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We present a fully relativistic full-potential linear-combination-of-atomic-orbitals method for
solids based on the density-functional theory within the local-density approximation. We solve
the Dirac-Kohn-Sham equations directly, handling not only the indirect relativistic effect but
also the effect due to the spin-orbit coupling self-consistently. We apply the present method
to Au and InSb and compare the results with those of experimental and other theoretical
studies. Consequently, we show that the agreement is good and the present method is capable
of obtaining reliable results in studying the structural and electronic properties of solids.
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§1. Introduction

Relativistic effects have strong impacts on the structural and electronic properties of the ma-

terials with heavy elements. One important effect is the indirect relativistic effect; the strong

contraction of core-electron orbitals due to relativity results in the expansion of valence-electron

orbitals, especially of d and f orbitals.1) This largely affects the interatomic distances, the cohesive

energies, the one-electron energies, etc.2) This effect can be handled within the scalar relativis-

tic calculations.3) Another important effect is due to the spin-orbit coupling, which plays essential

roles in magnetocrystalline anisotropy,4) magnetic circular dichroism,5) magneto-optic Kerr effect,6)

etc. In contrast with the indirect relativistic effect, the spin-orbit coupling requires more elaborate

treatment beyond the scalar relativistic calculations, i.e., the fully relativistic calculations.

To date, several fully relativistic methods have been developed in various schemes for the

first-principles all-electron calculations for solids: the augmented-plane-wave (APW) method,7–11)

the linearized muffin-tin-orbital (LMTO) method,12–16) the Korringa-Kohn-Rostoker (KKR)

method,17–24) and the linear-combination-of-atomic-orbitals (LCAO) method.25–28) In these meth-

ods, the term “fully relativistic” is used in several ways. One method solves the Dirac-Kohn-

Sham equations directly.24) Another method employs the scalar relativistic calculations for the

self-consistent calculations and then applies the second-variation method to handle the spin-orbit

coupling.11) Furthermore, some other methods use the transformations of the Dirac operator,26–28)
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e.g., the Foldy-Wouthuysen-Tani transformation. In the present study, we use the term “fully

relativistic” in the first sense as in ref. 24.

In the LCAO scheme, a serious disease, however, exists in performing relativistic calculations.

This disease is known as the variational collapse29) and is caused by the spurious mixing of negative-

energy states.

Several approaches are available to avoid this disease.29) One approach is to use the squared

Dirac operator.25) Another approach is to transform the Dirac operator into other forms.26–28) A

third approach is to choose basis functions appropriately so that they have positive energies. In

particular, this choice can be achieved automatically if we use the numerical-type orbitals (NTOs)

constructed by solving the Dirac-Kohn-Sham equations for atoms. This approach has been used

successfully in the fully relativistic LCAO method for molecules.30) No attempts have, however,

been made so far to develop a fully relativistic LCAO method for solids with the third approach.

A remarkable advantage of the use of the NTOs in the third approach in a fully relativistic

LCAO method is that the basis functions have positive energies and thus have desirable features to

avoid the variational collapse as already mentioned in the above. Furthermore, the basis functions

transform smoothly to those in the nonrelativistic limit if we increase the speed of light gradually

in a hypothetical way. This is also an important feature to avoid the variational collapse.29)

In spite of these advantages of the NTOs, the LCAO methods with this type of basis functions

had been suffered from the difficulty in performing full-potential calculations not only for solids but

also for molecules until several useful techniques were developed.31–38) One important technique

is the atomic partitioning method,32–35,37,38) which enables us to calculate the three-dimensional

numerical integration efficiently. Another important technique is the method of solving the Poisson

equation accurately,36,38) which is indispensable for performing full-potential calculations. The de-

velopment of these techniques has opened the way to study the structural and electronic properties

of molecules with the NTOs. Recently, we have extended these techniques to the density-functional

calculations of solids within the nonrelativistic formulation and have shown they are also useful for

studying the structural and electronic properties of solids.39)

The purpose of the present study is to present a fully relativistic full-potential LCAO method for

solids by extending our previous nonrelativistic full-potential LCAO method for solids. We show

that the present method is useful for studying the structural and electronic properties of solids with

heavy elements by applying the method to Au and InSb. In §2, we describe the method. We next

give the results of the application to Au and InSb in §3. Finally, we give conclusions in §4.
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§2. Method

The fully relativistic density-functional calculations of a solid are performed by solving the Dirac-

Kohn-Sham equations in a self-consistent way:40–44)

[
cα · p + (β − I)mc2 + Ves(r) + Vxc(r) + βΣ · Bxc(r)

]
ψk

n (r) = εkn ψk
n (r) , (1)

ρe(r) =
1
N

∑
nk

fk
n ψk

n (r)∗ψk
n (r) , (2)

and

me(r) =
1
N

∑
nk

fk
n ψk

n (r)∗βΣψk
n (r) . (3)

In the Dirac operator in the left-hand side of eq. (1), c and m denote the speed of light and the rest

mass of an electron, respectively, and the rest energy of an electron, mc2, is subtracted. Also, α

and β are the Dirac matrices in the usual representation.45) In the Dirac-Kohn-Sham equations, the

one-electron wave function, ψk
n (r), is a four-component spinor and has two quantum numbers, the

band index n and the wave vector k. The sum of k is performed over the Brillouin zone; the total

number of k, represented by N , is equal to the total number of the unit cells in the whole solid,

provided that the periodic boundary condition is used. In eq. (1), Ves(r) is the electrostatic potential

due to the nucleus charge density, ρn(r), and the electron charge density, ρe(r). Also, Vxc(r) is the

spin-averaged exchange-correlation potential and Bxc(r) is the exchange-correlation magnetic field

due to the spin magnetization density, me(r), which is calculated by using Σ = I2 ⊗σ where I2 is

the 2×2 unit matrix and σ are the usual 2×2 Pauli spin matrices. In the present study, we have

used Vxc(r) and Bxc(r) given by von Barth and Hedin.46) The electron charge density ρe(r) and

the spin magnetization density me(r)15,42,47–50) are given with ψk
n (r) and the occupation number

of the level nk, fk
n , provided that ψk

n (r) is normalized in the unit cell. Given Ves(r), Vxc(r), and

Bxc(r), we solve eq. (1) by expanding ψk
n (r) by basis functions as follows.

ψk
n (r) =

∑
p

χk
p (r)Ck

pn ,

χk
p (r) =

∑
u

exp(ik · Ru)χp(r − dp − Ru) . (4)

Here, χp(r) is the p-th atomic orbital which is a four-component spinor obtained numerically as a

solution of the Dirac-Kohn-Sham equations for atoms. Also, dp +Ru represents its position vector

in the u-th unit cell. An important merit of the use of this type of atomic orbitals, the NTOs,

as the basis functions in the fully relativistic LCAO methods is that we can avoid the variational

collapse because the NTOs have positive energies preventing the spurious mixing of negative-energy

states into ψk
n (r). Furthermore, another important merit is that we can perfectly describe the
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dissociated limit of the constituent atoms within the local-density approximation (LDA), allowing

us to calculate cohesive energies accurately. The expansion (4) results in the following generalized

eigenvalue problem: ∑
q

Hk
pqC

k
qn = εkn

∑
q

Sk
pqC

k
qn . (5)

The Hamiltonian and the overlap matrices are given by

Hk
pq =

∫
χk

p (r)∗
[
cα · p + (β − I)mc2 + Ves(r) + Vxc(r) + βΣ · Bxc(r)

]
χk

q (r)dr (6)

and

Sk
pq =

∫
χk

p (r)∗χk
q (r)dr , (7)

respectively. Here, the integrals are performed over the unit cell. The three-dimensional numerical

integration in eqs. (6) and (7) is carried out by using the atomic partitioning method.35,38)

By using the solution of eq. (5), we obtain ρe(r) and me(r) by eqs. (2) and (3), respectively. Then,

Ves(r), Vxc(r), and Bxc(r) are constructed from ρn(r), ρe(r), and me(r). Subsequently, Ves(r),

Vxc(r), and Bxc(r) are used in the next iteration of the self-consistent calculations. Furthermore,

we calculate the total energy as described in the previous paper39) and also calculate the bulk

modulus by fitting the total energies obtained at several lattice constants with the same equation

used in ref. 24.51) Finally, it is worth mentioning that we have developed our code so that we can

calculate both the relativistic and nonrelativistic cases by using the same code. This allows us

to study the relativistic effects on the structural and electronic properties of solids on the same

footing.

§3. Application to Au and InSb

We now apply the present method to the study of the structural and electronic properties of

Au and InSb and compare the results of the present study with those of experimental and other

theoretical studies. We used 2064 and 3096 points per atom to perform the three-dimensional

numerical integration in the real space for Au and InSb, respectively. Also, we used 185 k points

generated with the good-lattice-point method52) in the full Brillouin zone for Au while 16 k points

generated with the special-point method53) also in the full Brillouin zone for InSb. Furthermore,

we performed the multipolar expansion of the electrostatic potential up to 8.39)

We chose the basis functions so that they have enough variational flexibility. That is, we used

not only the atomic orbitals of neutral atoms but also those of charged atoms. The atomic orbitals

used for Au are 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f , 5s, 5p, 5d, and 6s atomic orbitals of neutral

Au atoms and 5d and 6s atomic orbitals of Au2+ atoms and 6p atomic orbitals of Au+ and Au3+

atoms. Also, the atomic orbitals used for InSb are 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 5s, and 5p
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atomic orbitals of neutral In and Sb atoms and 5s, 5p, and 5d atomic orbitals of In2+ and Sb2+

atoms.

We show the results of the present fully relativistic calculations on the optimized lattice constant

and the bulk modulus of Au in Table I. Also, we show the results of experimental and other

theoretical studies for comparison. Furthermore, the results of nonrelativistic calculations are

shown; one is the results of the present study and the other is the results of ref. 28. We first

examine the results of the relativistic calculations. The error in the lattice constant obtained by

the present study is 0.4 %. All of the theoretical lattice constants are good; even the largest error

is less than 1 %. On the contrary, the theoretical bulk moduli are scattered by about 20 %. The

error in the present result is 5 %. The largest error is found to be 18 %. This shows that the

bulk modulus is a difficult quantity to be calculated accurately. In general, however, it is found

that not only the fully relativistic calculations but also the scalar relativistic calculations give good

results. This indicates that the spin-orbit coupling plays a minor role in the structural properties

of Au. We next compare the results of the relativistic calculations with those of the nonrelativistic

calculations. We find that the lattice constant is overestimated by 5 % and the bulk modulus is

underestimated by 35 %. This strongly shows the importance of the inclusion of the relativistic

effects into the study of the structural properties of Au.

We show the results of the fully relativistic band calculations in Fig. 1 and the results of the

nonrelativistic band calculations in Fig. 2; both results are obtained at the experimental lattice

constant. We can see that there are two types of band; one is with large dispersion and with s

character, namely the s band, and the other is with small dispersion and with d character, namely

the d band. Comparing Fig. 1 and Fig. 2, we find that the relativistic effects make the s-band

deep and the d band shallow. This is known as the indirect relativistic effect and affects the bond

strength between Au atoms strongly as already shown in Table I. Furthermore, we note that the

degeneracy occurring at some symmetrical points in the nonrelativistic results is partly lifted in

the relativistic results. This is due to the spin-orbit coupling. We next show the d-band width

obtained by the present fully relativistic calculations and those obtained by other theoretical studies

in Table II. We also show the results of the nonrelativistic calculations. The d-band width is defined

as the difference between the first and the fifth energy band at the X point as shown in Figs. 1

and 2. It is found that the three relativistic results with the spin-orbit coupling agree well with

each other while the two scalar relativistic results without the spin-orbit coupling differ from the

former results noticeably. This shows the importance of the inclusion of the spin-orbit coupling in

studying the electronic structures, at least within perturbative treatments. Of course, the results

of the nonrelativistic calculations are poor, again showing the importance of the inclusion of the

relativistic effects.

Next, we show the results of the present fully relativistic calculations on the optimized lattice
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constant and the bulk modulus of InSb in Table III. Also, We show the results of experimental and

other theoretical studies for comparison. Furthermore, the results of the present nonrelativistic

calculations are shown. We first examine the results of the relativistic calculations. The error in

the lattice constant obtained by the present study is 0.2 %. Also, the largest error in the theoretical

lattice constants is 2 %. It should, however, be noted that the all-electron calculations give better

results than the pseudopotential plane-wave calculations. This has been attributed to the neglect

of the partial core correction in the pseudopotential calculations.62) In general, the agreement of

the theoretical lattice constants with the experimental one is good. Also, the agreement of the

theoretical bulk moduli with the experimental one is good; the error in the bulk modulus obtained

by the present study is 0.6 % and the largest error in the theoretical bulk moduli is 7 %. We next

compare the results of the relativistic calculations with those of the nonrelativistic calculations. In

contrast with the case of Au, the results of nonrelativistic calculations are not so poor; the error in

the lattice constant is 1 % and the error in the bulk modulus is 10 %. This should be due to the

fact that In and Sb are not so heavy that the relativistic effects do not play an important role in

studying the structural properties of InSb.

We show the results of the fully relativistic band calculations in Fig. 3 and the results of the

nonrelativistic band calculations in Fig. 4; both results are obtained at the experimental lattice

constant. We should first note that there is no gap in the result of the fully relativistic calculations in

agreement with the result Fig. 7(b) in ref. 24. Since actual InSb has a gap, this should be attributed

to the error due to LDA which underestimates band gaps. The gap obtained by the nonrelativistic

calculations should, therefore, be regarded as an accidental one due to the cancellation between the

underestimation by LDA and the overestimation by the neglect of the relativistic effects. In Fig. 3,

we can see the effects of the spin-orbit coupling. An obvious one is found as a split of the p-derived

valence bands just below the Fermi level and also a split of the semicore bands derived from the 4d

states of In located at the bottom of the figure. Furthermore, we can also see another effect by the

spin-orbit coupling along the X-W -L and Γ-Σ-K,U -X lines; there are slight splits of several bands

due to the spin-orbit coupling because InSb has no inversion symmetry so that the bands split at

general k points without any symmetry. We next show the one-electron energies at the Γ, X, and

L points at the experimental lattice constant obtained by the present study and those obtained by

other theoretical studies in Table IV. The agreement of the present fully relativistic results with

the fully relativistic full-potential KKR results24) is good. We also show the results of the scalar

relativistic calculations. As seen in the table, this type of treatment can give good results if the

spin-orbit coupling is taken into account. It should, however, be noted that the agreement is not

good if the spin-orbit coupling is neglected.62) Furthermore, we can again see the importance of the

inclusion of the relativistic effects by comparing with the results of the nonrelativistic calculations

also shown in the table.
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§4. Conclusions

We developed a fully relativistic full-potential LCAO method for solids based on the density-

functional theory within the local-density approximation. We solved the Dirac-Kohn-Sham equa-

tions directly, handling not only the indirect relativistic effect but also the effect due to the spin-

orbit coupling self-consistently. Applying the present method to Au and InSb, we showed that the

method is useful for studying the structural and electronic properties of solids with heavy elements.

For Au, we found that not only the fully relativistic calculations but also the scalar relativistic cal-

culations give good results on the structural properties while the nonrelativistic calculations give

poor ones. It was, however, found that it is necessary to include the spin-orbit coupling in studying

the band structure. For InSb, we found that the relativistic effects do not play an important role

in the structural properties while they play an important role in the band structure.
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Figure Captions

Fig. 1. Results of the fully relativistic band calculations of Au at the experimental lattice constant. The dotted

line represents the Fermi level.

Fig. 2. Results of the nonrelativistic band calculations of Au at the experimental lattice constant. The dotted line

represents the Fermi level.

Fig. 3. Results of the fully relativistic band calculations of InSb at the experimental lattice constant. The dotted

line represents the Fermi level.

Fig. 4. Results of the nonrelativistic band calculations of InSb at the experimental lattice constant. The dotted

line represents the energy of the top of the valence bands.
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Table I. Lattice constant in Å and bulk modulus in GPa of Au.

Lattice constant Bulk modulus

Expt.a) 4.078 173.2

This workb) 4.061 182

Ref. 24c) 4.050 190

Ref. 55d) 4.069 168.9

Ref. 56e) 4.057

Ref. 57f) 4.070 182

Ref. 28g) 4.039 196

Ref. 58h) 4.053 198

Ref. 59i) 4.064 193

Ref. 60j) 4.059 205

This workk) 4.286 114

Ref. 28l) 4.274 112

a) Reference 54.

b) Fully relativistic full-potential LCAO calculations.

c) Fully relativistic full-potential KKR calculations.

d) Scalar relativistic APW calculations.

e) Scalar relativistic augmented-spherical-wave calculations.

f) Pseudopotential mixed-basis calculations.

g) Scalar relativistic full-potential LCAO calculations.

h) Scalar relativistic full-potential linearized APW calculations.

i) Scalar relativistic full-potential LMTO calculations.

j) Scalar relativistic full-potential linearized APW calculations.

k) Nonrelativistic full-potential LCAO calculations.

l) Nonrelativistic full-potential LCAO calculations.
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Table II. d-band width in eV of Au.

d-band width

This worka) 6.28

Ref. 24b) 6.15

Ref. 61c) 6.31

Ref. 55d) 5.89

Ref. 28e) 5.85

This workf) 5.02

Ref. 28g) 5.01

a) Fully relativistic full-potential LCAO calculations.

b) Fully relativistic full-potential KKR calculations.

c) Scalar relativistic APW calculations with the spin-orbit coupling.

d) Scalar relativistic APW calculations without the spin-orbit coupling.

e) Scalar relativistic full-potential LCAO calculations without the spin-orbit coupling.

f) Nonrelativistic full-potential LCAO calculations.

g) Nonrelativistic full-potential LCAO calculations.
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Table III. Lattice constant in Å and bulk modulus in GPa of InSb.

Lattice constant Bulk modulus

Expt.a) 6.479 48.3

This workb) 6.463 48

Ref. 24c) 6.448 45

Ref. 62d) 6.464 48

Ref. 62e) 6.36 48

Ref. 63f) 6.359 47

This workg) 6.542 53

a) Reference 54.

b) Fully relativistic full-potential LCAO calculations.

c) Fully relativistic full-potential KKR calculations.

d) Scalar relativistic full-potential linearized APW calculations.

e) Pseudopotential plane-wave calculations.

f) Pseudopotential plane-wave calculations.

g) Nonrelativistic full-potential LCAO calculations.
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Table IV. One-electron energies in eV of InSb at Γ, X, and L.

This worka) Ref. 24b) Ref. 62c) Ref. 62d) This worke)

Γ15c 2.82 2.83 2.89

2.38 2.39

Γ1c −0.65 −0.66 −0.74 −0.47 1.00

Γ15v 0.00 0.00 0.00 0.00 0.00

−0.78 −0.77 −0.76

Γ1v −11.06 −11.05 −11.11 −10.83 −10.08

Γ12v −14.42 −14.26 −14.64 −15.49

Γ25v −14.48 −14.34 −14.73 −15.57

−15.29 −15.15

X3c 0.99 0.94 1.41

X1c 0.98 0.91 1.04 1.28 1.31

X5v −2.46 −2.49 −2.48 −2.28 −2.28

−2.64 −2.67 −2.65

X3v −6.29 −6.24 −6.29 −6.01 −5.58

X1v −9.08 −9.05 −9.15 −8.88 −7.96

L3c 3.62 3.51 3.69

3.42 3.33

L1c 0.15 0.15 0.13 0.39 1.08

L3v −1.04 −1.05 −1.06 −1.04 −1.01

−1.53 −1.53 −1.54

L1v −5.98 −5.93 −5.98 −5.70 −5.39

L1v −9.69 −9.68 −9.75 −9.48 −8.63

a) Fully relativistic full-potential LCAO calculations.

b) Fully relativistic full-potential KKR calculations.

c) Scalar relativistic full-potential linearized APW calculations with the spin-orbit coupling.

d) Scalar relativistic full-potential linearized APW calculations without the spin-orbit coupling.

e) Nonrelativistic full-potential LCAO calculations.
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