4 and 4.5 and Remark 6 implies that 2u — 8(p' + ¢') < 0. Then, it follows that
there exists C > 0 such that for every ¢ >0 and r=0,1

sup sup  sup sup  CIHEB=2 e TRy T!
lzeNz.[)’EN"(.\".q)eQ;ﬁr.xe[~T’.T’}

ey expl—e(|x|7 + | /)| DEDED] £ (1,53 x,m)| < o0 (4.44)

Furthermore, by (4.23), recalling that ¢ has order (0,0) and arguing as in Lemma
4.2, it is easy to show that, eventually enlarging the constants the estimates (4.44)
hold also for the functions e ) and consequently for ejk By (4.44) and by the
condition 0 > 2u —1, it follows in particular that 3, ,e (: and 3, D,ek are
bounded in FS7, | M(Rz") uniformly with respect to 1,5€ [-T’,T’]. Starting
from >, e j/:)’ we can argue as in Theorem 2.14 and find a sequence of func-
tions @,(x,7) € C* (R*") depending on a parameter R such that ey = Y ohs0 Pne; h’

isin I5% +1 (R*™), jk=1,...,mif R is sufficiently large. Moreover, the func-

—;1 4

tions g,e jk " belong to C([-T", T"% w10l R 7)) for ever h>0, jk=1,.
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m. Then, it is easy to prove that also ey € C([-T",T")?, fgﬂ_ﬂ‘g(Rz")) for all

Jyk=1,...,m. The same argument can be used to prove that also D,e; is in
C(-T', T3, :‘OH_FI__#,H(RZII)) for all j,k=1,...,m. Finally, we can conclude
that E(z,s) satisfies (4.13). O

We conclude giving a theorem of existence of a solution for the Cauchy
problem (4.3).

TueoreM 4.7. Let fe C(-T,T),S{(R") and gireSY(R"), k=0,...,
m — 1. Under the assumptions (4.1), (4.2), there exists a positive T' < T such that,
for every se |—T',T'], the problem

P(t,x,D;,D)u= f(t,x) (t,x)e[-T", T xR"
Dku(s, x) = gi(x) k=0,....m—1,xeR"

admits a solution ue C™([-T',T'],SJ(R")). An analogous result holds when we
replace SY(R™) with S§'(R™).

ProoF. Obviously, it is sufficient to prove that the problem (4.12) has a
solution U(t,x) e CY([-T',T"], (S{(R"))™), where we denote by (SY(R"))™ the
cartesian product of m copies of S§(R"). We start by considering the case
Up(x) = 0. We look for a solution of the form

t

Ult, x) = J E(1, 7)[F(x,x) + H(z, x)] dt (4.45)

5
for a suitable H(r,x)e C([-T',T'],(SJ(R"))™). To this end, denote, for any
Ge C({_TI7 T,}v (Sﬂg(Rn))m)

!
RG(t,x) = J R(t,7)G(r,x) dt

where R(t,7) = {Ru} ;,nk=l is the matrix of f-regularizing operators with kernel in
c(-1', T’]Z,Sg(RZ”)) appearing in (4.13). The function U(¢,x) defined by (4.45)
is a solution if and only if the function H(t, x) satisfies the relation

H(t,x)+ RH(t,x) + RF(t,x) =0 (4.46)

for every (t,x) e [-T’,T'] x R". To prove (4.46), we can limit ourselves to show
that the Neumann series » .-, (—1)"#"F(t,-) converges uniformly with respect to
te[-T',T'] in (SY(R™)™. Let us prove the convergence of the single com-
ponents.



Fourier integral operators of infinite order 359

With reference to the norms in (1.1), there exist positive integers 4, B such
that

16F, 0 Mamn <& [ ([ 1 10) 0

s

,,,,

operator Ry, j,k=1,...m. In particular, it follows that

I(RF) (8, )4, pn <K'= sup [ £ (8, )4 50 It =5l
te[-T, T

for some positive K’ > K. Suppose that

; ) i t—s"
1(2F)(t, M apn < (K'm)”  sup | f(1, -)I!A‘s,nL——l—

4.47
te[~T", T V! (447)

and prove (4.47) true for v+ 1. We have

1 E )1

ijwmwmma

/=19

A,B.n

te|-7T",7T'| Y

m ! . o 'T——SV
<K [P ann o < KD swp 0 g [ 5
=1 Js

I[_S|v+1

< (mk")""! supT]Hf(f, ’)“A,B.nm'

te|-T,T"

Hence, the convergence of the series is proved and we have a solution for the
problem (4.12) when Uy = 0. Arguing as before, we can prove that there exists
HeC([-T',T",(SJ(R"))™) such that

t

U(t,x) = Up(x) —J E(1,0)[LUy(z,x) + H(1,x)] dt

N

is a solution of the problem

{LU(* x)=0 (tx)e[-T" T xR" (4.48)

U(s,x) = Up(x).

Combining the two solutions, we obtain a solution for (4.12). |
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