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We study the magneto-optical Kerr effect using fully relativistic calculations. Spin-orbit

coupling is dealt with exactly solving the Dirac equation directly and the matrix elements of

the Dirac matrices α are used in a fully relativistic expression of the Kubo formula for the

optical conductivity derived with a relativistic sum rule. We also perform approximate calcu-

lations of the optical conductivity to examine the accuracy of a partly relativistic expression

in which the matrix elements of the momentum operator p are used instead. As an example,

we carry out calculations for bcc Fe and fcc Ni using the fully relativistic full-potential linear-

combination-of-atomic-orbitals method. It is found that the partly relativistic treatment is

good for the diagonal optical conductivity while it is not very good for the off-diagonal opti-

cal conductivity, the Kerr rotation angle, and the Kerr ellipticity. The results of the present

study are compared to those of experimental and other theoretical studies.
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1. Introduction

In the last few decades, the magneto-optical Kerr effect (MOKE) has attracted much

attention because of its application in data storage technology.1,2) The microscopic origin of

the MOKE is a combination of spin-orbit coupling and the magnetization of a material. The

effect is usually not very large; for example, the Kerr rotation angles are less than 1 degree for

the ferromagnetic 3d transition metals, Fe, Co, and Ni. For this reason, careful measurements

in experimental studies and accurate calculations in theoretical studies are indispensable.3–7)

To study the MOKE theoretically, first-principles calculations based on the density func-

tional theory have been carried out; the full-potential linear muffin-tin orbital method, the

augmented spherical wave method, and the full-potential linear augmented plane wave method

are used as powerful tools for this purpose.8–26) Since the MOKE is sensitive to the details

of the electronic structure of a material, careful analysis is indispensable; for example, full-

potential approach, inclusion of relativistic effects, accurate evaluation of matrix elements, etc.

The recent theoretical progress enables a precise investigation of the MOKE and a detailed

comparison between calculated and measured Kerr spectra becomes possible.

There still remain, however, a few points to be examined theoretically. One is that fully
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relativistic calculations in the sense that the Dirac equation is solved directly have not been

performed yet; so far, spin-orbit coupling has been dealt with using a second variation pro-

cedure. Another is that a fully relativistic expression of the Kubo formula for the optical

conductivity in the sense that the matrix elements of the Dirac matrices α are used has

not been employed yet; so far, the matrix elements have been approximated with those of

the momentum operator p = −i~∇.27,28) These points can be examined employing the fully

relativistic full-potential linear-combination-of-atomic-orbitals (FFLCAO) method.29)

The purpose of the present study is to investigate the MOKE using the FFLCAO method

to deal with spin-orbit coupling exactly and also to evaluate the matrix elements of the

Dirac matrices α necessary for calculating the optical conductivity with a fully relativistic

expression of the Kubo formula derived with a relativistic sum rule. As an example, we

calculate the optical conductivity and the Kerr spectra of bcc Fe and fcc Ni. In §2, we derive

the relativistic sum rule within the independent electron approximation and, in §3, we apply

it to the derivation of the fully relativistic expression of the Kubo formula for the optical

conductivity. The results and discussion of the calculations for bcc Fe and fcc Ni are given in

§4. Finally, we give the conclusions of the present study in §5.

2. Relativistic sum rule

We now derive a relativistic sum rule within the independent electron approximation,

which will be applied to the derivation of the fully relativistic expression of the Kubo formula

for the optical conductivity in the next section.

The Dirac equation is given as

[

cα · p + (β − 1) mc2 + V
]

|ν〉 = εν |ν〉 , (1)

where α and β are the Dirac matrices and V is the 4×4 one-electron potential. For a crystalline

solid, the quantum number ν represents the band index n and the wave number vector k. In

the following, the Dirac Hamiltonian is denoted by H, i.e.,

H = cα · p + (β − 1) mc2 + V . (2)

The solutions of eq.(1) are classified into two groups; one is a group such that, in the non-

relativistic limit, i.e., in the limit of c → ∞, the solutions in this group converge to the cor-

responding solutions of the two-component Schrödinger equation while the other is a group

such that the energies of the solutions in this group become −∞ in the nonrelativistic limit.

In the present study, we refer to the former solutions as the positive energy states and also

refer to the latter solutions as the negative energy states regardless of whether εν is positive

or negative.

The Hamiltonian and the ground state of the many-electron system in a solid are then
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given by

H =
∑

ν

ενa†νaν (3)

and

|G〉 =

occ
∏

ν

a†ν |null〉 , (4)

respectively. In the above equations, a†
ν and aν are the creation and annihilation operators of

the electron in the one-electron state |ν〉, respectively. Also, in eq.(4), the product is over the

occupied states including all the negative energy states; in this equation, |null〉 represents the

state in which there are no electrons in either the positive or negative energy states.

We now consider the following operators:

X =
∑

νµ

〈ν|ξ|µ〉a†νaµ (5)

and

Y =
∑

νµ

〈ν|η|µ〉a†νaµ , (6)

where ξ and η represent the x, y, or z coordinate of an electron. It is straightforward to show

[X ,H] =
∑

νµ

i~c〈ν|αξ |µ〉a
†
νaµ (7)

if one notices

[ξ,H] = i~cαξ . (8)

Furthermore, we can derive the following commutation relation:

[Y, [X ,H]] = 0 . (9)

The derivation is also straightforward because

[η, αξ] = 0 . (10)

Next, we consider the expectation value of eq.(9) with respect to the ground state |G〉 as

follows:

〈G| [Y, [X ,H]] |G〉 = 0 . (11)

On the other hand, the left-hand side of the above equation is evaluated as

〈G| [Y, [X ,H]] |G〉 =
∑

νµ

fν(1 − fµ)(εν − εµ) (〈ν|ξ|µ〉〈µ|η|ν〉 + 〈ν|η|µ〉〈µ|ξ|ν〉) , (12)

where fν and fµ represent the Fermi distribution function. Calculating the matrix element of

eq.(8), we obtain

(εµ − εν)〈ν|ξ|µ〉 = i~c〈ν|αξ |µ〉 . (13)
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Accordingly, eq.(12) becomes

〈G| [Y, [X ,H]] |G〉 = ~
2c2

∑

νµ

fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ

+
〈ν|αη |µ〉〈µ|αξ|ν〉

εν − εµ

]

. (14)

We thus arrive at the following relativistic sum rule:

∑

νµ

fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ

+
〈ν|αη |µ〉〈µ|αξ|ν〉

εν − εµ

]

= 0 . (15)

3. Optical conductivity

The fully relativistic expression of the Kubo formula for the optical conductivity due to

the interband transition can be obtained as30)

σξη(ω) =
ie2c2

Ωωτ

∑

νµ

fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ + ~ωτ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ − ~ωτ

]

. (16)

Here, Ω is the volume of a solid and ωτ represents ω + i/τ , ω being the frequency of light

and τ being phenomenological relaxation time. In eq.(16), the summation over ν is for both

the positive and negative energy states while the summation over µ is only for the positive

energy states because of the factor 1−fµ. Although eq.(16) is formally correct, the summation

involving the negative energy states causes a serious difficulty when calculating the optical

conductivity with this expression. In this section, we eliminate the summation involving the

negative energy states using the relativistic sum rule derived in the previous section.

We first decompose the summation over ν into two parts; one is for the positive energy

states and the other is for the negative energy states as follows:

σξη(ω) =
ie2c2

Ωωτ

∑

ν

(+)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ + ~ωτ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ − ~ωτ

]

+
ie2c2

Ωωτ

∑

ν

(−)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ + ~ωτ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ − ~ωτ

]

,

(17)

where
∑

(+) denotes the summation over the positive energy states and
∑

(−) denotes the

summation over the negative energy states. Furthermore, since the energy differences between

the negative energy states and the positive energy states are very large in comparison to the

photon energy, it is a very good approximation to ignore ~ωτ in the summation involving both

the positive and negative energy states:

σξη(ω) =
ie2c2

Ωωτ

∑

ν

(+)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ + ~ωτ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ − ~ωτ

]

+
ie2c2

Ωωτ

∑

ν

(−)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ

]

.

(18)
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Rewriting the relativistic sum rule derived in the previous section as

∑

ν

(+)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ |µ〉〈µ|αη|ν〉

εν − εµ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ

]

+
∑

ν

(−)
∑

µ

(+)fν(1 − fµ)

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ

+
〈ν|αη|µ〉〈µ|αξ |ν〉

εν − εµ

]

= 0 ,

(19)

we obtain

σξη(ω) =
ie2c2

Ωωτ

∑

ν

(+)
∑

µ

(+)fν(1 − fµ)

×

[

〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ + ~ωτ

+
〈ν|αη |µ〉〈µ|αξ |ν〉

εν − εµ − ~ωτ

−
〈ν|αξ|µ〉〈µ|αη |ν〉

εν − εµ

−
〈ν|αη |µ〉〈µ|αξ|ν〉

εν − εµ

]

.

(20)

It should be noted that the above equation involves only the positive energy states and thus

one can employ usual computational techniques for the calculations with this expression.

Finally, after manipulating eq.(20), we obtain the fully relativistic expression of the Kubo

formula for the optical conductivity:

σξη(ω) =
2ie2c2

~Ω

∑

ν

(+)
∑

µ

(+) fν(1 − fµ)

ω2
τ − ω2

µν

×

{

ωτ

ωµν

Re [〈ν|αξ|µ〉〈µ|αη |ν〉] + iIm [〈ν|αξ|µ〉〈µ|αη |ν〉]

}

,

(21)

where ωµν denotes (εµ − εν)/~, or, for a crystalline solid,

σξη(ω) =
2ie2c2

~Ω

∑

k

∑

l

(+)
∑

n

(+) flk(1 − fnk)

ω2
τ − ω2

nlk

×

{

ωτ

ωnlk

Re [〈lk|αξ|nk〉〈nk|αη |lk〉] + iIm [〈lk|αξ|nk〉〈nk|αη|lk〉]

}

,

(22)

where ωnlk denotes (εnk−εlk)/~. Equation (22) is the final formula for the optical conductivity

used in the present study. We also use a partly relativistic expression for comparison; in

eq.(22), employing the Pauli approximation,31) i.e., replacing the matrix element 〈lk|αξ|nk〉

with (lk|pξ/mc|nk), where | ) is the large component of | 〉 in the standard representation

and pξ is the ξ component of the momentum operator p, we obtain the partly relativistic

expression:27,28)

σξη(ω) =
2ie2

m2~Ω

∑

k

∑

l

(+)
∑

n

(+) flk(1 − fnk)

ω2
τ − ω2

nlk

×

{

ωτ

ωnlk

Re [(lk|pξ|nk)(nk|pη|lk)] + iIm [(lk|pξ|nk)(nk|pη|lk)]

}

.

(23)

Using eq.(22) or eq.(23), the Kerr rotation angle θK(ω) and the Kerr ellipticity ηK(ω) are
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given by

θK(ω) + iηK(ω) = −
σxy(ω)

σxx(ω)
√

1 + i(4π/ω)σxx(ω)
. (24)

4. Computational details

In the present study, we employed the FFLCAO method based on the density functional

theory within the local-spin-density approximation.29) Solving the Dirac-Kohn-Sham equa-

tions directly, spin-orbit coupling is taken into account exactly. Furthermore, we carried out

calculations adopting the exchange-correlation energy functional within the local-spin-density

approximation expressed by the Perdew-Zunger parameterization of Ceperley and Alder’s

results.32,33)

In the present study, we used the experimental lattice constants: 2.8663 Å for bcc Fe and

3.5238 Å for fcc Ni. We chose basis functions so that they have enough variational flexibility.

That is, we used not only atomic orbitals of neutral atoms but also those of charged atoms. We

used a single orbital for each core orbital and double orbitals for each valence orbital. Double

valence orbitals are necessary for describing the contraction of atomic orbitals accompanied

with cohesion. The atomic orbitals used for Fe are 1s, 2s, 2p, 3s, 3p, 3d, and 4s atomic orbitals

of neutral Fe atoms and 3d and 4s atomic orbitals of Fe2+ atoms and 4p atomic orbitals of

Fe+ and Fe3+ atoms. Also, the atomic orbitals used for Ni are 1s, 2s, 2p, 3s, 3p, 3d, and

4s atomic orbitals of neutral Ni atoms and 3d and 4s atomic orbitals of Ni2+ atoms and 4p

atomic orbitals of Ni+ and Ni3+ atoms.

Real space integration is performed using the atomic partitioning method;34–36) the num-

ber of mesh points per atom is 3096. Also, reciprocal space integration in the Brillouin zone

is performed using the good-lattice-point method.37) The number of k points used for self-

consistent calculations is 185 and that used for the calculations of the optical conductivity is

up to 4044 k points for checking the convergence. Furthermore, we performed the multipolar

expansion of the electrostatic potential up to 3. In calculating the optical conductivity, we

use a phenomenological relaxation time ~/τ = 0.5 eV throughout and, to avoid ambiguity,

we consider only the interband contribution to the optical conductivity given by eq.(22) or

eq.(23), ignoring the intraband contribution described by an empirical Drude term.

5. Results and discussion

We first examine the computational error accompanied with the sampling of k points.

To this end, we take the Kerr rotation angle of Fe as an example because this quantity is

very sensitive to computational details. In Fig. 1, we show the spectra of the Kerr rotation

angle calculated with 828 k points, 1958 k points, and 4044 k points. It is found that the

three results are in good agreement with each other at least between 1 eV and 8 eV. We thus

consider the results of calculations with 4044 k points to be reliable in this energy range. In

the following, we show the results of calculations with 4044 k points.
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Fig. 1. Spectra of Kerr rotation angle for bcc Fe. The dashed line is the result calculated with 828

k points. The dotted line is the result calculated with 1958 k points. The solid line is the result

calculated with 4044 k points.

We now show the diagonal optical conductivity, σxx(ω), of Fe in Fig. 2 and that of Ni in Fig.

3. Figures 2(a) and 3(a) represent Re[σxx(ω)] and Figs. 2(b) and 3(b) represent Im[σxx(ω)].

In these figures, the solid lines show the results calculated with eq.(22) while the pluses show

the results calculated with eq.(23). It is found that both are in excellent agreement with

each other. That is, the use of the matrix elements of the momentum operator p instead of

those of the Dirac matrices α is very good approximation in calculating the diagonal optical

conductivity.

We next show the off-diagonal optical conductivity, σxy(ω), of Fe in Fig. 4 and that of

Ni in Fig. 5. Figures 4(a) and 5(a) represent ωRe[σxy(ω)] and Figs. 4(b) and 5(b) represent

ωIm[σxy(ω)]. Also, in these figures, the solid lines show the results calculated with eq.(22)

while the pluses show the results calculated with eq.(23). It is found that there is a noticeable

difference between the former and the latter although the difference is not very significant.

Finally, we show the Kerr spectra of Fe in Fig. 6 and those of Ni in Fig. 7. Figures 6(a)

and 7(a) represent the Kerr rotation angle θK(ω) and Figs. 6(b) and 7(b) represent the Kerr

ellipticity ηK(ω). Also, in these figures, the solid lines show the results calculated with eq.(22)

while the pluses show the results calculated with eq.(23). It is found that there is also a

noticeable difference between the former and the latter although the difference is not very

significant. In particular, the difference is considerable in the spectra of the Kerr rotation

angle.

We thus arrive at the following conclusion. The approximation in which the matrix el-

ements of the momentum operator p are used instead of those of the Dirac matrices α is
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Fig. 2. Calculated diagonal optical conductivity for bcc Fe: (a) real part and (b) imaginary part.

The solid lines are the results of fully relativistic calculations in which the matrix elements of the

Dirac matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

expected to be a good approximation in calculating physical quantities involving only the di-

agonal optical conductivity. On the other hand, it is likely that this approximation is not very

good in calculating physical quantities involving the off-diagonal optical conductivity such as

the Kerr rotation angle.

The reason why this approximation is not very good for the off-diagonal optical conductiv-

ity although it is good for the diagonal optical conductivity may be explained as follows. The

off-diagonal optical conductivity vanishes unless spin-orbit coupling is taken into account. On

the contrary, the diagonal optical conductivity is almost unchanged regardless of whether spin-

orbit coupling is taken into account or not. Moreover, the magnitude of the diagonal optical

conductivity is about 100 times larger than that of the off-diagonal optical conductivity. It is
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Fig. 3. Calculated diagonal optical conductivity for fcc Ni: (a) real part and (b) imaginary part.

The solid lines are the results of fully relativistic calculations in which the matrix elements of the

Dirac matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

thus most likely that the off-diagonal optical conductivity is much more sensitive to spin-orbit

coupling than the diagonal optical conductivity. On the other hand, the use of the matrix

elements of the momentum operator p instead of those of the Dirac matrices α inevitably

neglects the terms of the same origin as spin-orbit coupling, e.g., (~/4mc2)[σ×∇V (r)] with σ

being the Pauli matrices.21) Accordingly, this approximation can be worse for the off-diagonal

optical conductivity than for the diagonal optical conductivity.

Finally, we compare the results of the present study to those of experimental and other

theoretical studies. We first examine the Kerr spectra of Fe. The measured spectra of the

Kerr rotation angle have several extremal points: −0.13 degree at 2.7 eV, −0.28 degree at

4.5 eV, and 0.24 degree at 6.2 eV.38) Corresponding extremal points obtained in the present

9/15



J. Phys. Soc. Jpn. Full Paper

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Energy (eV)
ω

R
e[

σ x
y]

 (1
029

s−2
)

(a)

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

Energy (eV)

ω
Im

[σ
xy

] (
10

29
s−2

)

(b)

Fig. 4. Calculated off-diagonal optical conductivity for bcc Fe: (a) real part and (b) imaginary part.

The solid lines are the results of fully relativistic calculations in which the matrix elements of the

Dirac matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

study are −0.14 degree at 3.2 eV, −0.30 degree at 4.9 eV, and 0.18 degree at 6.3 eV. Also, the

measured spectra of the Kerr ellipticity have several extremal points: −0.45 degree at 2.3 eV,

−0.28 degree at 3.8 eV, −0.62 degree at 5.5 eV, and −0.06 degree at 7.3 eV. Corresponding

extremal points obtained in the present study are −0.34 degree at 1.7 eV, −0.12 degree at

4.1 eV, −0.50 degree at 5.7 eV, and 0.04 degree at 7.9 eV. We thus find that the calculated

Kerr spectra in the present study are in good agreement with the measured spectra. Also, the

agreement is better than the calculated spectra reported previously.8,24–26)

We next examine the Kerr spectra of Ni. The measured spectra of the Kerr rotation angle

have several extremal points: −0.14 degree at 1.6 eV, −0.12 degree at 2.3 eV, 0.12 degree at 3.3

eV, and 0.18 degree at 5.1 eV.39) Corresponding extremal points obtained in the present study
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Fig. 5. Calculated off-diagonal optical conductivity for fcc Ni: (a) real part and (b) imaginary part.

The solid lines are the results of fully relativistic calculations in which the matrix elements of the

Dirac matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

are −0.36 degree at 2.5 eV, −0.35 degree at 3.1 eV, −0.38 degree at 3.8 eV, and 0.16 degree

at 5.2 eV. Also, the measured spectra of the Kerr ellipticity have several extremal points: 0.17

degree at 1.0 eV, −0.19 degree at 4.2 eV, and 0.03 degree at 6.2 eV. Corresponding extremal

points obtained in the present study are 0.27 degree at 0.70 eV, −0.51 degree at 4.5 eV, and

−0.06 degree at 6.2 eV. The Kerr spectra of Ni calculated in the present study are not in good

agreement with the measured spectra; our results are larger than the experimental results and

also larger than the results of other theoretical studies.8,25,26)

A possible reason for the good agreement in the case of Fe and the disagreement in the

case of Ni is that many-body effects such as spin fluctuation are significant in Ni than in Fe

because the magnetic moment per atom in Ni, 0.6 µB, is considerably smaller than that in Fe,
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Fig. 6. Calculated Kerr spectra for bcc Fe: (a) Kerr rotation angle and (b) Kerr ellipticity. The solid

lines are the results of fully relativistic calculations in which the matrix elements of the Dirac

matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

2.2 µB; it has been shown experimentally that there are variations of the Kerr spectra of Ni

with temperature,40) indicating the importance of spin fluctuation. We believe that, for Ni,

the agreement becomes better if measurements are carried out at lower temperatures.

6. Conclusions

We have studied the MOKE using fully relativistic calculations. Solving the Dirac equation

directly, spin-orbit coupling is taken into account exactly and the matrix elements of the Dirac

matrices α are used in the fully relativistic expression of the Kubo formula for the optical

conductivity derived with the relativistic sum rule. We have also carried out calculations using

the partly relativistic expression in which the matrix elements of the momentum operator p
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Fig. 7. Calculated Kerr spectra for fcc Ni: (a) Kerr rotation angle and (b) Kerr ellipticity. The solid

lines are the results of fully relativistic calculations in which the matrix elements of the Dirac

matrices α are used and the pluses are those in which the matrix elements of the momentum

operator p are used.

are used instead. As an example, we have performed calculations for bcc Fe and fcc Ni and

have found that the partly relativistic treatment is good for the diagonal optical conductivity

while it is not very good for the off-diagonal optical conductivity, the Kerr rotation angle,

and the Kerr ellipticity. Finally, we have compared the results of the present study to those

of experimental and other theoretical studies and have found that the agreement with the

measured spectra is good for Fe while it is not good for Ni. A possible reason for this is that

many-body effects, e.g., spin fluctuation, are more important in Ni than in Fe.
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