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A full-potential linear-combination-of-atomic-orbitals method based on the density-functional
theory developed in the field of the molecular science is extended to the density-functional
calculations of solids. It is shown that the method is also useful for studying both the structural
and electronic properties of solids. The interatomic distances of graphite and hexagonal boron
nitride are calculated within the error of less than 1 %. Also, the atomization energies and the
elastic constants are properly reproduced by the present method.
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§1. Introduction

The structural and electronic properties of solids have been studied on the basis of the density-

functional theory.1,2) There are several methods of the density-functional calculations of solids; the

ab initio pseudopotential method with plain waves (PP-PW),3) the augmented-plane-wave method

(APW),4) the Korringa-Kohn-Rostocker Green’s function method,5) the linear-muffin-tin-orbital

method,6) and the linear-combination-of-atomic-orbitals (LCAO) method.7–9) One important fea-

ture is that these methods of the recent improved versions employ the full-potential approach. That

is, no shape approximations are introduced in the calculations of the electrostatic potential. This

is primarily indispensable for the structure optimization.

Among the extensive studies of solids performed by the above methods, there are only a few

studies of the full-potential calculations by the LCAO method, especially of the structure opti-

mization.8,9) This is due to the difficulty of the full-potential calculations in the LCAO scheme

as well as due to the difficulty of the numerical treatment of the three-dimensional multicenter

integration in the real space.

On the other hand, the full-potential LCAO method has been successfully applied to the studies

of both the structural and electronic properties of molecules.10–25) In the last two decades, powerful
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techniques have been developed to the LCAO method of molecules: the efficient method of the

total-energy calculations,11,26) the atomic partitioning method of the three-dimensional numerical

integration,19,20,22,27–29) the method of solving the Poisson equation,22,30) etc. The extension of

these methods for solids is important to the study of solids by the LCAO method. That is, the

full-potential local-orbital approach developed in the molecular LCAO methods is expected to be

also useful for performing the density-functional calculations of solids.

The purpose of the present study is to extend the full-potential local-orbital approach developed

in the molecular LCAO methods to the density-functional calculations of solids. We show that this

approach is also useful for studying both the structural and electronic properties of solids.

§2. Methodology

The density-functional calculations of a solid are performed by solving the following Kohn-Sham

equations in a self-consistent way.2)[
−1

2
△ + ves(r) + vσ

xc(r)
]
ψσ

nk(r) = εσ
nkψσ

nk(r) , (1)

ne(r) =
∑
σ

nσ
e (r) ,

nσ
e (r) =

1
N

∑
nk

fσ
nk|ψ

σ
nk(r)|2 . (2)

Here, σ denotes the spin of the electrons, ↑ and ↓. In addition to the spin quantum number, the one-

electron wave function, ψσ
nk(r), has two more quantum numbers, the band index n and the wave

vector k. The sum of k is performed over the Brillouin zone (BZ); the total number of k, represented

by N , is equal to the total number of the unit cells in the whole solid, provided that the periodic

boundary condition is used. In eq. (1), ves(r) is the electrostatic potential due to the nucleus and

the electron charge densities, nn(r) and ne(r). Also, vσ
xc(r) is the exchange-correlation potential

for the σ-spin electrons; in the present study, we use the local-spin-density-approximation (LSDA)

potential expressed by the Perdew-Zunger parameterization of Ceperley and Alder results.41,42) In

eq. (2), ne(r) consists of the up-spin and the down-spin contributions, n↑
e(r) and n↓

e(r). These

electron charge densities are given by using ψσ
nk(r) and the occupation number of the level nkσ,

fσ
nk, provided that ψσ

nk(r) is normalized in the unit cell.

First, we describe the method for solving eq. (1). Given ves(r) and vσ
xc(r), we solve eq. (1) by

expanding ψσ
nk(r) by basis functions as follows.

ψσ
nk(r) =

∑
p

Cσ
pnkχpk(r)

χpk(r) =
∑
u

exp(ik · Ru)χp(r − dp − Ru) . (3)
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Here, χp(r) is the p-th atomic orbital in the unit cell and dp + Ru represents its position vector

in the u-th unit cell. In the present study, we use the numerical-type orbitals as χp(r) obtained

by solving the Kohn-Sham equations of the atoms. The merit of this type of atomic orbitals is the

perfect description of the dissociated limit of the constituent atoms within LSDA. This allows us

to calculate atomization energies accurately. The expansion (3) results in the following generalized

eigenvalue problem: ∑
q

Hσ
pqkCσ

qnk = εσ
nk

∑
q

SpqkCσ
qnk . (4)

The Hamiltonian and the overlap matrices are given by

Hσ
pqk =

∫
ω

χpk(r)∗
[
−1

2
△ + ves(r) + vσ

xc(r)
]
χqk(r)dr (5)

and

Spqk =
∫

ω
χpk(r)∗χqk(r)dr , (6)

respectively. Here, the integrals over the unit cell are indicated by ω. The three-dimensional

numerical integration in eqs. (5) and (6) is performed by using the atomic partitioning method.28)

For the radial integration, we introduce the following variable transformation:

r = R0 −
1
β

log
[
(1 + eβR0)1−a − 1

]
,

a =
1
2

+
1
2
x ,

x = − cos(πz) . (7)

Here, R0 and β are the parameters controlling the grid distribution around the atoms. R0 = 1

and β = 1 are appropriate for most applications. We then apply the Gauss-Chebyshev quadrature

method to the variable z. For the angular integration, we use the spherical quadrature method.31–34)

By using the solution of eq. (4), we obtain nσ
e (r) by eq. (2). Then, ves(r) and vσ

xc(r) are constructed

from nn(r) and nσ
e (r). Subsequently, ves(r) and vσ

xc(r) are used in the next iteration of the self-

consistent calculations.

Next, we describe the method to construct ves(r) from nn(r) and ne(r). The calculations of the

electrostatic potential due to nn(r) are straightforward. To calculate the electrostatic potential

due to ne(r), we decompose ne(r) into the superpositional part and the residual part. The first

step is to construct the superpositional part, ns
e(r). In the present study, the superpositional part

is constructed in the following way.

ns
e(r) =

∑
au

ρs
ea(r − da − Ru) ,

ρs
ea(r) =

∑
p∈a

fp|χp(r)|2 . (8)
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Here, fp is the spherically averaged occupation number of the p-th atomic orbital belonging to the

a-th atom. One way to obtain fp is to use the results of the Mulliken population analysis. Another

way is to fit ne(r) by ns
e(r), regarding fp as fitting parameters. We have confirmed that both

methods give good results. In the present study, we use fp obtained by the Mulliken population

analysis. By using the spherical symmetry of ρs
ea(r), the electrostatic potential due to ns

e(r) is

calculated with a very high accuracy. The next step is to partition the residual part,

nr
e(r) = ne(r) − ns

e(r) , (9)

into the atoms, by using the atomic partitioning method again.28)

nr
e(r) =

∑
au

ρr
ea(r − da − Ru) , (10)

Furthermore, these partitioned charges are decomposed into spherical harmonics components:

ρr
ea(r) =

∑
lm

ρlm(r)Ylm(θ, ϕ) . (11)

We then solve the Poisson equations for these charges by using the method of ref. 30. Finally, the

potentials due to all lm components are reassembled to construct the electrostatic potential due

to nr
e(r); we usually calculate the potentials up to l = 8. As a result, ves(r) is decomposed as

follows:

ves(r) = vs
es(r) + vr

es(r) . (12)

Here, vs
es(r) is the electrostatic potential due to nn(r), ns

e(r), and the associated spherical Ewald

charges, which are used for the fast convergence of the lattice sum.35) On the other hand, vr
es(r)

is the electrostatic potential due to nr
e(r) and the associated Ewald charges including nonspherical

terms.

Finally, we describe the method to calculate the total energy. The total energy per unit cell, Et,

is written as

Et = Ek + Ees + Exc . (13)

Here, Ek, Ees, and Exc represent the kinetic, the electrostatic, and the exchange-correlation energy,

respectively. Before giving the explicit form of these energies, it should be noted that, because

of the non uniqueness of the partitioning of ne(r) into the atomic components, the Kohn-Sham

eigenvalues in solids are meaningful only if their relative values are concerned.36,37) This is due

to the conditional nature of the convergence of the lattice sum appearing in the calculations of

ves(r). In other words, the average potential in the solid is influenced by the details of the charge

distribution on the surface. The explicit form of the energies therefore must be independent of the

4



constant shift of ves(r). First, Ek is given by

Ek =
1
N

∑
nkσ

fσ
nkεσ

nk − 1
N

∫
Ω

ves(r)ne(r)dr − 1
N

∑
σ

∫
Ω

vσ
xc(r)nσ

e (r)dr

=
1
N

∑
nkσ

fσ
nkεσ

nk −
∑
a

∫
Ω

ves(r) [ρs
ea(r − da) + ρr

ea(r − da)] dr −
∑
σ

∫
ω

vσ
xc(r)nσ

e (r)dr

(14)

Here, the integrals over the whole solid are indicated by Ω. On the other hand, the integrals

over the unit cell are indicated by ω, as in eqs. (5) and (6). In the above derivation, we use the

periodicity of ves(r) and vσ
xc(r). It should be noted that Ek does not depend on the constant shift

of ves(r); although such a shift results in the changes in the first and the second terms in the right

hand of eq. (14), the two changes are completely cancelled out. Next, Ees is given by

Ees =
1

2N

∫ ′

Ω
ves(r) [ne(r) − nn(r)] dr

=
1
2

∑
a

∫ ′

Ω
ves(r) [ρs

ea(r − da) + ρr
ea(r − da) − ρna(r − da)] dr . (15)

Here ρna(r), and therefore nn(r), is represented by using the atomic number with the delta func-

tion:

nn(r) =
∑
au

ρna(r − da − Ru) , (16)

ρna(r − da) = Zaδ(r − da) . (17)

Here Za and da represent the atomic number and the position vector of the a-th atom in the unit

cell, respectively. In eq. (15), the prime of the integrals indicates the exclusion of the nuclear

self-interaction energies. It is obvious that Ees also does not depend on the constant shift of ves(r)

because of the charge neutrality. Finally, Exc is given by

Exc =
1
N

∑
σ

∫
Ω

ϵσ
xc(r)nσ

e (r)dr

=
∑
σ

∫
ω

ϵσ
xc(r)nσ

e (r)dr . (18)

Here, ϵσ
xc(r) is the exchange-correlation energy density. In the present study, we also use the Perdew-

Zunger parameterization of Ceperley and Alder results as ϵσ
xc(r).41,42) For the efficient calculations

of Et, it is essential to divide the calculations into two parts.11,26) One is the superpositional part

calculated with a very high accuracy. Another is the residual part requiring the three-dimensional

numerical integration. By using the spherical symmetry of ρs
ea(r − da), ρna(r − da), and the

associated spherical Ewald charges, one can calculate the superposional part of the total energy,
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Es
t , avoiding the three-dimensional numerical integration. We only necessary to calculate two-center

integrals for the electrostatic energies between the spherical charges.

Es
t =

1
N

∑
nkσ

fσ
nkεσ

nk − 1
2

∑
a

∫ ′

Ω
vs
es(r) [ρs

ea(r − da) + ρna(r − da)] dr . (19)

As a result, the three-dimensional numerical integration is required only for the residual part, Er
t .

Er
t = −1

2

∫
ω
{vr

es(r) [ne(r) + nn(r)] + vs
es(r)nr

e(r)}dr + Exc −
∑
σ

∫
ω

vσ
xc(r)nσ

e (r)dr . (20)

In the calculations of the atomization energies, we further reduce the numerical error of Er
t by

subtracting the total energy of the isolated atoms by calculating it with the same numerical grids.16)

§3. Application to Graphite and Hexagonal Boron Nitride

In this section, we present the results of the calculations of the interatomic distances, the atom-

ization energies, the elastic constants C11 +C12, and the band structures of graphite and hexagonal

boron nitride (h-BN).

We use two kinds of basis sets for graphite.16,22) One is the double basis (DB) comprised of 1s,

2s, and 2p orbitals of a neutral C atom and 2s and 2p orbitals of a C2+ ion. Another is DB plus one

d orbital (DBD) including one 3d orbital of a C2+ ion as a polarization function. Also, we use DBD

for B and N for the calculations of h-BN. Furthermore, all the results presented here are obtained

by using 24 radial and 86 spherical mesh points per atom for the three-dimensional integration.

The sampling in BZ is performed by using two methods.38,39) One is the good-lattice-point

method (GLPM) and another is the special-point method (SPM). Since GLPM gives good results for

the integration of periodic functions, this method is suitable for the sampling in BZ. GLPM in three

dimension, however, requires at least 185 sampling points. This results in very heavy calculational

costs. On the other hand, SPM needs only several sampling points, three for graphite and h-BN.

Since the reliability of this method is restricted to non metals, we must check its applicability to

graphite, which is a semimetal. Then, we apply GLPM and SPM to the structure optimization of

graphite with DB to confirm the applicability of SPM. Next, the structure optimization is performed

for graphite and h-BN by SPM with DBD. Finally, using the optimized structures, we perform the

self-consistent-field calculations by GLPM with DBD and calculate the band structures of graphite

and h-BN.

Table I shows the interatomic distances, the atomization energies, and the elastic constants

C11 + C12 with the experimental results; we calculate C11 + C12 by using a formula in ref. 49. The

used basis sets and the BZ sampling method are also shown. Since the nonlocal corrections to the

LSDA energies may be essential to the treatment of the weak van der Waals binding between the

layers, we optimize the intralayer interatomic distances only, fixing the interlayer distances to the

experimental values: 3.40 Å for graphite and 3.33 Å for h-BN.
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First, it is found that the results for graphite by SPM with DB are good as same as those by

GLPM with DB. That is, although graphite is a semimetal, the BZ sampling by SPM can give

the reliable results. Also, this ensures the applicability of SPM to h-BN because it is an insulator.

Then, we apply SPM with DBD to the structure optimization of graphite and h-BN. The results

are also shown in Table I. For graphite, the only change due to the use of the better quality of basis

set is the increase in the atomization energies, while the interatomic distances and C11 + C12 are

almost unchanged. The atomization energy is overestimated comparing with the experimental one,

as is attributable to the use of LSDA, while the theoretical interatomic distances and C11 +C12 are

in good agreement with the experimental values. These tendencies are also found in the results of

h-BN.

We now refer to the numerical error. The numerical error in the interatomic distances is found

to be less than 0.01 Å while that in the atomization energies is found to be about 0.1 eV/atom.

The error in the atomization energies primarily arises from the radial and the spherical integration

while the error associated with the BZ sampling is less than 0.05 eV/atom. Considering this, one

reason for the success of the structure optimization is the systematic occurrence of the errors in

the atomization energies around the optimized structures.

By using the optimized structures obtained by SPM with DBD, we perform the self-consistent-

field calculations of graphite and h-BN, and then calculate the band structures. The results of

the calculations are shown in Fig. 1 for graphite and in Fig. 2 for h-BN. Also, several eigenvalues

at Γ point are given in Table II for graphite and in Table III for h-BN with available results of

experiments and other calculations. The overall agreement with the other calculations is good for

both graphite and h-BN. Finally, it should be stressed that the number of the basis functions in

the present study, 14 per atom, is very small in comparison with that used in the APW or PP-PW

calculations, which requires more than 100 basis functions per atom. This is an advantage of the

present method.

§4. Conclusions

In the present study, we have shown that the full-potential linear-combination-of-atomic-orbitals

method developed in the field of the molecular science is also useful for studying both the struc-

tural and electronic properties of solids. In particular, the efficient method of the total-energy

calculations, the atomic partitioning method of the three-dimensional numerical integration, and

the method of solving the Poisson equation are successfully used in the present method. By using

the present method, we study the structural and electronic properties of graphite and hexagonal

boron nitride. The agreement of the calculated interatomic distances with the experimental ones

is very good. Also, the atomization energies and the elastic constants are properly reproduced.
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Figure Captions

Fig. 1. Band structure of graphite.

Fig. 2. Band structure of hexagonal BN.
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Table I. Interatomic distance in Å, atomization energy in eV/atom, and C11+C12 in GPa of graphite and hexagonal

BN.

Solid Interatomic Atomization C11 + C12
c) Basis BZ

distancea) energyb) set sampling

Expt. This work Expt. This work Expt. This work

Graphite 1.42 1.42 7.41 8.68 1240 1208 DB GLP

1.42 8.71 1221 DB SP

1.41 8.97 1214 DBD SP

Hexagonal BN 1.45 1.44 6.63 8.03 951 1164 DBD SP

a) The experimental interatomic distances are taken from ref. 43.

b) The experimental atomization energies are calculated by standard heat of formation at 298.15 K.

c) The experimental C11 + C12 are taken from ref. 44.
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Table II. One-electron energies of graphite at Γ point in eV.

Expt. Theoretical

Ref. 45 Ref. 46 Ref. 47 This work Ref. 48 Ref. 49 Ref. 50 Ref. 51

Bottom σ −20.6 −19.5 −20.1 −19.6 −20.8 −19.5

−19.2 −19.8 −19.3 −20.5 −19.2

Bottom π −8.1 −8.5 −8.5 −8.9 −8.7 −9.1 −8.2

−7.2 −6.6 −5.7 −6.6 −6.8 −6.7 −7.1 −6.5

Top σ −4.6 −5.5 −3.2 −3.5 −4.6 −3.4 −4.3

−3.1 −3.4 −4.6 −3.3 −4.3

Unoccupied σ∗ 3.9 3.7 3.8 3.7 7.1

6.9 8.2 7.9 8.3 9.0 7.3

8.2 7.9 8.4 9.3 7.3
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Table III. One-electron energies of hexagonal BN at Γ point in eV.

Expt. Theoretical

Ref. 52 This work Ref. 53 Ref. 54 Ref. 55

Bottom σ −17.8 −17.9 −19.3 −18.7

−17.5 −17.7 −18.9 −18.2

Bottom π −5.7 −6.4 −6.3 −6.7 −6.7

−4.3 −4.1 −4.2 −4.5

Top σ −0.9 −1.6 −1.5 −2.0 −2.5

−1.5 −1.3 −1.7 −2.4

Unoccupied σ∗ 5.1 4.6 4.3 6.3

10.0 10.1 10.6 10.1

11.3 11.2 11.0 10.6
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