

Possibility of Algal Lipids as Industrial Ingredients

Kunimitsu Kaya University of Tsukuba

Lipid accumulating microorganisms

Green Algae

Pseudochoricystis ellipsoidea

Botryococcus braunii

Euglenoid

Euglena gracilis

Cost of Algae Production

algae	cost (JPYen/kg DW)	market price (JPYen/kg DW)
Botryococcus	80	?
Chlorella	159	2,000 - 10,000
Spirulina	160	2,000 - 7,000
Euglena	?	50,000 - 100,000

Lipid Composition of Algae

Botryococcus *	Euglena (light c	condition)	(dark condition)
Hydrocarbons 5-75%/DW	Triglyceride	8.2%	20.5%
Triglyceride 1-3%/DW	Glycolipids	70.4%	5.9%
Glycolipids 3-5%/DW	Phospholipids	20.7%	74.3%
Phosphlipids 1-2%/DW			

*The lipid content and composition are dependent on media nutrients and culture conditions.

Hydrocarbons of *Botryococcus braunii*

Strain No	H.C. content (% in algae DW)	Growth rate (μ/day)	Mol.Formula of the most abundant H.C.	Purity (%) of the H.C.
001	40.8	0.078	C34H58 (T) mw=466	92
002	21.1	0.187	C33H64 (A) mw=460	54
003	42.3	0.066	C34H58 (T) mw=466	97
004	45.3	0.158	C31H58 (A) mw=430	56
005	25.1	0.33	C34H58 (T) mw=466	94
006	45.7	0.2	C34H58 (T) mw=466	95
007	25.3	0.088	C19H38O (E) mw=282	51

T: terpene; A: alkene; E: alkane epoxide

Structures of hydrocarbons produced from *Botryococcus*

Hydrocarbon compositions of *B. braunii Races* Isolate from Japan

	Rt	Mol.%	mw	Molecular formula	Unsatu.	
Race-A:	40.32	40	432	C31H60	2	
	40.78	4	374	C27H50	3	
	41.34	56	430	C31H58	3	
Race-B:	41.29	39	466	C34H58	6	
	43.18	50	466	C34H58	6	
	43.52	11	466	C34H58	6	
Race-Sa	a:25.94	73	268	C18H36O	1	
	27.61	27	278	C19H34O	3	
Race-La	1:25.92	10	268	C18H36O	1	
	31.93	5	310	C21H42O	1	
	44.48	42	557	C39H72O	4	
	49.04	44	575	C40H78O	2	

GC/MS Column: methylsilicon; Temp: 60°C(2min)- 5°C/min -280°C

Major Hydrocarbons of Races of *B. buraunii* collected from Japanese freshwaters

Hydrocarbon composition of *Botryococcus* isolated from a dam

Rt		composition	unsaturation	compound
1. 18.01(min)	C18H36O, mw 26	68 6.4% (weight %	%) 1	epoxide
2. 20.32	C21H34, mw 28	36 19.1	5	diterpene
3. 27.19	C33H56, mw 48	52 20.2	6	triterpens
4. 27.30	C33H56, mw 48	52 26.0	6	triterpene
5. 27.57	C32H54, mw 43	38 28.3	6	triterpene

Application to fuel

Squalene is a minor component of hydrocarbon fraction of microalgae

Squalene is isolated from shark liver oil. The market price of squalene for cosmetics is JPYen16,000/100g.

Squalene is used to keep skin moisture, and protect skin surface against oxidants.

How to control squalene production in microalgae

Algaenans (insoluble biopolymers as the main component of colony matrix)

Algaenans :

 \odot the major component of colony matrix

- insoluble with organic solvents (chloroform/methanol, ethanol/diethy lether)----Stubborn biopolymers
- Opartially soluble by the treatment with KOH/Methanol or trifluoroacetic acid and HCI/methanol), but not all
- \odot consist of hydrocarbon units, mainly methylenic chains, $-(CH_2)_n$ -

Algaenan forms sponge-like shape (reticulum structure), and hold a lot of hydrocarbon secreted to out-side of cells.

The colony is ensured by hydrophobic cohesion of algaenans .

Can we use algaenans as some ingredients?

N-Alkyl and Alkenyl phenols of B. buraunii Race-A

Y= 15-21, odd number

The phenolic moieties protect the aliphatic chains against degradation by Bacteria and fungi.

Productions of hydrocarbon and slime exopolysaccarides by *Botryococcus braunii*

strain	Biomass (g/L)	Hydrocarbon (% of w/w)	Exopolusaccarides g/L
LB 572	2.0-3.6	20-35	1-2
SAG30.81	1.5-2.2	40-50	0.5-2
UC58			4-4.5
SI30	10	10-28	
Radia of po staine violet	al secretion lysaccharides, ed with methyl		Exopolysaccarides (violet color)

Sugar composition of the slime exopolysaccarides

In a case of strain UC58, the carbohydrate of the slime exopolysaccarides is mainly composed of α -*D*-glucose, α -*D*-fucose and α -*D*-galacturonic acid. Fucose may be related with apoptosis of cancer cells

Content and composition of slime exopolysaccarides of UT009 and 010

	Sugar composition / Total* (Fuc / Gal / G-uron.A	n (mol ratio) Unknown compound)
009		
Exocarbohydrate	15mg/100mL	1/2/1/1
Cell debris (upper 5µm)	11 mg	1/2/1/1
010		
Exocarbohydrate	1.5g/L	1/3/2**

Fuc: α -*D*-fucose; Gal: α -*D*-galactose; G-uron. A: α -*D*-galcturonic acid. * Excretion of slime exopolysaccarides is dependent on culture conditions **not containing unknown compound.

Summary

- 1) Many microalgae accumulate hydrocarbons or triglycerides.
- 2) In culture costs, *Botryococcus* is the cheapest. The Hydrocarbon (HC) content reaches about 50% in *Botryococcus* dry cells.
- 3) The major HC are terpene, alkene and alkane epoxide, these chemical species are dependent on strains. Especially, many Japanese strains produce alkane epoxides. The purities of terpens in HC are over 90%.
- 4) Alkene and alkane epoxide can be utilized as fuel. Terpenes can be utilized as ingredients of polymer, detergents and other medicinal and industrial chemicals.
- 5) Squalene is an expensive ingredient of cosmetics, but a minor component of H.C. of microalgae. If we use inhibitors or gene modification of key enzymes of squalene biosynthesis, we obtain a large amount of squalene
- 6) Algaenans are insoluble biopolymers consisted of HC.
- 7) Slime exopolysaccarides is a major by-product of *Botryococcus*, and is composed of α -*D*-glucose, α -*D*-fucose and α -*D*-galacturonic acid. Also, these can be utilized as industrial ingredients.

When the lipids and by-products of microalgae will be utilized in various industries, the cost of biofuel produced by microalgae will be reduced. As the results, bioleum (bio + oleum: oil of bioresources) will become an alternative resource of petroleum.

Thank you for your attention

This study is supported by JST-CREST (Algal Oil Project)