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Measurements of the atomistic mechanics of single crystalline silicon wires of nanometer width
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Tensile deformation behavior of silicon (Si) wires with nanometer widths, synthesized by nanometer-tip
contact and successive retraction, was studied by atomistic combined microscopy of high-resolution transmis-
sion electron microscopy/scanning probe microscopy. The elastic limit, Young’s modulus, and strength of
individual Si nanowires were investigated based on the mechanics of materials at an atomic scale. It was found
that both Young’s modulus and strength increased to 18+2 and 5.0+0.3 GPa, respectively. The elastic limit
was 0.10£0.02 and fracture strain was estimated to be 0.30+0.01. Experimental results show that mechanical
properties of Si wires transform due to size reduction from micrometer to nanometer scale.
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INTRODUCTION

It has been expected that the mechanical properties of
materials will transform as the size of materials is reduced to
a nanometer scale with emphases on lattice termination ef-
fects at surfaces and restriction in dislocation mechanisms.'~¢
Studies on the mechanical nature of the nanometer-sized
structures have been conducted in theoretical simulations for
fundamental processes of mechanical interaction at surfaces
for adhesion, friction, and nanometer scale machining.b-'#
On the other hand, the experimental research field on this
subject was initiated by nanometer scale indentation with
scanning electron microscopes' and was developed for me-
tallic nanometer-sized contacts with relation to quantized
conductance by scanning probe microscopy and by mechani-
cal controllable break junction.'6-2¢

In order to study the mechanical properties of nanometer-
sized structures, it is required to derive fundamental me-
chanical constants relating to strength and elasticity from the
mechanics of materials on an atomic scale based on measure-
ments of the stress-strain relation for nanometer-sized local-
ized deformation regions. A few experimental works have
been attempted for nanometer-sized contacts (nanocontacts)
of gold: Stress was evaluated from the estimation of a cross-
sectional area of metallic nanocontacts according to the clas-
sical Sharvin equation with the Landauer formula.?>3 In the
deformation of monatomic gold wires, stress was estimated
using the cross sectional area of single atom.?*?3 It was dem-
onstrated that in sifu transmission electron microscopy
(TEM) had an atomistic spatial resolution for deformation of
nanocontacts of metals and isolators.”’=37 In particular, the
stress-strain relation for nanometer-sized structures was di-
rectly observed by in situ TEM combined with sub-nano-
Newton force measurement systems.33+37

Synthesis and electrical properties of silicon (Si) contacts
and wires have been extensively studied on nanometer
scales.!33838 On the other hand, experiments on the me-
chanical properties have only been conducted on submi-
crometer scales.”® % In this paper, we demonstrate the me-
chanics of materials for Si wires of nanometer width,
protruding from nanometer Si tips into a vacuum using the
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in situ TEM.

EXPERIMENTAL METHOD

The experimental method in this study was developed
based on high-resolution TEM combined with sub-nano-
Newton force measurements using atomic force microscopy
(AFM) and electronic conductance measurements using
scanning tunneling microscopy.®®> A Si cantilever with a
nanometer-sized tip, as used in AFM, was attached to the
front of a tube piezo on a cantilever holder. The direction of
the tip was parallel to the (100). A Si plate of 0.2 mm thick-
ness was attached to a second sample holder. Both cantilever
and plate were prepared from P-doped n-type Si with a dop-
ant concentration of 5X 10>/m? at the surface and a resis-
tivity of 1 ~5X 10™* Q m. The thickness of the contact edge
of the plate was reduced to 5-20 nm by argon ion milling.
The cantilever and the plate holders were then inserted into
the combined microscope. The tip of the cantilever was con-
tacted with an edge of the opposing plate by piezo manipu-
lation while applying a bias voltage of 10 V between tip and
plate. The tip was pressed into the plate, and then retracted to
produce Si wires. A series of these manipulations were per-
formed at room temperature in a vacuum of 1X 10~> Pa. The
structural dynamics of the process was observed in situ by
high-resolution TEM using a TV capture system. Thus, the
time resolution of the image observations was 17 ms. The
force applied between tip and plate were simultaneously
measured by optical detection of the cantilever deflection.
The electrical conductance was measured using a two-
terminal method. The high-resolution imaging and signal de-
tection in this system were simultaneously recorded and ana-
lyzed for every image.

RESULTS AND DISCUSSION

Figure 1 shows a time sequence series of high-resolution
images of the growth process of a Si nanowire. The tip and
the plate before contact are shown in the upper and the lower
portions of Fig. 1(a), respectively. The lattice fringes of the
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FIG. 1. Time-sequent series of high-resolution images of a nucleation and growth process of a Si nanometer-sized wire. The interval
between a and b is 10 s, and that between b and ¢ is 11 s. The movement of the tip of the cantilever (upper portion) is indicated by the bold

arrows. T;(i=1-3) designates twin boundaries.

{111} planes of the Si are visible on the tip and the plate. The
surfaces of the two crystalline regions are covered with natu-
ral oxide layers of 1-2 nm in thickness, which act as insu-
lating layers. After the tip was pressed into the plate, the
current increased to more than 100 nA at a bias voltage of 10
V, showing that the insulating layers were broken and the
two interior Si crystalline regions were connected. A nucleus
forms between the surfaces of the tip and the plate as shown
in Fig. 1(b). The nucleus is a Si cluster of approximately 6
nm in diameter. The interval between Figs. 1(a) and 1(b) is
10 s. In this period, the oxide layer is hardly observed on the
surfaces of the nucleus as shown in Fig. 1(b). Two {111}
faceted twin boundaries are included in the nucleus as indi-
cated by the arrows T and T, in Fig. 1(b); the nucleus is
constructed of three crystalline regions. The left crystalline
region is connected to the tip in a parallel orientation with
the tip. The growth rate of the nucleus decreased after con-
tact between tip and plate. The decrease in the rate implies
deceleration of atomic diffusion. Current density decreased
as contact size increased, thus this nucleation occurs due to
current-induced atomic diffusion. The tip was then retracted
by piezo manipulation. The one-dimensional crystal growth
along the direction of retraction is observed at the contact
boundary with the plate as shown in Fig. 1(c), similar to that
of the Czochralsky method. A Si wire of 6 nm in width is
synthesized between the surfaces of the tip and the plate. The
growth occurred intermittently, and as described above, the
growth rate was not constant. The two twin boundaries
which were induced at the initial nucleation elongate and
new one is induced during the growth as indicated by the
arrow T3. Polycrystalline Si wires with nanometer widths
formed when twin and general grain boundaries were in-
duced in the nuclei at initial contact or during the growth as
shown in Fig. 1. During repetitious contact, nuclei aligned in
the same orientation as the tip, i.e., (100), without the for-
mation of any grain boundary, thus nanometer-sized Si wires
of single crystalline structures were synthesized. The internal

strain energy of the nuclei or wires decreases due to the
formation of single crystalline contacts. We used the single
crystalline wires as samples for the experiments of the me-
chanics of materials.

Figure 2 shows a time sequence series of high-resolution
images of the tensile deformation process of a single crystal-
line Si nanowire. The retraction direction in this tensile de-
formation test is parallel to the (100) as indicated by the bold
arrows. In order to estimate elongation and strain, we defined
two stationary points as indicated by P; on the wire and P,
on the surface of the plate as shown in Fig. 2(a). The distance
between the two points as designated by L, in Fig. 2(a), L, in
Fig. 2(b), and L. in Fig. 2(c) elongates due to retraction. In
Fig. 2(d), fracture occurs at the contact boundary of the plate
surface. Figure 3 shows variations in the strain and the mini-
mal cross sectional area of the wire, force and stress applied
to the wire, and current and current density through the wire
during the process in Fig. 2 as a function of time. The time
associated with the triangles a—d (hereafter the associations
a, b, ¢, and d) corresponds to the time in which each image
in Figs. 2(a)-2(d) is observed. The strain was estimated from
the variation in the distance between P; and P,. The distance
of the elongation differs significantly from the movement of
the base of the cantilever, i.e., piezo displacement, because
entire regions of the tip and the plate are stretched. We as-
sumed that the shape of the cross section of the wire at a
minimal width was circular, and estimated the area from the
images. We calculated the stress by dividing the force by the
minimal cross sectional area. The spatial resolution in this
observation is 0.1 nm and gives rise to errors in calculation
of the stress and current density. The dimensions of the er-
rors are depicted by the bars in Fig. 3, and are similar to the
width of electric noise. The strain increases gradually be-
tween O s to time a, and between time b and time ¢ in Fig. 3.
The force increases from O s to the time a, and then is
abruptly reduced. It is seen from the high-resolution images
in Figs. 2(a) and 2(b) that the wire elongates and the width

035333-2



MEASUREMENTS OF THE ATOMISTIC MECHANICS OF...

FIG. 2. Time-sequent series of high-resolution images of a ten-
sile deformation process of a single crystalline Si nanowire. The tip
of the cantilever (the left-hand side) is retracted towards the left as
indicated by the bold arrows.

decreases in the right-hand side of the wire near the contact
boundary. The process of the elongation and the decrease in
the width were different from the elastic deformation process
from O s to time a. The rapid decrease in force and this
structural change imply that plastic deformation occurs be-
tween time a and time b. The strain and force then increase
gradually from time b to time ¢ again as that from O s to time
a, whereas the minimal cross sectional area reduces. The
force and stress then begin to decrease slightly from time c to
the fracture. The decrease in force and stress from time ¢
onward shows that structural relaxation takes place as pre-
cursor phenomena of the fracture. Therefore, the wire de-
forms elastically from time b to time ¢ and two typical elas-
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FIG. 3. Variations in strain, force, minimal cross sectional area,
stress, current, and current density during the tensile deformation
process in Fig. 2 as a function of time. The time with the triangles
a—d corresponds to the time at the recording of the images of a—d in
Fig. 2. The cross indicates fracture.

tic regions are found in the periods from 0 s to time a(ATy;,)
and in time b to c(ATp,).

In order to develop analyses based on mechanics of ma-
terials for the wire, we derived the stress-strain relation as
shown in Fig. 4 for the tensile deformation observed in Fig.
3. Tensile strength for the nanowire, i.e., the maximum
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FIG. 4. Stress-strain curve in the tensile deformation process in
Fig. 2. The cross indicates fracture.

stress, 1s 5.0+0.3 GPa at times a and c. The relation for two
elastic regions is not linear, and we selected relatively
straight slope regions for the estimation of Young’s modulus
as indicated with E; and E, in Fig. 4, corresponding to the
periods ATy, and ATy, Young’s modulus estimated from the
two regions is 18+2 GPa. Elastic limits for the initial elastic
region Ej, corresponding to the dimension of the region, is
0.10+0.02. Fracture occurs at a strain of 0.27+0.01. This
strain is not equal to maximum elastic limit, because the
plastic deformation occurs at time a. Extrapolating from the
rate between the Young’s modulus and strength, the maxi-
mum elastic limit up to fracture is calculated to be
0.30+0.01. Thus, due to the plastic deformation around time
a, strain is reduced by 0.03.

The Young’s modulus for the (100) of millimeter-sized
pure and doped Si with dislocation density of less than
500/cm? is ~170 GPa.>® The calculated modulus for the
(100) by Brantley is 1.3 10> GPa.®® For micrometer-sized
Si samples of 20—30 um in thickness, 100 um in width and
400 pm in length, fracture strain and Young’s modulus along
the (100) direction are 0.015 and 140 GPa.°! This Young’s
modulus is also similar to the calculated values according to
Brantley® and the strength of the micrometer-sized samples
is estimated to be 2.1 GPa.%?> Another important direction for
the deformation is the (110). For the (110) direction, Si wires
of 50-300 wm in width and 6 mm in length, Young’s modu-
lus, and the strength are 142-169 GPa and 1-2 GPa,
respectively,%? which is similar to the calculated values.®® For
thinner samples of 0.14 wm in thickness, 20 um in width
and 100 pwm in length, Young’s modulus was estimated to be
169 GPa.%® For the (100) and (110) directions, these previous
results involving the Young’s modulus is hardly influenced
by the size reduction from millimeter to micrometer scale.
On the other hand, for the (110) direction, the strength for
the thinner samples of 0.14 um in thickness increased to 4.9
GPa at the fracture strain of 0.031.9

In this experiment, the strength of the single crystalline
nanowire increases to twice of that of the micrometer-sized
samples.®! The strength of crystals is determined by defect
generation and evolution.*> In particular in Si, pre-existing
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defects act as origins for cracks. The strength is determined
at the fracture by crack evolution.*> Inside the single crys-
talline nanowires in this experiment, no dislocation could be
observed and fractures occurred in the weakest regions, i.e.,
the regions having minimal widths. The strength observed in
this nanowire shows the strength of dislocation-free nanom-
eter scale Si. For nanometer-sized metallic contacts, the
strength is 1050 times larger than that of bulk.?!?32433 This
difference is attributed to the behavior of dislocations in
metals.>*> The dislocations exist in metals even when the
size is reduced to a few tenths of nanometers.%

The elastic limit of the nanowire is approximately 6 times
larger that of the micrometer-sized samples.®! The average
value of the Young’s modulus is approximately 0.1-0.13 of
that of the micrometer-sized samples.®' Elastic properties are
dependent on the nature of bonding of materials. In this ex-
periment, the size of the structures was reduced to less than
10 nm. This shows that elastic properties, which are deter-
mined by the bonding nature, transforms due to the size re-
duction of the nanometer scale.

In Fig. 3, the variation in current resembles that of the
minimal cross sectional area, showing the current is deter-
mined by the constriction. The current density is approxi-
mately 1 X 10'2 A/m?. This current density is similar to the
contacts of ~35 nm? in area between clean Si {111} surfaces
and tungsten tips,®’ and is 10*—~10° times larger than that of
the Si wires of more than few tenths of nanometers in
width.#%57-38 The cross sectional area for one atomic column
along the (100) in bulk Si is 0.037 nm?. Adopting this area,
current through the one atomic column of the nanowire in
this experiment is estimated from the current density in Fig.
3 to be 37 nA. This current is 50-100 times larger than
tunneling current.6-67

CONCLUSION

We have performed the experiment on the mechanics of
materials in the atomic scale for the single crystalline Si
nanowires using the atomistic combined microscope. From
the measurement of stress-strain relations, the transformation
of the mechanical properties by the size reduction to nanom-
eter scale was elucidated. In particular, the increase in the
elastic limit to 0.10+0.02 and in the fracture strain to
0.30+0.01 shows that the bonding nature of nanometer-sized
Si wires differs from that of the micrometer-sized Si wires.
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