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1. Introduction

In this paper, we shall discuss a similarity between a Lagrangian branched
immersion from a Riemann surface to complex Euclidean plane and a
complex holomorphic function on a Riemann surface by the quater-
nionic theory of surfaces.

The quaternionic theory of surfaces in four-dimensional Euclidean
space R4 is developed by Pedit and Pinkall [8], Burstall, Ferus, Leschke,
Pedit, and Pinkall [1], and Ferus, Leschke, Pedit, and Pinkall [2]. This
theory presents many new points of view on conformal geometry of
surfaces in R4, where R4 is identified with the set H of quaternions.

In this theory, a right normal vector is defined for a conformal im-
mersion from a Riemann surface M to H. A right normal vector is a
quaternionic-valued function on M whose square is −1. It coincides
with a part of the generalized Gauss map of the conformal immersion
by taking a suitable decomposition of the Grassmanian manifold of two-
planes in H into a direct product of two spheres of dimension two. The
tangent space of the immersion is preserved by the right multiplication
of the right normal vector. Then a vector bundle endomorphism of the
trivial (right) quaternionic line bundle H over M is defined by the right
normal vector. This endomorphism is called a complex structure of H.
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2 Katsuhiro Moriya

For a smooth mapping from M to H, a right normal vector is defined
uniquely on the set where the mapping is a conformal immersion. If the
domain of a right normal vector can be extended to every point where
the differential of the smooth mapping is not injective, then the smooth
mapping is a conformal branched immersion by Lemma 1 in Section 2.

A complex structure of H plays a similar role to the complex struc-
ture of the space C of complex numbers. By a complex structure of
H, a quaternionic holomorphic structure of H is defined in a similar
way to define the complex holomorphic structure of C. A quaternionic
holomorphic structure is a zero-order perturbation of a complex holo-
morphic structure of a complex Euclidean plane C2 identified with H
(see p. 520 in [2]). This quaternionic holomorphic structure is called
a Euclidean holomorphic structure in Peters [9]. A smooth section of
H in the kernel of a quaternionic holomorphic structure is called a
quaternionic holomorphic section. When we consider a smooth section
of H as a smooth mapping from M to H, a non-constant quaternionic
holomorphic section is a conformal branched immersion with a right
normal vector. Hence a conformal branched immersion is a natural
generalization of a complex holomorphic function on M . In the same
way as a quotient of two complex holomorphic sections of a complex line
trivial bundle is a complex holomorphic function except at the zeros
of its denominator, a quotient of two linearly independent quaternionic
holomorphic sections of H with a complex structure is a conformal
branched immersion with a right normal vector except at the zeros of
its denominator by Example on p. 395 in [8].

We will look for a set of conformal branched immersions with a right
normal vector satisfying a geometric property such that it is similar to
a set of complex holomorphic function. Then it is expected that a set of
Lagrangian branched immersion from M to complex Euclidean plane
C2 with a right normal vector is a candidate, where C2 is identified
with H. Indeed, we shall characterize a Lagrangian immersion by its
right normal vector in Section 3. We define a complex structure by
a right normal vector of a Lagrangian branched immersion. Then ev-
ery quaternionic conjugate of non-constant quaternionic holomorphic
section of H is a Lagrangian branched immersion with the same right
normal vector by the discussion in Section 2.

We will consider the problem that whether the quotient of two La-
grangian branched immersions is a Lagrangian branched immersion.
We should take a quotient of two linearly independent quaternionic
holomorphic sections of H with a complex structure defined by a right
normal vector of a Lagrangian branched immersion. Then their quotient
is not necessarily a Lagrangian branched immersion. Hence it is an
interesting problem to classify the pairs of two quaternionic holomor-

moriya3.tex; 14/12/2007; 17:11; p.2
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phic sections of H such that their quotient is a Lagrangian branched
immersion.

We shall devote this paper to classify quaternionic holomorphic sec-
tions of H vanishing nowhere which are the denominators of Lagrangian
branched immersions from M to C2 with their right normal vector. This
paper is organized as follows.

In Section 2, we shall review the quaternionic theory of conformal
branched immersions from M to H and rewrite Example on p. 395 in
[8] to make it convenient for our use.

In Section 3, we shall characterize a Lagrangian immersion and a
Hamiltonian-minimal Lagrangian immersion in terms of the quater-
nionic formulation. The notions of Hamiltonian-minimality is intro-
duced by Oh [7].

In Section 4, we shall assume that a quaternionic holomorphic line
bundle is associated with a Lagrangian branched immersion with a
right normal vector. We shall classify the quaternionic holomorphic
sections vanishing nowhere which are the denominators of Lagrangian
branched immersions. In the case where M is closed, the image of M
by a denominator is a torus (Theorem 1). In the case where M is
open, a complex-valued function is defined locally as a function of a
complex holomorphic function on M and Lagrangian angle mappings
of a Lagrangian branched immersion and its denominator so that it is
a solution to a differential equation called the Carleman-Bers-Vekua
system in Rodin [10] (cf. Vekua [12]). A denominator is a mapping of
this complex holomorphic function on M and these Lagrangian angle
mappings (Theorem 2).

In Section 5, we discuss the case where a Lagrangian branched
immersion or its denominator is a Hamiltonian-minimal Lagrangian
branched immersion. If both of them are Hamiltonian-minimal La-
grangian branched immersions, then the image of M by a denominator
is a plane or a torus (Theorem 3). If one is a Hamiltonian-minimal
Lagrangian branched immersion and another is not a Hamiltonian-
minimal Lagrangian branched immersion, then we have a formula for
the denominator as a mapping of a holomorphic function (Theorem 4
and Theorem 5).

In Section 6, we construct a numerator and obtain a Lagrangian
branched immersion by Theorem 4 and Theorem 5.
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2. Quaternionic holomorphic line bundles

We shall recall the quaternionic theory of surfaces by Pedit and Pinkall
[8], Burstall, Ferus, Leschke, Pedit, and Pinkall [1], and Ferus, Leschke,
Pedit, and Pinkall [2].

We denote by R the set of real numbers and by H the set of quater-
nions {a0 + a1i + a2j + a3k | a0, a1, a2, a3 ∈ R}, where i, j, and k are
elements of H such that

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

For a quaternion a0 + a1i + a2j + a3k such that a0, a1, a2, and a3 ∈ R,
the quaternionic conjugate â of a, the real part Re a of a, and the
imaginary part Im a of a are defined by â = a0 − a1i − a2j − a3k,
Re a = a0, and Im a = a1i + a2j + a3k respectively. We denote by
Im H the set of imaginary parts of quaternions. The set of quaternions
H is considered as the set of quadruplets of real numbers R4 by the
identification of a quaternion a0 + a1i + a2j + a3k such that a0, a1, a2,
and a3 ∈ R with a quadruplet (a0, a1, a2, a3) of real numbers. Let q be
a quaternionic sesquilinear product on H by q(x, y) = x̂y for every pair
(x, y) of quaternions. We define real-valued quadratic forms ω0, ω1, ω2,
and ω3 by q(x, y) = ω0(x, y) + ω1(x, y)i + ω2(x, y)j + ω3(x, y)k. Then
the quadratic form ω0 is the standard Euclidean inner product of R4.
Let (H, ω0) be four-dimensional Euclidean space and |a| = (ω0(a, a))1/2

Euclidean norm of a ∈ H.
The set {a0 + a1i | a0, a1 ∈ R} is considered as the set C of complex

numbers. Then the set of quaternions H is considered as the set of pairs
of complex numbers C2 by the identification of a quaternion a0 +a1i+
a2j + a3k such that a0, a1, a2, and a3 ∈ R with a pair of complex
numbers (a0 + a1i, a2 − a3i). Then the quadratic ω1 is the standard
symplectic form of C2 and ω0 + ω1i is the standard Hermitian inner
product on C2.

Euclidean inner product ω0 induces the standard Riemannian metric
of R4. We use the same notation ω0 for this Riemannian metric. Simi-
larly, we use the same notation ω1 for the standard symplectic structure
of C2 induced by the symplectic form ω1 on C2. Then ω0 + ω1i is the
standard Hermitian metric of C2.

Let (M, g) be a two-dimensional oriented connected Riemannian
manifold M with a Riemannian metric g, TM its tangent bundle, and
T ∗M its cotangent bundle. Then there exists a complex structure JTM

of (M, g) such that the ordered pair (e, JTMe) is a positive orthonormal
basis of TpM for every point p in M and every unit vector e in the fiber
TpM of TM at p.
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For a smooth vector bundle V over M , we denote by Γ(V ) the set
of smooth sections of V and Ωn(V ) the set of smooth differential n-
forms on M with coefficients in V (n = 0, 1, 2). We define a mapping
∗: Ω1(V ) → Ω1(V ) by ∗ω = ω ◦ JTM for every ω ∈ Ω1(V ).

Let H be the trivial (right) quaternionic line bundle H over M . A
smooth mapping φ: M → H is considered as a smooth section φ of H.
Let L be a pair (H, JL) with a quaternionic vector bundle endomor-
phism JL of H. The endomorphism JL is called a complex structure of
L in [1].

Let T ∗M⊗RH be the tensor bundle of T ∗M and H over R and ζφ an
element of T ∗M ⊗R H such that ζ ∈ T ∗M and φ ∈ H. A quaternionic-
valued one-form on M is a section of T ∗M ⊗R H. We define a vector
bundle endomorphism J of T ∗M ⊗R H by the equation Jζφ = ζJLφ.
A quaternionic vector bundle K̄H is defined by

K̄H = {ω ∈ T ∗M ⊗R H | ∗ ω = −Jω}.

We define a quaternionic homomorphism D: Γ(H) → Γ(K̄H) by

D(φ) =
1
2
{(dφ) + J ∗ (dφ)}.

for every smooth mapping φ from M to H. Following Peters [9], we call
the quaternionic homomorphism D the Euclidean quaternionic holo-
morphic structure of L and the pair L = (H, JL) with its Euclidean
quaternionic holomorphic structure D a Euclidean quaternionic holo-
morphic line bundle. A smooth section φ of L is called a quaternionic
holomorphic section of L if D(φ) = 0. We see that a constant section
is a quaternionic holomorphic section.

A smooth mapping f : (M, g) → (H, ω0) is called a conformal im-
mersion on M if f is an immersion and there exists a pair (Nf , Rf ) of
smooth mappings from M to S2(1) ⊂ Im H such that

(Nf )2 = (Rf )2 = −1,

∗(df) = Nf (df) = (df)(−Rf ). (2.1)

The smooth mappings Nf and Rf defined by the equation (2.1) are
called the left normal vector of f and the right normal vector of f
respectively (Definition 2 in [1]).

A point p ∈ M is called a branch point of a smooth mapping
f : (M, g) → (H, ω0) if the differential mapping (df)p of f at p is the
zero mapping. A non-constant smooth mapping f : (M, g) → (H, ω0) is
called a conformal branched immersion if every point p ∈ M such that
(df)p is not injective is a branch point and f is a conformal immersion
on M except branch points.
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A right normal vector is not defined by the equation (2.1) at a point
p ∈ M such that (df)p is not injective.

LEMMA 1. Let f : (M, g) → (H, ω0) be a non-constant smooth map-
ping. If there exists a mapping Rf : M → S2(1) ⊂ Im H such that

(Rf )2 = −1, ∗(df) = (df)(−Rf ),

then f is a conformal branched immersion.
Proof. It is indicated on p. 8 in [1] that if ∗(df) = (df)(−Rf ), then

f is conformal at every point p ∈ M such that (df)p is injective. Let
p ∈ M be a point such that (df)p is not injective and (u1, u2) is an
isothermal coordinate around p such that JTM (∂/∂u1) = ∂/∂u2. If
∗(df) = (df)(−R), then

∂f

∂u2
(p) =

∂f

∂u1
(p)(−Rf (p)).

Since (df)p is not injective and Rf is a mapping from M to S2(1) ⊂
Im H, we have

∂f

∂u2
(p) =

∂f

∂u1
(p) = 0.

Hence (df)p = 0. 2
We call the mapping f with a smooth mapping Rf : M → S2(1) ⊂ Im H
such that ∗(df) = (df)(−Rf ) on M a conformal branched immersion
with a right normal vector Rf .

Let f : (M, g) → (H, ω0) be a conformal branched immersion with
its right normal vector Rf . We define a complex structure Jf of H
by Jf1 = Rf . Let Df be the Euclidean quaternionic holomorphic
structure of Lf = (H, Jf ) and φ̂ a smooth section of Lf . Since Df (φ̂) =
{(dφ̂) + Rf ∗ (dφ̂)}/2, a section φ̂ of Lf is a non-constant quaternionic
holomorphic section if and only if φ is a conformal branched immersion
with its right normal vector Rf . Hence the section f̂ is a non-constant
quaternionic holomorphic section of Lf .

Let L be a Euclidean quaternionic holomorphic line bundle over
M with its complex structure JL defined by JL1 = R for a smooth
mapping R: M → S2(1) ⊂ Im H. The following Lemma 2 is a variant
of Example on p. 395 in [8].

LEMMA 2. We assume that ν̂ is a non-zero quaternionic holomorphic
section of L and µ̂ is a smooth section vanishing nowhere of L. A
smooth mapping λ: (M, g) → (H, ω0) defined by the equation ν̂ = µ̂λ̂ is
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a conformal branched immersion with its right normal vector µRµ−1

if and only if µ̂ is linearly independent of ν̂ and it is a quaternionic
holomorphic section of L.

Proof. Evaluating the both side of the equation ν̂ = µ̂λ̂ by the
Euclidean quaternionic holomorphic structure D of L, we have

0 = D(µ̂)λ̂ +
1
2
µ̂{(dλ̂) + µ̂−1Rµ̂ ∗ (dλ̂)}.

Hence Lemma 2 holds. 2

3. Lagrangian surfaces

We shall describe a conformal Lagrangian immersion from (M, g) to
(C2, ω0) in terms of quaternions.

We identify H with C2 by the identification of a quaternion a0 +
a1i+ a2j + a3k such that a0, a1, a2, and a3 ∈ R with a pair of complex
numbers (a0+a1i, a2−a3i). A conformal immersion f : (M, g) → (H, ω0)
is called a Lagrangian immersion if

ω0 ({(df)p(X)}i, (df)p(Y )) = 0, (3.1)

for every point p ∈ M and every pair (X,Y ) of vectors X and Y ∈
TpM . A conformal branched immersion f : (M, g) → (H, ω0) is called a
Lagrangian branched immersion if f is a Lagrangian immersion on M
except at branch points.

We shall rephrase this definition in terms of quaternions. Let Z be
the set of integers and R/2πZ the quotient space of R by 2πZ =
{2πn |n ∈ Z}. Let f : (M, g) → (H, ω0) be a conformal immersion.
We make another identification of C2 with H by the identification of
(z0, z1) ∈ C2 with τ(z0 + jz1)τ−1, where τ = i + j. Under this iden-
tification, Hélein and Romon [5] showed that a conformal immersion
f̃ = τfτ−1 is a Lagrangian immersion if and only if (df̃) = r(dz)eθj/2

for a local complex holomorphic coordinate z of M , a quaternionic-
valued function r, and a smooth mapping θ: M → R/2πZ. The mapping
θ is called the Lagrangian angle mapping of f . If the Lagrangian angle
mapping is constant, then f(M) is a Lagrangian plane. Let h be the
Riemannian metric of R/2πZ induced by the standard Riemannian
metric of R. If the map θ: (M, g) → (R/2πZ, h) is harmonic, then f
is called Hamiltonian-minimal Lagrangian immersion (see Hélein and
Romon [6]). We see that

∗(df̃) = r(dz)ieθj/2 = (df̃)e−θj/2ieθj/2 = (df̃)ieθj .
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Coming back to the identification of C2 with H by the identification
(z0, z1) ∈ C2 with z0 + jz1 ∈ H, we have

∗(df) = (df)τ−1ieθjτ = (df)jeθi.

Hence the right normal vector of f is −jeθi. We define a mapping
β: M → R/2πZ by β = θ +π. Then the right normal vector of f is jeβi

and f is Hamiltonian-minimal if and only if β is harmonic.

4. Lagrangian line bundles

We shall classify the denominators of Lagrangian branched immersions
from (M, g) to (H, ω0).

Let L be a Euclidean quaternionic holomorphic line bundle L over a
Riemann surface M with complex structure JL. We call L a Lagrangian
line bundle if JL is defined by JL1 = jeβi with a smooth mapping
β: M → R/2πZ. A non-constant quaternionic holomorphic section of
a Lagrangian line bundle with its complex structure defined by JL1 =
jeβi is identified with a Lagrangian branched immersion with a right
normal vector jeβi.

LEMMA 3. We assume that ν̂ is a non-zero quaternionic holomorphic
section of a Lagrangian line bundle L with its complex structure JL

defined by JL1 = jeβi and that µ̂ is a nowhere-vanishing smooth section
of L. A mapping λ: (M, g) → (H, ω0) defined by the equation ν̂ = µ̂λ̂ is
a Lagrangian branched immersion with its right normal vector jeγi if
and only if µ̂ is linearly independent of ν̂ and

µ = µ0e
(β−γ)i/2 + jµ1e

(β+γ)i/2, (4.1)
µ0(− ∗ (dβ) + ∗(dγ)) = µ1((dβ) + (dγ)), (4.2)

where µ0 and µ1 are real-valued functions on M such that µ0 − µ1i is
a complex holomorphic function vanishing nowhere on M .

Proof. It is an immediate consequence of Lemma 2 that a mapping
λ is a Lagrangian branched immersion with its right normal vector jeγi

if and only if µ̂ is linearly independent of ν̂, µ̂ is a nowhere-vanishing,
quaternionic holomorphic section of L satisfying µjeβiµ−1 = jeγi. We
rewrite the last equation.

Let F0 and F1 be complex-valued functions on M such that µ = F0+
jF1. Then the equation µjeβiµ−1 = jeγi is equivalent to the equation

−F̄1e
βi + jF̄0e

βi = −F1e
−γi + jF0e

γi.
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Then the mapping µ: M → H given by the equation (4.1) is the solution
to this equation.

A section µ̂ of L defined by (4.1) is a quaternionic holomorphic
section if and only if

−e(β−γ)i/2 ∗ (dµ1) +
1
2
µ1ie

(β−γ)i/2(∗(dβ) + ∗(dγ))

+j

{
e(β+γ)i/2 ∗ (dµ0) −

1
2
µ0ie

(β+γ)i/2(∗(dβ) − ∗(dγ))
}

= e(β−γ)i/2(dµ0) +
1
2
µ0ie

(β−γ)i/2((dβ) − (dγ))

+j

{
e(β+γ)i/2(dµ1) +

1
2
µ1ie

(β+γ)i/2((dβ) + (dγ))
}

.

This equation is equivalent to the system of equations (4.2) and

∗(dµ0) = (dµ1).

Since this equation is equivalent to the equation

(d(µ0 − µ1i)) + i ∗ (d(µ0 − µ1i)) = 0,

µ0 − µ1i is a complex holomorphic function. Since the section µ̂ van-
ishes nowhere on M by the assumption, the function µ0 −µ1i vanishes
nowhere on M . 2

We shall classify the branch points of a smooth mapping µ defined
by (4.1) and (4.2) with real-valued functions µ0 and µ1 on M such that
µ0 − µ1i is a nowhere vanishing complex holomorphic function. Since

(dµ) = (dµ0)e(β−γ)i/2 +
1
2
µ0ie

(β−γ)i/2((dβ) − (dγ))

+ j

{
(dµ1)e(β+γ)i/2 +

1
2
µ1ie

(β+γ)i/2((dβ) + (dγ))
}

,

a point p ∈ M is a branch point of µ if and only if

(dµ0)p = 0, (dµ1)p = 0,

µ0(p)((dβ)p − (dγ)p) = 0, µ1(p)((dβ)p + (dγ)p) = 0.

Hence a point p ∈ M is a branch point of µ if and only if a point p is
a branch point of µ0 − µ1i and

µ0(p) = 0 and (dβ)p + (dγ)p = 0, (4.3)
µ1(p) = 0 and (dβ)p − (dγ)p = 0, (4.4)

or

(dβ)p = (dγ)p = 0. (4.5)
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We shall classify the denominators of Lagrangian branched immer-
sions with a right normal vector. Let ν̂ be a non-zero quaternionic
holomorphic section of a Lagrangian line bundle L with its complex
structure JL defined by JL1 = jeβi and µ̂ a nowhere-vanishing smooth
section of L.

THEOREM 1. We assume that M is a closed Riemann surface. The
mapping λ: (M, g) → (H, ω0) defined by the equation ν̂ = µ̂λ̂ is a
Lagrangian branched immersion with its right normal vector jeγi if and
only if µ̂ is linearly independent of ν̂ and µ = µ0e

(β−γ)i/2 +jµ1e
(β+γ)i/2

with real constants µ0 and µ1 such that (µ0)2 + (µ1)2 6= 0 and that
Ψ = µ0(β−γ)+µ1(β +γ)i is a complex holomorphic mapping from M
to the torus C/Λ with Λ = {2πµ0n + 2πµ1mi |n, m ∈ Z}.

Proof. By Lemma 3, the mapping λ is a Lagrangian branched im-
mersion with its right normal vector jeγi if and only if µ̂ is linearly
independent of ν̂ and µ is defined by (4.1) and (4.2) with real-valued
function µ0 and µ1 on M such that µ0 − µ1i is a complex holomorphic
function vanishing nowhere on M . Hence µ0 and µ1 are real con-
stants. Since µ vanishes nowhere, (µ0)2 +(µ1)2 6= 0. Then the mapping
Ψ = µ0(β − γ) + µ1(β + γ)i is a non-constant complex holomorphic
mapping from M to C/Λ. Indeed, the equation (4.2) is equivalent to
the equation

∗(d{µ0(−β + γ)}) = (d{µ1(β + γ)}).

This is equivalent to Ψ being a complex holomorphic mapping from M
to C/Λ. 2

We see that the Lagrangian branched immersions µ, ν, and λ in the
above theorem are Hamiltonian-minimal and that µ(M) is a torus. If
Ψ is non-constant, then the total branching order of Ψ is two times the
genus of M by the Riemann-Hurwitz formula on p.140 in [3].

Next, we discuss the case where M is an open Riemann surface. Let
∂̄ be a mapping from the set of smooth complex-valued functions on
M to the set of smooth complex-valued one-forms of (0, 1)-type on M
defined by ∂̄ = 2−1(d + i ∗ d). Then a differential equation

∂̄ψ = ψa + ψ̄b,

with complex-valued one-forms a and b of (0, 1)-type for a complex-
valued function ψ on M is called the Carleman-Bers-Vekua system and
a solution ψ to the equation is called a generalized analytic function in
Rodin [12] (cf, Vekua [10]).

On a sufficiently small open set of M , we may consider the mapping
Ψ = µ0(β − γ) + µ1(β + γ)i as a complex-valued function.
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THEOREM 2. We assume that M is an open Riemann surface. The
mapping λ: (M, g) → (H, ω0) defined by the equation ν̂ = µ̂λ̂ is a
Lagrangian branched immersion with its right normal vector jeγi if and
only if µ̂ is linearly independent of ν̂ and µ = µ0e

(β−γ)i/2 +jµ1e
(β+γ)i/2

with real-valued functions µ0 and µ1 on M such that

− the function µ0 − µ1i is a complex holomorphic function on M
vanishing nowhere,

− the equation (dβ) + (dγ) = 0 holds on {p ∈ M |µ0(p) = 0},

− the equation (dβ) − (dγ) = 0 holds on {p ∈ M |µ1(p) = 0},

and that

− a mapping Ψ = µ0(β − γ) + µ1(β + γ)i is a generalized analytic
function for the Carleman-Bers-Vekua system

∂̄Ψ = Ψ
∂̄ log(µ0µ1)

2
+ Ψ̄

∂̄ log(µ0µ
−1
1 )

2
, (4.6)

on every sufficiently small open set of {p ∈ M |µ0(p)µ1(p) 6= 0}.
Proof. On the set {p ∈ M |µ0(p) = 0}, the equation (4.2) is equiva-

lent to the equation µ1((dβ) + (dγ)) = 0. Since (µ0)2 + (µ1)2 6= 0, the
equation (4.2) is equivalent to the equation (dβ) + (dγ) = 0. Similarly,
the equation (4.2) is equivalent to (dβ)− (dγ) = 0 on {p ∈ M |µ1(p) =
0}.

On a sufficiently small open set of a point p with µ0(p)µ1(p) 6= 0, we
define local real-valued functions η and ξ by η = β − γ and ξ = β + γ.
Then Ψ = µ0η + µ1ξi1 and the equation (4.2) is equivalent to the
equation µ0 ∗ (dη) = −µ1(dξ). Since

(d(µ0η)) = η(dµ0) + µ0(dη), (d(µ1ξ)) = ξ(dµ1) + µ1(dξ),

the equation (4.2) is equivalent to the equation

∗(d(µ0η)) − µ0η ∗ (d log µ0) = −(d(µ1ξ)) + µ1ξ(d log µ1).

Then the equation (4.2) is equivalent to

2∂̄Ψ = (dΨ) + i ∗ (dΨ)
= (d(µ0η)) + i(d(µ1ξ)) + i ∗ (d(µ0η)) − ∗(d(µ1ξ))
= µ0η(d log µ0) − µ1ξ ∗ (d log µ1)

+i{µ0η ∗ (d log µ0) + µ1ξ(d log µ1)}
= µ0η((d log µ0) + i ∗ (d log µ0))
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12 Katsuhiro Moriya

+µ1ξ(− ∗ (d log µ1) + i(d log µ1))
= (Ψ + Ψ̄)(∂̄ log µ0) − (Ψ − Ψ̄)(−∂̄ log µ1)
= Ψ(∂̄ log µ0 + ∂̄ log µ1) + Ψ̄(∂̄ log µ0 − ∂̄ log µ1)
= Ψ{∂̄ log(µ0µ1)} + Ψ̄{∂̄ log(µ0µ

−1
1 )}.

Then Theorem 2 follows from Lemma 3. 2

5. Formulae for denominators

We shall discuss the case where λ or its denominator µ is a Hamiltonian-
minimal Lagrangian branched immersion with a right normal vector.
Throughout this section, we assume that M is an open Riemann sur-
face. We call a Lagrangian line bundle L with its Lagrangian angle
β a Hamiltonian-minimal Lagrangian line bundle if β is a harmonic
mapping.

We shall rewrite the equation (4.2) in another way. Let µ0 and µ1 be
real-valued functions on M such that µ0−µ1i is a complex holomorphic
function vanishing nowhere on M and let M ′ be the set of branch
points of µ0 − µ1i. Then the functions µ0 and µ1 are constant if and
only if M ′ = M and not constant if and only if every element of M ′ is
an isolated point. We assume that µ0 and µ1 are not constant. Then
(µ0, µ1) is an isothermal coordinate on M \ M ′. We define real-valued
functions βµk

, γµk
, βµkµl

and γµkµl
on M \ M ′ by the equations

(dβ) = βµ0(dµ0) + βµ1(dµ1),
(dγ) = γµ0(dµ0) + γµ1(dµ1),

(dβµk
) = βµkµ0(dµ0) + βµkµl

(dµ1),
(dγµk

) = γµkµ0(dµ0) + γµkµ1(dµ1), (k, l = 0, 1).

Then βµ0µ1 = βµ1µ0 and γµ0µ1 = γµ1µ0 . The equation (4.2) on M \ M ′

is equivalent to the equation(
µ1 µ0

µ0 −µ1

) (
γµ0

γµ1

)
=

(
−µ1 µ0

µ0 µ1

) (
βµ0

βµ1

)
,

(5.1)

on M \ M ′.

LEMMA 4. If the equation (5.1 ) holds on M \M ′, then the system of
equations

2γµ1 + µ1(γµ0µ0 + γµ1µ1) = −µ1(βµ0µ0 + βµ1µ1), (5.2)
2γµ0 + µ0(γµ0µ0 + γµ1µ1) = µ0(βµ0µ0 + βµ1µ1), (5.3)

holds on M \ M ′.
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Proof. By the differentiation of the both side of the equation (5.1),
we have a system of equations(

0 1
1 0

) (
γµ0

γµ1

)
+

(
µ1 µ0

µ0 −µ1

) (
γµ0µ0

γµ1µ0

)
=

(
0 1
1 0

) (
βµ0

βµ1

)
+

(
−µ1 µ0

µ0 µ1

) (
βµ0µ0

βµ1µ0

)
,(

1 0
0 −1

) (
γµ0

γµ1

)
+

(
µ1 µ0

µ0 −µ1

) (
γµ0µ1

γµ1µ1

)
=

(
−1 0
0 1

) (
βµ0

βµ1

)
+

(
−µ1 µ0

µ0 µ1

) (
βµ0µ1

βµ1µ1

)
.

This system of equations is equivalent to the system of equations

γµ1 + µ1γµ0µ0 + µ0γµ1µ0 = βµ1 − µ1βµ0µ0 + µ0βµ1µ0 ,

γµ0 + µ0γµ0µ0 − µ1γµ1µ0 = βµ0 + µ0βµ0µ0 + µ1βµ1µ0 ,

γµ0 + µ1γµ0µ1 + µ0γµ1µ1 = −βµ0 − µ1βµ0µ1 + µ0βµ1µ1 ,

−γµ1 + µ0γµ0µ1 − µ1γµ1µ1 = βµ1 + µ0βµ0µ1 + µ1βµ1µ1 .

Lemma 4 follows from this system of equations. 2
We shall discuss the case where µ, ν and λ are Hamiltonian-minimal

Lagrangian branched immersions. Let ν̂ be a non-zero quaternionic
holomorphic section of a Hamiltonian-minimal Lagrangian line bun-
dle L with its complex structure JL defined by JL1 = jeβi and µ̂ a
nowhere-vanishing quaternionic holomorphic sections of L.

THEOREM 3. The mapping λ: (M, g) → (H, ω0) defined by the equa-
tion ν̂ = µ̂λ̂ is a Hamiltonian-minimal Lagrangian branched immersion
with its right normal vector jeγi if and only if µ̂ is linearly independent
of ν̂ and µ = µ0e

(β−γ)i/2 + jµ1e
(β+γ)i/2 with real-valued functions µ0

and µ1 on M such that

− the functions µ0 and µ1 are constants with (µ0)2 +(µ1)2 6= 0 and
Ψ = µ0(β − γ) + µ1(β + γ)i is a complex holomorphic mapping
from M to C/Λ with Λ = {2πµ0n + 2πµ1mi |n,m ∈ Z},

or

− the function µ0 − µ1i is a non-constant complex holomorphic
function vanishing nowhere and β and γ are constant mappings.

Proof. Let λ be a Hamiltonian-minimal Lagrangian branched im-
mersion. If µ0 and µ1 are constants, then Ψ is a complex holomorphic
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14 Katsuhiro Moriya

mapping from M to C/Λ by (4.2) in the same way as the proof of Theo-
rem 1. We assume that µ0−µ1i is a non-constant complex holomorphic
function. By Lemma 4, we have

2γµ1 = 0, 2γµ0 = 0,

on M \M ′ since β and γ are harmonic mappings. Hence γ is a constant
mapping on M \ M ′. Then −µ0 ∗ (dβ) = µ1(dβ) by the equation (4.2)
on M \M ′. Since µ0(dβ) = µ1 ∗ (dβ), we have {(µ0)2 + (µ1)2}(dβ) = 0
on M \ M ′. Hence (dβ) = 0 and β is a constant mapping on M \ M ′.
Since every element of M ′ is an isolated point and β and γ are smooth
on M , both β and γ are constant mappings on M .

It is easy to see that the converse holds, 2
We shall discuss the case where µ and ν are Hamiltonian-minimal

Lagrangian branched immersion and λ is a Lagrangian branched im-
mersion with its right normal vector jeiγ which is not Hamiltonian-
minimal. Let ν̂ be a non-zero quaternionic holomorphic section of a
Hamiltonian-minimal Lagrangian line bundle L with its complex struc-
ture JL defined by JL1 = jeβi and µ̂ a nowhere-vanishing quaternionic
holomorphic sections of L.

THEOREM 4. The mapping λ: (M, g) → (H, ω0) defined by the equa-
tion ν̂ = µ̂λ̂ is a Lagrangian branched immersion with its right normal
vector jeγi which is not Hamiltonian-minimal if and only if µ̂ is linearly
independent of ν̂ and µ = µ0e

(β−γ)i/2 + jµ1e
(β+γ)i/2 with real-valued

functions µ0 and µ1 on M such that µ0−µ1i is a non-constant complex
holomorphic function vanishing nowhere on M and mappings β and γ
are given by the equations

β(µ0, µ1) = A
(µ2

0 − µ2
1)

(µ2
0 + µ2

1)2
+ B, (5.4)

γ(µ0, µ1) =
A

µ2
0 + µ2

1

+ C, (5.5)

on M for an arbitrary non-zero real number A and arbitrary real num-
bers B and C.

Proof. We assume that λ is a Lagrangian branched immersion with
its right normal vector jeγi which is not a Hamiltonian-minimal La-
grangian branched immersion. If µ0 and µ1 are constant functions, then
Ψ = µ0(β − γ) + µ1(β + γ)i is a complex holomorphic mapping in the
same way as the proof of Theorem 1. Then β and γ are harmonic
mappings. Since γ is not a harmonic mapping by the assumption, the
functions µ0 and µ1 are not constant functions.
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Since β is a harmonic mapping, we have

2γµ1 + µ1(γµ0µ0 + γµ1µ1) = 0, (5.6)
2γµ0 + µ0(γµ0µ0 + γµ1µ1) = 0, (5.7)

on M \ M ′ by Lemma 4. Then µ1γµ0 − µ0γµ1 = 0. Hence γ(µ0, µ1) =
φ(µ2

0+µ2
1) on M \M ′ for a smooth real-valued function φ on R\{µ2

0(p)+
µ2

1(p) | p ∈ M \ M ′}.
Since

γµ0µ0(µ0, µ1) = 4µ2
0φ

′′(µ2
0 + µ2

1) + 2φ′(µ2
0 + µ2

1),
γµ1µ1(µ0, µ1) = 4µ2

1φ
′′(µ2

0 + µ2
1) + 2φ′(µ2

0 + µ2
1),

the equations (5.6) and (5.7) is equivalent to the equation

tφ′′(t) + 2φ′(t) = 0, t = µ2
0 + µ2

1.

The solution to this equation is φ′(t) = −At−2 for a real number A.
Since γ is not a harmonic mapping, it is not a constant mapping. Then
we obtain the equation (5.5) with a non-zero real number A and a real
number C on M \ M ′. Since every element of M ′ is an isolated point
and γ is smooth on M , the equation (5.5) holds on M .

Since

γµ0(µ0, µ1) = − 2Aµ0

(µ2
0 + µ2

1)2
,

γµ1(µ0, µ1) = − 2Aµ1

(µ2
0 + µ2

1)2
,

we have(
βµ0

βµ1

)
=

(
−µ1 µ0

µ0 µ1

)−1 (
µ1 µ0

µ0 −µ1

) (
−2Aµ0(µ2

0 + µ2
1)

−2

−2Aµ1(µ2
0 + µ2

1)
−2

)
=

−2A

(µ2
0 + µ2

1)3

(
µ3

0 − 3µ0µ
2
1

3µ2
0µ1 − µ3

1

)
,

on M \ M ′ by the equation (5.1). Since

µ3
0 − 3µ0µ

2
1

(µ2
0 + µ2

1)3
=

µ0(µ2
0 + µ2

1 − 4µ2
1)

(µ2
0 + µ2

1)3
=

µ0

(µ2
0 + µ2

1)2
+

µ0(−4µ2
1)

(µ2
0 + µ2

1)3

=
∂

∂µ0

−1
2(µ2

0 + µ2
1)

+
∂

∂µ0

µ2
1

(µ2
0 + µ2

1)2
,

we have

β(µ0, µ1) = −2A

(
−1

2(µ2
0 + µ2

1)
+

µ2
1

(µ2
0 + µ2

1)2

)
+ E(µ1)

= −2A

(
1

2(µ2
0 + µ2

1)
− µ2

0

(µ2
0 + µ2

1)2

)
+ E(µ1),
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16 Katsuhiro Moriya

where E(µ1) is a differentiable function of µ1. Then

βµ1(µ0, µ1) = −2A

(
−µ1

(µ2
0 + µ2

1)2
+

4µ2
0µ1

(µ2
0 + µ2

1)3

)
+

∂

∂µ1
E(µ1)

=
−2A(3µ2

0µ1 − µ3
1)

(µ2
0 + µ2

1)3
+

∂

∂µ1
E(µ1).

Hence E(µ1) is a constant and the equation (5.4) is satisfied on M \M ′

for a non-zero real number A and a real number B. Since every element
of M ′ is an isolated point and β is smooth, the equation (5.4) holds on
M .

Conversely, we assume that β and γ satisfies the equations (5.4) and
(5.5). Then we see that β is a harmonic mapping and that the equation
(4.2) holds by a direct calculation. 2

We discuss the case where µ and ν are Lagrangian branched im-
mersions which are not Hamiltonian-minimal and λ is a Hamiltonian-
minimal Lagrangian branched immersion. Let ν̂ be a non-zero quater-
nionic holomorphic section of a Lagrangian line bundle L with its
complex structure JL defined by JL1 = jeβi which is not Hamiltonian-
minimal and µ̂ a nowhere-vanishing quaternionic holomorphic sections
of L.

THEOREM 5. The mapping λ: (M, g) → (H, ω0) defined by the equa-
tion ν̂ = µ̂λ̂ is a Hamiltonian-minimal Lagrangian branched immersion
with its right normal vector jeγi if and only if µ̂ is linearly independent
of ν̂ and µ = µ0e

(β−γ)i/2 + jµ1e
(β+γ)i/2 with real-valued functions µ0

and µ1 on M such that µ0 − µ1i is non-constant complex holomorphic
function vanishing nowhere and mappings β and γ are given by the
equations

β(µ0, µ1) = A(µ2
0 + µ2

1) + B, (5.8)
γ(µ0, µ1) = A(µ2

0 − µ2
1) + C, (5.9)

on M with a non-zero real number A and real numbers B and C.
Proof. We assume that λ is a Hamiltonian-minimal Lagrangian im-

mersion with its right normal vector jeγi. Since β is not a harmonic
mapping, we see that the functions µ0 and µ1 are not constant functions
in a similar way as the proof of Theorem 4.

Since γ is a harmonic mapping, we have the equations

2γµ0 = µ0(βµ0µ0 + βµ1µ1),
2γµ1 = −µ1(βµ0µ0 + βµ1µ1),
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on M \ M ′ by Lemma 4. Then µ1γµ0 + µ0γµ1 = 0. Hence γ(µ0, µ1) =
φ(µ2

0−µ2
1) for a smooth real-valued function φ on R\{µ2

0(p)−µ2
1(p) | p ∈

M \ M ′}. Since

γµ0(µ0, µ1) = 2µ0φ
′(µ2

0 − µ2
1),

γµ1(µ0, µ1) = −2µ1φ
′(µ2

0 − µ2
1),

γµ0µ0(µ0, µ1) = 4µ2
0φ

′′(µ2
0 − µ2

1) + 2φ′(µ2
0 − µ2

1),
γµ1µ1(µ0, µ1) = 4µ2

1φ
′′(µ2

0 − µ2
1) − 2φ′(µ2

0 − µ2
1),

we have

γµ0µ0(µ0, µ1) + γµ1µ1(µ0, µ1) = 4(µ2
0 + µ2

1)φ
′′(µ2

0 − µ2
1) = 0.

Hence the equation (5.9) holds on M \ M ′ for a non-zero real number
A and a real number C. Since every element of M ′ is an isolated point
and γ is smooth on M , the equation (5.9) holds on M .

By the equation (5.1), we have the equation(
βµ0

βµ1

)
= 2A

(
µ0

µ1

)
.

Hence the equation (5.8) holds for a non-zero real number A and a real
number B on M \ M ′. Since every element of M ′ is an isolated point
and β is smooth, the equation (5.8) holds on M .

Conversely, we assume that β and γ are given by the equations (5.8)
and (5.9) respectively. Then we see that the equation (4.2) holds and
γ is a harmonic mapping by a direct calculation.

6. Examples

We apply Theorem 4 and Theorem 5 to obtain examples of Lagrangian
branched immersions. We calculate left normal vectors of the examples
to see that there are examples with both conformal Maslov forms (see
[4]) and non-conformal Maslov forms.

Let f : M → C2 be a Lagrangian immersion with its left normal
vector N and its right normal vector jeβi. The map (N, jeβi):M →
S2(1) × S1(1) is a decomposition of the generalized Gauss map of f ,
where S1(1) is a circle in {j(u+vi) |u, v ∈ R} with radius one centered
at origin. Let ω1 is the symplectic form of C2 and H the mean curvature
vector of f . The one-form $ on M defined by $(X) = ω1(X,H)/π is
called the Maslov form of f . A Maslov form $ is said to be conformal
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18 Katsuhiro Moriya

if the tension field of the left normal vector N of f vanishes, or equiva-
lently d ∗ (dN) = hN with a real-valued function h on M . Locally, this
equation is equivalent to the equation

Nxx + Nyy = kN, (6.1)

where (x, y) is a local coordinate of M such that x+yi is a local complex
holomorphic coordinate and k is a local real-valued function on M (see
[11] for example).

We use the following coordinate transformation. Let µ0 and µ1 be
real-functions on M such that µ0 − µ1i is a complex holomorphic
function on M . Then (µ0, µ1) is a coordinate of M and µ0 − µ1i is a
complex holomorphic coordinate except branch points of µ0 − µ1i. Let
x = µ0(µ2

0 + µ2
1)

−1 and y = µ1(µ2
0 + µ2

1)
−1. Then (x, y) is a coordinate

on M such that x+yi is a complex holomorphic coordinate of M except
branch point and zeros of µ0 −µ1i. We see that x2

0 + x2
1 = (µ2

0 + µ2
1)

−1.

Example 1. Let µ = µ0e
(β−γ)i/2 + jµ1e

(β+γ)i/2 with real-valued func-
tions µ0 and µ1 on M such that µ0 − µ1i is a non-constant complex
holomorphic function vanishing nowhere on M . We assume that the
mappings β and γ are given by the equations (5.4) and (5.5) with non-
zero real number A and B = C = 0. Then

µ(µ0, µ1) = µ0e
−Aµ2

1(µ2
0+µ2

1)−2i + jµ1e
Aµ2

0(µ2
0+µ2

1)−2i

is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector jeβi by Theorem 4.

Let (x, y) be a coordinate of M such that x = µ0(µ2
0 + µ2

1)
−1 and

y = µ1(µ2
0 + µ2

1)
−1. Since

µ =
x

x2 + y2
e−Ay2i + j

y

x2 + y2
eAx2i,

µx =
−x2 + y2

(x2 + y2)2
e−Ay2i + j

2xy{−1 + A(x2 + y2)i}
(x2 + y2)2

eAx2i,

µy =
2xy{−1 − A(x2 + y2)i}

(x2 + y2)2
e−Ay2i + j

x2 − y2

(x2 + y2)2
eAx2i,

the left normal vector of µ is

µyµ
−1
x = −je−A(x2−y2)i.

By the equation (6.1), we see that the Maslov form of µ is conformal.
The section 1 of a Hamiltonian-minimal Lagrangian line bundle L with
its complex structure JL defined by JL1 = jeβi is a non-zero quater-
nionic holomorphic section. We define a smooth mapping λ by 1 = µ̂λ̂.
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Figure 1. (Example 1) U = {x + yi ∈ C | 0.52 ≤ x2 + y2 ≤ 42}, µ0 = x, µ1 = −y,
A = 1, Im µ: U → Im H.

Then

λ(µ0, µ1) =
1

µ2
0 + µ2

1

×
(
µ0e

Aµ2
1(µ2

0+µ2
1)−2i − jµ1e

Aµ2
0(µ2

0+µ2
1)−2i

)
is a Lagrangian branched immersion with its right normal vector jeγi

which is not Hamiltonian-minimal by Theorem 4.
Let x = µ0(µ2

0 + µ2
1)

−1 and y = µ1(µ2
0 + µ2

1)
−1. Then (x, y) is a

coordinate of M such that x + yi is a complex holomorphic coordinate
except branch point of µ0 − µ1i. Since

λ = xeAy2i − jyeAx2
,

λx = eAy2i − j2AxyieAx2i, λy = 2AxyieAy2i − jeAx2i,

the left normal vector of λ is

λyλ
−1
x =

4Axyi

1 + 4A2x2y2
+ j

(4A2x2y2 − 1)eA(x2−y2)i

1 + 4A2x2y2
.

After long computation, we see that the Maslov form of λ is not
conformal since the equation (6.1) does not hold.

Example 2. Let µ be the Hamiltonian-minimal Lagrangian branched
immersion with its right normal vector jeβi defined in the same way as
Example 1. The function

α =
2Aµ0µ1

(µ2
0 + µ2

1)2
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Figure 2. (Example 1) U = {x + yi ∈ C | 0.52 ≤ x2 + y2 ≤ 42}, µ0 = x, µ1 = −y,
A = 1, Im λ: U → Im H.

satisfies the equation ∗(dα) = (dβ). Then

ν = α − jieβi =
2Aµ0µ1

(µ2
0 + µ2

1)2
− jie{A(µ2

0−µ2
1)(µ2

0+µ2
1)−2}i

is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector jeβi. Indeed,

(dν) = (dα) + jeβi(dβ),
∗(dν) = (dβ) − jeβi(dα) = (dν)(−jeβi).

Since the left normal vector of ν is −jeβi, we see that the Maslov form
of ν is conformal by the equation (6.1). The image ν(M) is a part of a
circular cylinder.

We define a smooth mapping λ by ν̂ = µ̂λ̂. Then

λ(µ0, µ1) =
1

(µ2
0 + µ2

1)3

×
[{

2Aµ2
0µ1e

Aµ2
1(µ2

0+µ2
1)−2i + µ1(µ2

0 + µ2
1)

2ieAµ2
1(µ2

0+µ2
1)−2i

}
+ j

{
−2Aµ0µ

2
1e

Aµ2
0(µ2

0+µ2
1)−2i − µ0(µ2

0 + µ2
1)

2ieAµ2
0(µ2

0+µ2
1)−2i

}]
is a Lagrangian branched immersion with its right normal vector jeγi

which is not Hamiltonian-minimal by Theorem 4.
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Figure 3. (Example 2) U = {x + yi ∈ C | 0.682 ≤ x2 + y2 ≤ 1.52}, µ0 = x, µ1 = −y,
A = 1, Im(iν): U → Im H.
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Figure 4. (Example 2) U = {x + yi ∈ C | 0.682 ≤ x2 + y2 ≤ 1.52}, µ0 = x, µ1 = −y,
A = 1, Im(iλ): U → Im H.

Let x = µ0(µ2
0 + µ2

1)
−1 and y = µ1(µ2

0 + µ2
1)

−1. Then

λ = (2Ax2 + i)yeAy2i + jx(−2Ay2 − i)eAx2i,

λx = 4AxyeAy2i + j(1 + 2Ax2i)(−2Ay2 − i)eAx2i,

λy = (2Ax2 + i)(1 + 2Ay2i)eAy2i + j(−4Axy)eAx2i.

Hence the left normal vector of λ is

λyλ
−1
x =

8Axy(1 + 4A2x2y2)
1 + 4A2x4 + 16A2x2y2 + 4A2y4 + 16A4x4y4

i

+j

{
1 + 16A4x4y4 − 4A2(x4 + y4)

1 + 4A2x4 + 16A2x2y2 + 4A2y4 + 16A4x4y4
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Figure 5. (Example 3) U = {x + yi ∈ C | 0.1 ≤ |x| ≤ 2.6, |y| ≤ 2.6}, µ0 = x,
µ1 = −y, A = 1, Im µ: U → Im H.

+
4A(x2 − y2)(1 + 4A2x2y2)

1 + 4A2x4 + 16A2x2y2 + 4A2y4 + 16A4x4y4
i

}
eA(x2−y2).

After long computation, we see that the Maslov form of λ is not
conformal by the equation (6.1).

Example 3. Let µ = µ0e
(β−γ)i/2 + jµ1e

(β+γ)i/2 with real-valued func-
tions µ0 and µ1 on M such that µ0 − µ1i is a non-constant complex
holomorphic function vanishing nowhere on M . We assume that the
mappings β and γ are given by the equations (5.8) and (5.9) with non-
zero real number A and B = C = 0. Then

µ = µ0e
Aµ2

1i + jµ1e
Aµ2

0i

is a Lagrangian branched immersion which is not Hamiltonian minimal
with its right normal vector jeβi by Theorem 5. We see that the Maslov
form of µ is not conformal in a similar way as Example 1.

Let p be a point in M and

ν(µ0, µ1) =
∫ µ0

µ0(p)
eAt2idt + j

∫ µ1

µ1(p)
eAt2idt.

Then ν is a Lagrangian branched immersion with its right normal vector
jeβi which is not Hamiltonian-minimal. Indeed,

(dν) = eAµ2
0i(dµ0) + jeAµ2

1i(dµ1),

∗(dν) = eAµ2
0i(dµ1) − jeAµ2

1i(dµ0) = (dν)
(
−jeA(µ2

0+µ2
1)i

)
.
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Figure 6. (Example 3) U = {x + yi ∈ C | 0.1 ≤ |x| ≤ 2.6, |y| ≤ 2.6}, µ0 = x,
µ1 = −y, A = 1, Im ν: U → Im H.

Since the left normal vector of ν is −jeA(−µ2
0+µ2

1)i, we see that the
Maslov form of ν is conformal by the equation (6.1). In the case where
M = {x + yi |x, y ∈ R} = C, A = 1, µ0 = x, µ1 = −y, and p = 0, the
map ν is a flat Lagrangian embedding given in [4].

Let us define a smooth mapping λ by ν̂ = µ̂λ̂. Then

λ(µ0, µ1) =
1

µ2
0 + µ2

1

×
[{

µ0e
−Aµ2

1i
∫ µ0

µ0(p)
eAt2idt + µ1e

Aµ2
0i

∫ µ1

µ1(p)
e−At2idt

}

+j

{
µ0e

−Aµ2
1i

∫ µ1

µ1(p)
eAt2idt − µ1e

Aµ2
0i

∫ µ0

µ0(p)
e−At2idt

}]
.

is a Hamiltonian-minimal Lagrangian branched immersion with its right
normal vector jeγi by Theorem 5. We should seek an alternative method
to the equation (6.1) to conclude whether the Maslov form of λ is
conformal since the computation becomes very long.
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