The denominators of Lagrangian surfaces in complex Euclidean plane

Katsuhiro Moriya^{*} (moriya@math.tsukuba.ac.jp) Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken, 305-8571, Japan

Abstract. A quotient of two linearly independent quaternionic holomorphic sections of a quaternionic holomorphic line bundle over a Riemann surface is a conformal branched immersion from a Riemann surface to four-dimensional Euclidean space. On the assumption that a quaternionic holomorphic line bundle is associated with a Lagrangian branched immersion from a Riemann surface to complex Euclidean plane, we shall classify the denominators of Lagrangian branched immersion from a Riemann surface to complex Euclidean plane.

Keywords: Lagrangian surface, quaternionic holomorphic vector bundle, the Carleman-Bers-Vekua system.

Mathematics Subject Classification (2000): Primary 53D12, Secondary 53C42.

1. Introduction

In this paper, we shall discuss a similarity between a Lagrangian branched immersion from a Riemann surface to complex Euclidean plane and a complex holomorphic function on a Riemann surface by the quaternionic theory of surfaces.

The quaternionic theory of surfaces in four-dimensional Euclidean space \mathbb{R}^4 is developed by Pedit and Pinkall [8], Burstall, Ferus, Leschke, Pedit, and Pinkall [1], and Ferus, Leschke, Pedit, and Pinkall [2]. This theory presents many new points of view on conformal geometry of surfaces in \mathbb{R}^4 , where \mathbb{R}^4 is identified with the set \mathbb{H} of quaternions.

In this theory, a *right normal vector* is defined for a conformal immersion from a Riemann surface M to \mathbb{H} . A right normal vector is a quaternionic-valued function on M whose square is -1. It coincides with a part of the generalized Gauss map of the conformal immersion by taking a suitable decomposition of the Grassmanian manifold of twoplanes in \mathbb{H} into a direct product of two spheres of dimension two. The tangent space of the immersion is preserved by the right multiplication of the right normal vector. Then a vector bundle endomorphism of the trivial (right) quaternionic line bundle $\underline{\mathbb{H}}$ over M is defined by the right normal vector. This endomorphism is called a *complex structure* of $\underline{\mathbb{H}}$.

© 2007 Kluwer Academic Publishers. Printed in the Netherlands.

^{*} Partly supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

For a smooth mapping from M to \mathbb{H} , a right normal vector is defined uniquely on the set where the mapping is a conformal immersion. If the domain of a right normal vector can be extended to every point where the differential of the smooth mapping is not injective, then the smooth mapping is a conformal branched immersion by Lemma 1 in Section 2.

A complex structure of \mathbb{H} plays a similar role to the complex structure of the space \mathbb{C} of complex numbers. By a complex structure of \mathbb{H} , a *quaternionic holomorphic structure* of \mathbb{H} is defined in a similar way to define the complex holomorphic structure of \mathbb{C} . A quaternionic holomorphic structure is a zero-order perturbation of a complex holomorphic structure of a complex Euclidean plane \mathbb{C}^2 identified with \mathbb{H} (see p. 520 in [2]). This quaternionic holomorphic structure is called a Euclidean holomorphic structure in Peters [9]. A smooth section of If in the kernel of a quaternionic holomorphic structure is called a quaternionic holomorphic section. When we consider a smooth section of \mathbb{H} as a smooth mapping from M to \mathbb{H} , a non-constant quaternionic holomorphic section is a conformal branched immersion with a right normal vector. Hence a conformal branched immersion is a natural generalization of a complex holomorphic function on M. In the same way as a quotient of two complex holomorphic sections of a complex line trivial bundle is a complex holomorphic function except at the zeros of its denominator, a quotient of two linearly independent quaternionic holomorphic sections of $\underline{\mathbb{H}}$ with a complex structure is a conformal branched immersion with a right normal vector except at the zeros of its denominator by Example on p. 395 in [8].

We will look for a set of conformal branched immersions with a right normal vector satisfying a geometric property such that it is similar to a set of complex holomorphic function. Then it is expected that a set of *Lagrangian branched immersion* from M to complex Euclidean plane \mathbb{C}^2 with a right normal vector is a candidate, where \mathbb{C}^2 is identified with \mathbb{H} . Indeed, we shall characterize a Lagrangian immersion by its right normal vector in Section 3. We define a complex structure by a right normal vector of a Lagrangian branched immersion. Then every quaternionic conjugate of non-constant quaternionic holomorphic section of \mathbb{H} is a Lagrangian branched immersion with the same right normal vector by the discussion in Section 2.

We will consider the problem that whether the quotient of two Lagrangian branched immersions is a Lagrangian branched immersion. We should take a quotient of two linearly independent quaternionic holomorphic sections of \mathbb{H} with a complex structure defined by a right normal vector of a Lagrangian branched immersion. Then their quotient is not necessarily a Lagrangian branched immersion. Hence it is an interesting problem to classify the pairs of two quaternionic holomor-

phic sections of $\underline{\mathbb{H}}$ such that their quotient is a Lagrangian branched immersion.

We shall devote this paper to classify quaternionic holomorphic sections of \mathbb{H} vanishing nowhere which are the denominators of Lagrangian branched immersions from M to \mathbb{C}^2 with their right normal vector. This paper is organized as follows.

In Section 2, we shall review the quaternionic theory of conformal branched immersions from M to \mathbb{H} and rewrite Example on p. 395 in [8] to make it convenient for our use.

In Section 3, we shall characterize a Lagrangian immersion and a *Hamiltonian-minimal Lagrangian immersion* in terms of the quaternionic formulation. The notions of Hamiltonian-minimality is introduced by Oh [7].

In Section 4, we shall assume that a quaternionic holomorphic line bundle is associated with a Lagrangian branched immersion with a right normal vector. We shall classify the quaternionic holomorphic sections vanishing nowhere which are the denominators of Lagrangian branched immersions. In the case where M is closed, the image of Mby a denominator is a torus (Theorem 1). In the case where M is open, a complex-valued function is defined locally as a function of a complex holomorphic function on M and Lagrangian angle mappings of a Lagrangian branched immersion and its denominator so that it is a solution to a differential equation called the Carleman-Bers-Vekua system in Rodin [10] (cf. Vekua [12]). A denominator is a mapping of this complex holomorphic function on M and these Lagrangian angle mappings (Theorem 2).

In Section 5, we discuss the case where a Lagrangian branched immersion or its denominator is a Hamiltonian-minimal Lagrangian branched immersion. If both of them are Hamiltonian-minimal Lagrangian branched immersions, then the image of M by a denominator is a plane or a torus (Theorem 3). If one is a Hamiltonian-minimal Lagrangian branched immersion and another is not a Hamiltonianminimal Lagrangian branched immersion, then we have a formula for the denominator as a mapping of a holomorphic function (Theorem 4 and Theorem 5).

In Section 6, we construct a numerator and obtain a Lagrangian branched immersion by Theorem 4 and Theorem 5.

2. Quaternionic holomorphic line bundles

We shall recall the quaternionic theory of surfaces by Pedit and Pinkall [8], Burstall, Ferus, Leschke, Pedit, and Pinkall [1], and Ferus, Leschke, Pedit, and Pinkall [2].

We denote by \mathbb{R} the set of real numbers and by \mathbb{H} the set of quaternions $\{a_0 + a_1i + a_2j + a_3k \mid a_0, a_1, a_2, a_3 \in \mathbb{R}\}$, where i, j, and k are elements of \mathbb{H} such that

$$\begin{split} &i^2 = j^2 = k^2 = -1, \\ &ij = -ji = k, \ jk = -kj = i, \ ki = -ik = j. \end{split}$$

For a quaternion $a_0 + a_1i + a_2j + a_3k$ such that a_0, a_1, a_2 , and $a_3 \in \mathbb{R}$, the quaternionic conjugate \hat{a} of a, the real part Re a of a, and the imaginary part Im a of a are defined by $\hat{a} = a_0 - a_1i - a_2j - a_3k$, Re $a = a_0$, and Im $a = a_1i + a_2j + a_3k$ respectively. We denote by Im \mathbb{H} the set of imaginary parts of quaternions. The set of quaternions \mathbb{H} is considered as the set of quadruplets of real numbers \mathbb{R}^4 by the identification of a quaternion $a_0 + a_1i + a_2j + a_3k$ such that a_0, a_1, a_2 , and $a_3 \in \mathbb{R}$ with a quadruplet (a_0, a_1, a_2, a_3) of real numbers. Let q be a quaternionic sesquilinear product on \mathbb{H} by $q(x, y) = \hat{x}y$ for every pair (x, y) of quaternions. We define real-valued quadratic forms $\omega_0, \omega_1, \omega_2$, and ω_3 by $q(x, y) = \omega_0(x, y) + \omega_1(x, y)i + \omega_2(x, y)j + \omega_3(x, y)k$. Then the quadratic form ω_0 is the standard Euclidean inner product of \mathbb{R}^4 . Let (\mathbb{H}, ω_0) be four-dimensional Euclidean space and $|a| = (\omega_0(a, a))^{1/2}$ Euclidean norm of $a \in \mathbb{H}$.

The set $\{a_0 + a_1 i \mid a_0, a_1 \in \mathbb{R}\}$ is considered as the set \mathbb{C} of complex numbers. Then the set of quaternions \mathbb{H} is considered as the set of pairs of complex numbers \mathbb{C}^2 by the identification of a quaternion $a_0 + a_1 i + a_2 j + a_3 k$ such that a_0, a_1, a_2 , and $a_3 \in \mathbb{R}$ with a pair of complex numbers $(a_0 + a_1 i, a_2 - a_3 i)$. Then the quadratic ω_1 is the standard symplectic form of \mathbb{C}^2 and $\omega_0 + \omega_1 i$ is the standard Hermitian inner product on \mathbb{C}^2 .

Euclidean inner product ω_0 induces the standard Riemannian metric of \mathbb{R}^4 . We use the same notation ω_0 for this Riemannian metric. Similarly, we use the same notation ω_1 for the standard symplectic structure of \mathbb{C}^2 induced by the symplectic form ω_1 on \mathbb{C}^2 . Then $\omega_0 + \omega_1 i$ is the standard Hermitian metric of \mathbb{C}^2 .

Let (M, g) be a two-dimensional oriented connected Riemannian manifold M with a Riemannian metric g, TM its tangent bundle, and T^*M its cotangent bundle. Then there exists a complex structure J^{TM} of (M, g) such that the ordered pair $(\mathbf{e}, J^{TM}\mathbf{e})$ is a positive orthonormal basis of T_pM for every point p in M and every unit vector \mathbf{e} in the fiber T_pM of TM at p. For a smooth vector bundle V over M, we denote by $\Gamma(V)$ the set of smooth sections of V and $\Omega^n(V)$ the set of smooth differential *n*forms on M with coefficients in V (n = 0, 1, 2). We define a mapping $*: \Omega^1(V) \to \Omega^1(V)$ by $*\omega = \omega \circ J^{TM}$ for every $\omega \in \Omega^1(V)$.

Let $\underline{\mathbb{H}}$ be the trivial (right) quaternionic line bundle $\underline{\mathbb{H}}$ over M. A smooth mapping $\phi: M \to \mathbb{H}$ is considered as a smooth section $\underline{\phi}$ of $\underline{\mathbb{H}}$. Let L be a pair ($\underline{\mathbb{H}}, J^L$) with a quaternionic vector bundle endomorphism J^L of $\underline{\mathbb{H}}$. The endomorphism J^L is called a *complex structure* of L in [1].

Let $T^*M \otimes_{\mathbb{R}} \underline{\mathbb{H}}$ be the tensor bundle of T^*M and $\underline{\mathbb{H}}$ over \mathbb{R} and $\zeta \underline{\phi}$ an element of $T^*M \otimes_{\mathbb{R}} \underline{\mathbb{H}}$ such that $\zeta \in T^*M$ and $\underline{\phi} \in \underline{\mathbb{H}}$. A quaternionicvalued one-form on M is a section of $T^*M \otimes_{\mathbb{R}} \underline{\mathbb{H}}$. We define a vector bundle endomorphism J of $T^*M \otimes_{\mathbb{R}} \underline{\mathbb{H}}$ by the equation $J\zeta \underline{\phi} = \zeta J^L \underline{\phi}$. A quaternionic vector bundle $\overline{K}\underline{\mathbb{H}}$ is defined by

$$\bar{K}\underline{\mathbb{H}} = \{\omega \in T^*M \otimes_{\mathbb{R}} \underline{\mathbb{H}} \mid *\omega = -J\omega\}.$$

We define a quaternionic homomorphism $D: \Gamma(\underline{\mathbb{H}}) \to \Gamma(\overline{K}\underline{\mathbb{H}})$ by

$$D(\underline{\phi}) = \frac{1}{2} \{ (\mathrm{d}\phi) + J * (\mathrm{d}\phi) \}.$$

for every smooth mapping ϕ from M to \mathbb{H} . Following Peters [9], we call the quaternionic homomorphism D the Euclidean quaternionic holomorphic structure of L and the pair $L = (\underline{\mathbb{H}}, J^L)$ with its Euclidean quaternionic holomorphic structure D a Euclidean quaternionic holomorphic line bundle. A smooth section $\underline{\phi}$ of L is called a quaternionic holomorphic section of L if $D(\underline{\phi}) = 0$. We see that a constant section is a quaternionic holomorphic section.

A smooth mapping $f: (M, g) \to (\mathbb{H}, \omega_0)$ is called a *conformal im*mersion on M if f is an immersion and there exists a pair (N^f, R^f) of smooth mappings from M to $S^2(1) \subset \text{Im }\mathbb{H}$ such that

$$(N^{f})^{2} = (R^{f})^{2} = -1,$$

*(df) = N^f(df) = (df)(-R^f). (2.1)

The smooth mappings N^f and R^f defined by the equation (2.1) are called the *left normal vector* of f and the *right normal vector* of f respectively (Definition 2 in [1]).

A point $p \in M$ is called a branch point of a smooth mapping $f:(M,g) \to (\mathbb{H},\omega_0)$ if the differential mapping $(df)_p$ of f at p is the zero mapping. A non-constant smooth mapping $f:(M,g) \to (\mathbb{H},\omega_0)$ is called a *conformal branched immersion* if every point $p \in M$ such that $(df)_p$ is not injective is a branch point and f is a conformal immersion on M except branch points.

A right normal vector is not defined by the equation (2.1) at a point $p \in M$ such that $(df)_p$ is not injective.

LEMMA 1. Let $f:(M,g) \to (\mathbb{H},\omega_0)$ be a non-constant smooth mapping. If there exists a mapping $R^f: M \to S^2(1) \subset \operatorname{Im} \mathbb{H}$ such that

$$(R^f)^2 = -1, \quad *(\mathrm{d}f) = (\mathrm{d}f)(-R^f),$$

then f is a conformal branched immersion.

Proof. It is indicated on p. 8 in [1] that if $*(df) = (df)(-R^f)$, then f is conformal at every point $p \in M$ such that $(df)_p$ is injective. Let $p \in M$ be a point such that $(df)_p$ is not injective and (u_1, u_2) is an isothermal coordinate around p such that $J^{TM}(\partial/\partial u_1) = \partial/\partial u_2$. If *(df) = (df)(-R), then

$$\frac{\partial f}{\partial u_2}(p) = \frac{\partial f}{\partial u_1}(p)(-R^f(p)).$$

Since $(df)_p$ is not injective and R^f is a mapping from M to $S^2(1) \subset \text{Im }\mathbb{H}$, we have

$$\frac{\partial f}{\partial u_2}(p) = \frac{\partial f}{\partial u_1}(p) = 0.$$

Hence $(\mathrm{d}f)_p = 0$.

We call the mapping f with a smooth mapping $R^f: M \to S^2(1) \subset \text{Im }\mathbb{H}$ such that $*(df) = (df)(-R^f)$ on M a conformal branched immersion with a right normal vector R^f .

Let $f:(M,g) \to (\mathbb{H},\omega_0)$ be a conformal branched immersion with its right normal vector R^f . We define a complex structure J^f of \mathbb{H} by $J^f \underline{1} = \underline{R}^f$. Let D^f be the Euclidean quaternionic holomorphic structure of $L^f = (\mathbb{H}, J^f)$ and $\hat{\phi}$ a smooth section of L^f . Since $D^f(\hat{\phi}) =$ $\{(d\hat{\phi}) + R^f * (d\hat{\phi})\}/2$, a section $\hat{\phi}$ of L^f is a non-constant quaternionic holomorphic section if and only if ϕ is a conformal branched immersion with its right normal vector R^f . Hence the section \hat{f} is a non-constant quaternionic holomorphic section of L^f .

Let L be a Euclidean quaternionic holomorphic line bundle over M with its complex structure J^L defined by $J^L \underline{1} = \underline{R}$ for a smooth mapping $R: M \to S^2(1) \subset \text{Im }\mathbb{H}$. The following Lemma 2 is a variant of Example on p. 395 in [8].

LEMMA 2. We assume that $\underline{\hat{\nu}}$ is a non-zero quaternionic holomorphic section of L and $\underline{\hat{\mu}}$ is a smooth section vanishing nowhere of L. A smooth mapping $\lambda: (M, g) \to (\mathbb{H}, \omega_0)$ defined by the equation $\underline{\hat{\nu}} = \hat{\mu}\hat{\lambda}$ is

6

a conformal branched immersion with its right normal vector $\mu R \mu^{-1}$ if and only if $\underline{\hat{\mu}}$ is linearly independent of $\underline{\hat{\nu}}$ and it is a quaternionic holomorphic section of L.

Proof. Evaluating the both side of the equation $\underline{\hat{\nu}} = \underline{\hat{\mu}}\hat{\lambda}$ by the Euclidean quaternionic holomorphic structure D of L, we have

$$\underline{0} = D(\underline{\hat{\mu}})\hat{\lambda} + \frac{1}{2}\hat{\mu}\{(\mathrm{d}\hat{\lambda}) + \hat{\mu}^{-1}R\hat{\mu}*(\mathrm{d}\hat{\lambda})\}.$$

Hence Lemma 2 holds.

3. Lagrangian surfaces

We shall describe a conformal Lagrangian immersion from (M, g) to (\mathbb{C}^2, ω_0) in terms of quaternions.

We identify \mathbb{H} with \mathbb{C}^2 by the identification of a quaternion $a_0 + a_1i + a_2j + a_3k$ such that a_0, a_1, a_2 , and $a_3 \in \mathbb{R}$ with a pair of complex numbers (a_0+a_1i, a_2-a_3i) . A conformal immersion $f: (M, g) \to (\mathbb{H}, \omega_0)$ is called a *Lagrangian immersion* if

$$\omega_0\left(\{(\mathrm{d}f)_p(X)\}i, (\mathrm{d}f)_p(Y)\right) = 0,\tag{3.1}$$

for every point $p \in M$ and every pair (X, Y) of vectors X and $Y \in T_p M$. A conformal branched immersion $f: (M, g) \to (\mathbb{H}, \omega_0)$ is called a *Lagrangian branched immersion* if f is a Lagrangian immersion on M except at branch points.

We shall rephrase this definition in terms of quaternions. Let \mathbb{Z} be the set of integers and $\mathbb{R}/2\pi\mathbb{Z}$ the quotient space of \mathbb{R} by $2\pi\mathbb{Z} = \{2\pi n \mid n \in \mathbb{Z}\}$. Let $f:(M,g) \to (\mathbb{H},\omega_0)$ be a conformal immersion. We make another identification of \mathbb{C}^2 with \mathbb{H} by the identification of $(z_0, z_1) \in \mathbb{C}^2$ with $\tau(z_0 + jz_1)\tau^{-1}$, where $\tau = i + j$. Under this identification, Hélein and Romon [5] showed that a conformal immersion $\tilde{f} = \tau f \tau^{-1}$ is a Lagrangian immersion if and only if $(d\tilde{f}) = r(dz)e^{\theta j/2}$ for a local complex holomorphic coordinate z of M, a quaternionicvalued function r, and a smooth mapping $\theta: M \to \mathbb{R}/2\pi\mathbb{Z}$. The mapping θ is called the Lagrangian angle mapping of f. If the Lagrangian angle mapping is constant, then f(M) is a Lagrangian plane. Let h be the Riemannian metric of $\mathbb{R}/2\pi\mathbb{Z}$ induced by the standard Riemannian metric of \mathbb{R} . If the map $\theta: (M, g) \to (\mathbb{R}/2\pi\mathbb{Z}, h)$ is harmonic, then fis called Hamiltonian-minimal Lagrangian immersion (see Hélein and Romon [6]). We see that

$$*(\mathrm{d}\tilde{f}) = r(\mathrm{d}z)ie^{\theta j/2} = (\mathrm{d}\tilde{f})e^{-\theta j/2}ie^{\theta j/2} = (\mathrm{d}\tilde{f})ie^{\theta j}.$$

Coming back to the identification of \mathbb{C}^2 with \mathbb{H} by the identification $(z_0, z_1) \in \mathbb{C}^2$ with $z_0 + jz_1 \in \mathbb{H}$, we have

$$*(\mathrm{d}f) = (\mathrm{d}f)\tau^{-1}ie^{\theta j}\tau = (\mathrm{d}f)je^{\theta i}.$$

Hence the right normal vector of f is $-je^{\theta i}$. We define a mapping $\beta: M \to \mathbb{R}/2\pi\mathbb{Z}$ by $\beta = \theta + \pi$. Then the right normal vector of f is $je^{\beta i}$ and f is Hamiltonian-minimal if and only if β is harmonic.

4. Lagrangian line bundles

We shall classify the denominators of Lagrangian branched immersions from (M, g) to (\mathbb{H}, ω_0) .

Let L be a Euclidean quaternionic holomorphic line bundle L over a Riemann surface M with complex structure J^L . We call L a Lagrangian line bundle if J^L is defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ with a smooth mapping $\beta: M \to \mathbb{R}/2\pi\mathbb{Z}$. A non-constant quaternionic holomorphic section of a Lagrangian line bundle with its complex structure defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ is identified with a Lagrangian branched immersion with a right normal vector $j e^{\beta i}$.

LEMMA 3. We assume that $\underline{\hat{\nu}}$ is a non-zero quaternionic holomorphic section of a Lagrangian line bundle L with its complex structure J^L defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ and that $\underline{\hat{\mu}}$ is a nowhere-vanishing smooth section of L. A mapping $\lambda: (M, g) \to (\mathbb{H}, \omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu} \hat{\lambda}$ is a Lagrangian branched immersion with its right normal vector $j e^{\gamma i}$ if and only if $\hat{\mu}$ is linearly independent of $\underline{\hat{\nu}}$ and

$$\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}, \qquad (4.1)$$

$$\mu_0(-*(d\beta) + *(d\gamma)) = \mu_1((d\beta) + (d\gamma)), \tag{4.2}$$

where μ_0 and μ_1 are real-valued functions on M such that $\mu_0 - \mu_1 i$ is a complex holomorphic function vanishing nowhere on M.

Proof. It is an immediate consequence of Lemma 2 that a mapping λ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\underline{\hat{\mu}}$ is linearly independent of $\underline{\hat{\nu}}, \underline{\hat{\mu}}$ is a nowhere-vanishing, quaternionic holomorphic section of L satisfying $\mu j e^{\beta i} \mu^{-1} = j e^{\gamma i}$. We rewrite the last equation.

Let F_0 and F_1 be complex-valued functions on M such that $\mu = F_0 + jF_1$. Then the equation $\mu j e^{\beta i} \mu^{-1} = j e^{\gamma i}$ is equivalent to the equation

$$-\bar{F}_{1}e^{\beta i} + j\bar{F}_{0}e^{\beta i} = -F_{1}e^{-\gamma i} + jF_{0}e^{\gamma i}.$$

Then the mapping $\mu: M \to \mathbb{H}$ given by the equation (4.1) is the solution to this equation.

A section $\underline{\hat{\mu}}$ of *L* defined by (4.1) is a quaternionic holomorphic section if and only if

$$\begin{aligned} &-e^{(\beta-\gamma)i/2} * (d\mu_1) + \frac{1}{2}\mu_1 i e^{(\beta-\gamma)i/2} (*(d\beta) + *(d\gamma)) \\ &+ j \left\{ e^{(\beta+\gamma)i/2} * (d\mu_0) - \frac{1}{2}\mu_0 i e^{(\beta+\gamma)i/2} (*(d\beta) - *(d\gamma)) \right\} \\ &= e^{(\beta-\gamma)i/2} (d\mu_0) + \frac{1}{2}\mu_0 i e^{(\beta-\gamma)i/2} ((d\beta) - (d\gamma)) \\ &+ j \left\{ e^{(\beta+\gamma)i/2} (d\mu_1) + \frac{1}{2}\mu_1 i e^{(\beta+\gamma)i/2} ((d\beta) + (d\gamma)) \right\}. \end{aligned}$$

This equation is equivalent to the system of equations (4.2) and

$$*(\mathrm{d}\mu_0) = (\mathrm{d}\mu_1).$$

Since this equation is equivalent to the equation

$$(d(\mu_0 - \mu_1 i)) + i * (d(\mu_0 - \mu_1 i)) = 0,$$

 $\mu_0 - \mu_1 i$ is a complex holomorphic function. Since the section $\underline{\hat{\mu}}$ vanishes nowhere on M by the assumption, the function $\mu_0 - \mu_1 i$ vanishes nowhere on M.

We shall classify the branch points of a smooth mapping μ defined by (4.1) and (4.2) with real-valued functions μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is a nowhere vanishing complex holomorphic function. Since

$$(d\mu) = (d\mu_0)e^{(\beta-\gamma)i/2} + \frac{1}{2}\mu_0 i e^{(\beta-\gamma)i/2} ((d\beta) - (d\gamma)) + j \left\{ (d\mu_1)e^{(\beta+\gamma)i/2} + \frac{1}{2}\mu_1 i e^{(\beta+\gamma)i/2} ((d\beta) + (d\gamma)) \right\},$$

a point $p \in M$ is a branch point of μ if and only if

$$(d\mu_0)_p = 0, \ (d\mu_1)_p = 0,$$

 $\mu_0(p)((d\beta)_p - (d\gamma)_p) = 0, \ \mu_1(p)((d\beta)_p + (d\gamma)_p) = 0.$

Hence a point $p \in M$ is a branch point of μ if and only if a point p is a branch point of $\mu_0 - \mu_1 i$ and

$$\mu_0(p) = 0 \text{ and } (d\beta)_p + (d\gamma)_p = 0,$$
(4.3)

$$\mu_1(p) = 0 \text{ and } (d\beta)_p - (d\gamma)_p = 0,$$
(4.4)

or

$$(\mathrm{d}\beta)_p = (\mathrm{d}\gamma)_p = 0. \tag{4.5}$$

We shall classify the denominators of Lagrangian branched immersions with a right normal vector. Let $\underline{\hat{\nu}}$ be a non-zero quaternionic holomorphic section of a Lagrangian line bundle L with its complex structure J^L defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ and $\underline{\hat{\mu}}$ a nowhere-vanishing smooth section of L.

THEOREM 1. We assume that M is a closed Riemann surface. The mapping $\lambda: (M,g) \to (\mathbb{H}, \omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu}\hat{\lambda}$ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\hat{\mu}$ is linearly independent of $\hat{\nu}$ and $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real constants μ_0 and μ_1 such that $(\mu_0)^2 + (\mu_1)^2 \neq 0$ and that $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ is a complex holomorphic mapping from M to the torus \mathbb{C}/Λ with $\Lambda = \{2\pi\mu_0n + 2\pi\mu_1m \ i \ | \ n, m \in \mathbb{Z}\}.$

Proof. By Lemma 3, the mapping λ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\underline{\hat{\mu}}$ is linearly independent of $\underline{\hat{\nu}}$ and μ is defined by (4.1) and (4.2) with real-valued function μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is a complex holomorphic function vanishing nowhere on M. Hence μ_0 and μ_1 are real constants. Since μ vanishes nowhere, $(\mu_0)^2 + (\mu_1)^2 \neq 0$. Then the mapping $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ is a non-constant complex holomorphic mapping from M to \mathbb{C}/Λ . Indeed, the equation (4.2) is equivalent to the equation

$$*(\mathrm{d}\{\mu_0(-\beta+\gamma)\}) = (\mathrm{d}\{\mu_1(\beta+\gamma)\}).$$

This is equivalent to Ψ being a complex holomorphic mapping from M to \mathbb{C}/Λ .

We see that the Lagrangian branched immersions μ , ν , and λ in the above theorem are Hamiltonian-minimal and that $\mu(M)$ is a torus. If Ψ is non-constant, then the total branching order of Ψ is two times the genus of M by the Riemann-Hurwitz formula on p.140 in [3].

Next, we discuss the case where M is an open Riemann surface. Let $\bar{\partial}$ be a mapping from the set of smooth complex-valued functions on M to the set of smooth complex-valued one-forms of (0, 1)-type on M defined by $\bar{\partial} = 2^{-1}(d + i * d)$. Then a differential equation

 $\bar{\partial}\psi = \psi a + \bar{\psi}b,$

with complex-valued one-forms a and b of (0, 1)-type for a complexvalued function ψ on M is called the Carleman-Bers-Vekua system and a solution ψ to the equation is called a generalized analytic function in Rodin [12] (cf, Vekua [10]).

On a sufficiently small open set of M, we may consider the mapping $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ as a complex-valued function.

THEOREM 2. We assume that M is an open Riemann surface. The mapping $\lambda: (M,g) \to (\mathbb{H},\omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu}\hat{\lambda}$ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\hat{\mu}$ is linearly independent of $\hat{\nu}$ and $\mu = \mu_0 e^{(\beta-\gamma)i/2} + j\mu_1 e^{(\beta+\gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that

- the function $\mu_0 - \mu_1 i$ is a complex holomorphic function on M vanishing nowhere,

- the equation $(d\beta) + (d\gamma) = 0$ holds on $\{p \in M \mid \mu_0(p) = 0\}$,
- the equation $(d\beta) (d\gamma) = 0$ holds on $\{p \in M \mid \mu_1(p) = 0\}$,

and that

- a mapping $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ is a generalized analytic function for the Carleman-Bers-Vekua system

$$\bar{\partial}\Psi = \Psi \frac{\bar{\partial}\log(\mu_0\mu_1)}{2} + \bar{\Psi} \frac{\bar{\partial}\log(\mu_0\mu_1^{-1})}{2}, \qquad (4.6)$$

on every sufficiently small open set of $\{p \in M \mid \mu_0(p)\mu_1(p) \neq 0\}$.

Proof. On the set $\{p \in M \mid \mu_0(p) = 0\}$, the equation (4.2) is equivalent to the equation $\mu_1((d\beta) + (d\gamma)) = 0$. Since $(\mu_0)^2 + (\mu_1)^2 \neq 0$, the equation (4.2) is equivalent to the equation $(d\beta) + (d\gamma) = 0$. Similarly, the equation (4.2) is equivalent to $(d\beta) - (d\gamma) = 0$ on $\{p \in M \mid \mu_1(p) = 0\}$.

On a sufficiently small open set of a point p with $\mu_0(p)\mu_1(p) \neq 0$, we define local real-valued functions η and ξ by $\eta = \beta - \gamma$ and $\xi = \beta + \gamma$. Then $\Psi = \mu_0 \eta + \mu_1 \xi i_1$ and the equation (4.2) is equivalent to the equation $\mu_0 * (d\eta) = -\mu_1(d\xi)$. Since

 $(d(\mu_0\eta)) = \eta(d\mu_0) + \mu_0(d\eta), \quad (d(\mu_1\xi)) = \xi(d\mu_1) + \mu_1(d\xi),$

the equation (4.2) is equivalent to the equation

 $*(d(\mu_0\eta)) - \mu_0\eta * (d\log\mu_0) = -(d(\mu_1\xi)) + \mu_1\xi(d\log\mu_1).$

Then the equation (4.2) is equivalent to

$$\begin{aligned} 2\bar{\partial}\Psi &= (d\Psi) + i * (d\Psi) \\ &= (d(\mu_0\eta)) + i(d(\mu_1\xi)) + i * (d(\mu_0\eta)) - *(d(\mu_1\xi)) \\ &= \mu_0\eta(d\log\mu_0) - \mu_1\xi * (d\log\mu_1) \\ &+ i\{\mu_0\eta * (d\log\mu_0) + \mu_1\xi(d\log\mu_1)\} \\ &= \mu_0\eta((d\log\mu_0) + i * (d\log\mu_0)) \end{aligned}$$

$$\begin{aligned} &+\mu_{1}\xi(-*(\mathrm{d}\log\mu_{1})+i(\mathrm{d}\log\mu_{1}))\\ &=(\Psi+\bar{\Psi})(\bar{\partial}\log\mu_{0})-(\Psi-\bar{\Psi})(-\bar{\partial}\log\mu_{1})\\ &=\Psi(\bar{\partial}\log\mu_{0}+\bar{\partial}\log\mu_{1})+\bar{\Psi}(\bar{\partial}\log\mu_{0}-\bar{\partial}\log\mu_{1})\\ &=\Psi\{\bar{\partial}\log(\mu_{0}\mu_{1})\}+\bar{\Psi}\{\bar{\partial}\log(\mu_{0}\mu_{1}^{-1})\}.\end{aligned}$$

Then Theorem 2 follows from Lemma 3.

5. Formulae for denominators

We shall discuss the case where λ or its denominator μ is a Hamiltonianminimal Lagrangian branched immersion with a right normal vector. Throughout this section, we assume that M is an open Riemann surface. We call a Lagrangian line bundle L with its Lagrangian angle β a Hamiltonian-minimal Lagrangian line bundle if β is a harmonic mapping.

We shall rewrite the equation (4.2) in another way. Let μ_0 and μ_1 be real-valued functions on M such that $\mu_0 - \mu_1 i$ is a complex holomorphic function vanishing nowhere on M and let M' be the set of branch points of $\mu_0 - \mu_1 i$. Then the functions μ_0 and μ_1 are constant if and only if M' = M and not constant if and only if every element of M' is an isolated point. We assume that μ_0 and μ_1 are not constant. Then (μ_0, μ_1) is an isothermal coordinate on $M \setminus M'$. We define real-valued functions β_{μ_k} , γ_{μ_k} , $\beta_{\mu_k\mu_l}$ and $\gamma_{\mu_k\mu_l}$ on $M \setminus M'$ by the equations

Then $\beta_{\mu_0\mu_1} = \beta_{\mu_1\mu_0}$ and $\gamma_{\mu_0\mu_1} = \gamma_{\mu_1\mu_0}$. The equation (4.2) on $M \setminus M'$ is equivalent to the equation

$$\begin{pmatrix} \mu_1 & \mu_0 \\ \mu_0 & -\mu_1 \end{pmatrix} \begin{pmatrix} \gamma_{\mu_0} \\ \gamma_{\mu_1} \end{pmatrix} = \begin{pmatrix} -\mu_1 & \mu_0 \\ \mu_0 & \mu_1 \end{pmatrix} \begin{pmatrix} \beta_{\mu_0} \\ \beta_{\mu_1} \end{pmatrix},$$
(5.1)

on $M \setminus M'$.

LEMMA 4. If the equation (5.1) holds on $M \setminus M'$, then the system of equations

$$2\gamma_{\mu_1} + \mu_1(\gamma_{\mu_0\mu_0} + \gamma_{\mu_1\mu_1}) = -\mu_1(\beta_{\mu_0\mu_0} + \beta_{\mu_1\mu_1}), \tag{5.2}$$

$$2\gamma_{\mu_0} + \mu_0(\gamma_{\mu_0\mu_0} + \gamma_{\mu_1\mu_1}) = \mu_0(\beta_{\mu_0\mu_0} + \beta_{\mu_1\mu_1}), \tag{5.3}$$

holds on $M \setminus M'$.

Proof. By the differentiation of the both side of the equation (5.1), we have a system of equations

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \gamma_{\mu_0} \\ \gamma_{\mu_1} \end{pmatrix} + \begin{pmatrix} \mu_1 & \mu_0 \\ \mu_0 & -\mu_1 \end{pmatrix} \begin{pmatrix} \gamma_{\mu_0\mu_0} \\ \gamma_{\mu_1\mu_0} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_{\mu_0} \\ \beta_{\mu_1} \end{pmatrix} + \begin{pmatrix} -\mu_1 & \mu_0 \\ \mu_0 & \mu_1 \end{pmatrix} \begin{pmatrix} \beta_{\mu_0\mu_0} \\ \beta_{\mu_1\mu_0} \end{pmatrix},$$
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \gamma_{\mu_0} \\ \gamma_{\mu_1} \end{pmatrix} + \begin{pmatrix} \mu_1 & \mu_0 \\ \mu_0 & -\mu_1 \end{pmatrix} \begin{pmatrix} \gamma_{\mu_0\mu_1} \\ \gamma_{\mu_1\mu_1} \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_{\mu_0} \\ \beta_{\mu_1} \end{pmatrix} + \begin{pmatrix} -\mu_1 & \mu_0 \\ \mu_0 & \mu_1 \end{pmatrix} \begin{pmatrix} \beta_{\mu_0\mu_1} \\ \beta_{\mu_1\mu_1} \end{pmatrix}$$

This system of equations is equivalent to the system of equations

$$\gamma_{\mu_1} + \mu_1 \gamma_{\mu_0 \mu_0} + \mu_0 \gamma_{\mu_1 \mu_0} = \beta_{\mu_1} - \mu_1 \beta_{\mu_0 \mu_0} + \mu_0 \beta_{\mu_1 \mu_0}, \gamma_{\mu_0} + \mu_0 \gamma_{\mu_0 \mu_0} - \mu_1 \gamma_{\mu_1 \mu_0} = \beta_{\mu_0} + \mu_0 \beta_{\mu_0 \mu_0} + \mu_1 \beta_{\mu_1 \mu_0}, \gamma_{\mu_0} + \mu_1 \gamma_{\mu_0 \mu_1} + \mu_0 \gamma_{\mu_1 \mu_1} = -\beta_{\mu_0} - \mu_1 \beta_{\mu_0 \mu_1} + \mu_0 \beta_{\mu_1 \mu_1}, - \gamma_{\mu_1} + \mu_0 \gamma_{\mu_0 \mu_1} - \mu_1 \gamma_{\mu_1 \mu_1} = \beta_{\mu_1} + \mu_0 \beta_{\mu_0 \mu_1} + \mu_1 \beta_{\mu_1 \mu_1}.$$

Lemma 4 follows from this system of equations.

We shall discuss the case where μ , ν and λ are Hamiltonian-minimal Lagrangian branched immersions. Let $\underline{\hat{\nu}}$ be a non-zero quaternionic holomorphic section of a Hamiltonian-minimal Lagrangian line bundle L with its complex structure J^L defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ and $\underline{\hat{\mu}}$ a nowhere-vanishing quaternionic holomorphic sections of L.

THEOREM 3. The mapping $\lambda: (M,g) \to (\mathbb{H},\omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu}\hat{\lambda}$ is a Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\hat{\mu}$ is linearly independent of $\hat{\nu}$ and $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that

- the functions μ_0 and μ_1 are constants with $(\mu_0)^2 + (\mu_1)^2 \neq 0$ and $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ is a complex holomorphic mapping from M to \mathbb{C}/Λ with $\Lambda = \{2\pi\mu_0 n + 2\pi\mu_1 m i \mid n, m \in \mathbb{Z}\},$

- the function $\mu_0 - \mu_1 i$ is a non-constant complex holomorphic function vanishing nowhere and β and γ are constant mappings.

Proof. Let λ be a Hamiltonian-minimal Lagrangian branched immersion. If μ_0 and μ_1 are constants, then Ψ is a complex holomorphic

mapping from M to \mathbb{C}/Λ by (4.2) in the same way as the proof of Theorem 1. We assume that $\mu_0 - \mu_1 i$ is a non-constant complex holomorphic function. By Lemma 4, we have

$$2\gamma_{\mu_1} = 0, \quad 2\gamma_{\mu_0} = 0,$$

on $M \setminus M'$ since β and γ are harmonic mappings. Hence γ is a constant mapping on $M \setminus M'$. Then $-\mu_0 * (d\beta) = \mu_1(d\beta)$ by the equation (4.2) on $M \setminus M'$. Since $\mu_0(d\beta) = \mu_1 * (d\beta)$, we have $\{(\mu_0)^2 + (\mu_1)^2\}(d\beta) = 0$ on $M \setminus M'$. Hence $(d\beta) = 0$ and β is a constant mapping on $M \setminus M'$. Since every element of M' is an isolated point and β and γ are smooth on M, both β and γ are constant mappings on M.

It is easy to see that the converse holds,

We shall discuss the case where μ and ν are Hamiltonian-minimal Lagrangian branched immersion and λ is a Lagrangian branched immersion with its right normal vector $je^{i\gamma}$ which is not Hamiltonian-minimal. Let $\underline{\hat{\nu}}$ be a non-zero quaternionic holomorphic section of a Hamiltonian-minimal Lagrangian line bundle L with its complex structure J^L defined by $J^L \underline{1} = \underline{j}e^{\beta i}$ and $\underline{\hat{\mu}}$ a nowhere-vanishing quaternionic holomorphic sections of L.

THEOREM 4. The mapping $\lambda: (M,g) \to (\mathbb{H}, \omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu}\hat{\lambda}$ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ which is not Hamiltonian-minimal if and only if $\underline{\hat{\mu}}$ is linearly independent of $\underline{\hat{\nu}}$ and $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is a non-constant complex holomorphic function vanishing nowhere on M and mappings β and γ are given by the equations

$$\beta(\mu_0, \mu_1) = A \frac{(\mu_0^2 - \mu_1^2)}{(\mu_0^2 + \mu_1^2)^2} + B, \qquad (5.4)$$

$$\gamma(\mu_0, \mu_1) = \frac{A}{\mu_0^2 + \mu_1^2} + C, \qquad (5.5)$$

on M for an arbitrary non-zero real number A and arbitrary real numbers B and C.

Proof. We assume that λ is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ which is not a Hamiltonian-minimal Lagrangian branched immersion. If μ_0 and μ_1 are constant functions, then $\Psi = \mu_0(\beta - \gamma) + \mu_1(\beta + \gamma)i$ is a complex holomorphic mapping in the same way as the proof of Theorem 1. Then β and γ are harmonic mappings. Since γ is not a harmonic mapping by the assumption, the functions μ_0 and μ_1 are not constant functions. Since β is a harmonic mapping, we have

$$2\gamma_{\mu_1} + \mu_1(\gamma_{\mu_0\mu_0} + \gamma_{\mu_1\mu_1}) = 0, \qquad (5.6)$$

$$2\gamma_{\mu_0} + \mu_0(\gamma_{\mu_0\mu_0} + \gamma_{\mu_1\mu_1}) = 0, \qquad (5.7)$$

on $M \setminus M'$ by Lemma 4. Then $\mu_1 \gamma_{\mu_0} - \mu_0 \gamma_{\mu_1} = 0$. Hence $\gamma(\mu_0, \mu_1) = \phi(\mu_0^2 + \mu_1^2)$ on $M \setminus M'$ for a smooth real-valued function ϕ on $\mathbb{R} \setminus \{\mu_0^2(p) + \mu_1^2(p) \mid p \in M \setminus M'\}$.

Since

$$\gamma_{\mu_0\mu_0}(\mu_0,\mu_1) = 4\mu_0^2 \phi''(\mu_0^2 + \mu_1^2) + 2\phi'(\mu_0^2 + \mu_1^2),$$

$$\gamma_{\mu_1\mu_1}(\mu_0,\mu_1) = 4\mu_1^2 \phi''(\mu_0^2 + \mu_1^2) + 2\phi'(\mu_0^2 + \mu_1^2),$$

the equations (5.6) and (5.7) is equivalent to the equation

$$t\phi''(t) + 2\phi'(t) = 0, \ t = \mu_0^2 + \mu_1^2.$$

The solution to this equation is $\phi'(t) = -At^{-2}$ for a real number A. Since γ is not a harmonic mapping, it is not a constant mapping. Then we obtain the equation (5.5) with a non-zero real number A and a real number C on $M \setminus M'$. Since every element of M' is an isolated point and γ is smooth on M, the equation (5.5) holds on M.

Since

$$\begin{split} \gamma_{\mu_0}(\mu_0,\mu_1) &= -\frac{2A\mu_0}{(\mu_0^2+\mu_1^2)^2},\\ \gamma_{\mu_1}(\mu_0,\mu_1) &= -\frac{2A\mu_1}{(\mu_0^2+\mu_1^2)^2}, \end{split}$$

we have

$$\begin{pmatrix} \beta_{\mu_0} \\ \beta_{\mu_1} \end{pmatrix} = \begin{pmatrix} -\mu_1 & \mu_0 \\ \mu_0 & \mu_1 \end{pmatrix}^{-1} \begin{pmatrix} \mu_1 & \mu_0 \\ \mu_0 & -\mu_1 \end{pmatrix} \begin{pmatrix} -2A\mu_0(\mu_0^2 + \mu_1^2)^{-2} \\ -2A\mu_1(\mu_0^2 + \mu_1^2)^{-2} \end{pmatrix}$$
$$= \frac{-2A}{(\mu_0^2 + \mu_1^2)^3} \begin{pmatrix} \mu_0^3 - 3\mu_0\mu_1^2 \\ 3\mu_0^2\mu_1 - \mu_1^3 \end{pmatrix}_{,}$$

on $M \setminus M'$ by the equation (5.1). Since

$$\begin{aligned} \frac{\mu_0^3 - 3\mu_0\mu_1^2}{(\mu_0^2 + \mu_1^2)^3} &= \frac{\mu_0(\mu_0^2 + \mu_1^2 - 4\mu_1^2)}{(\mu_0^2 + \mu_1^2)^3} = \frac{\mu_0}{(\mu_0^2 + \mu_1^2)^2} + \frac{\mu_0(-4\mu_1^2)}{(\mu_0^2 + \mu_1^2)^3} \\ &= \frac{\partial}{\partial\mu_0}\frac{-1}{2(\mu_0^2 + \mu_1^2)} + \frac{\partial}{\partial\mu_0}\frac{\mu_1^2}{(\mu_0^2 + \mu_1^2)^2}, \end{aligned}$$

we have

$$\begin{split} \beta(\mu_0,\mu_1) &= -2A\left(\frac{-1}{2(\mu_0^2+\mu_1^2)} + \frac{\mu_1^2}{(\mu_0^2+\mu_1^2)^2}\right) + E(\mu_1) \\ &= -2A\left(\frac{1}{2(\mu_0^2+\mu_1^2)} - \frac{\mu_0^2}{(\mu_0^2+\mu_1^2)^2}\right) + E(\mu_1), \end{split}$$

moriya3.tex; 14/12/2007; 17:11; p.15

where $E(\mu_1)$ is a differentiable function of μ_1 . Then

$$\begin{split} \beta_{\mu_1}(\mu_0,\mu_1) &= -2A\left(\frac{-\mu_1}{(\mu_0^2 + \mu_1^2)^2} + \frac{4\mu_0^2\mu_1}{(\mu_0^2 + \mu_1^2)^3}\right) + \frac{\partial}{\partial\mu_1}E(\mu_1) \\ &= \frac{-2A(3\mu_0^2\mu_1 - \mu_1^3)}{(\mu_0^2 + \mu_1^2)^3} + \frac{\partial}{\partial\mu_1}E(\mu_1). \end{split}$$

Hence $E(\mu_1)$ is a constant and the equation (5.4) is satisfied on $M \setminus M'$ for a non-zero real number A and a real number B. Since every element of M' is an isolated point and β is smooth, the equation (5.4) holds on M.

Conversely, we assume that β and γ satisfies the equations (5.4) and (5.5). Then we see that β is a harmonic mapping and that the equation (4.2) holds by a direct calculation.

We discuss the case where μ and ν are Lagrangian branched immersions which are not Hamiltonian-minimal and λ is a Hamiltonianminimal Lagrangian branched immersion. Let $\underline{\hat{\nu}}$ be a non-zero quaternionic holomorphic section of a Lagrangian line bundle L with its complex structure J^L defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ which is not Hamiltonianminimal and $\underline{\hat{\mu}}$ a nowhere-vanishing quaternionic holomorphic sections of L.

THEOREM 5. The mapping $\lambda: (M, g) \to (\mathbb{H}, \omega_0)$ defined by the equation $\hat{\nu} = \hat{\mu}\hat{\lambda}$ is a Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ if and only if $\underline{\hat{\mu}}$ is linearly independent of $\underline{\hat{\nu}}$ and $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is non-constant complex holomorphic function vanishing nowhere and mappings β and γ are given by the equations

$$\beta(\mu_0, \mu_1) = A(\mu_0^2 + \mu_1^2) + B, \qquad (5.8)$$

$$\gamma(\mu_0, \mu_1) = A(\mu_0^2 - \mu_1^2) + C, \qquad (5.9)$$

on M with a non-zero real number A and real numbers B and C.

Proof. We assume that λ is a Hamiltonian-minimal Lagrangian immersion with its right normal vector $je^{\gamma i}$. Since β is not a harmonic mapping, we see that the functions μ_0 and μ_1 are not constant functions in a similar way as the proof of Theorem 4.

Since γ is a harmonic mapping, we have the equations

$$2\gamma_{\mu_0} = \mu_0(\beta_{\mu_0\mu_0} + \beta_{\mu_1\mu_1}), 2\gamma_{\mu_1} = -\mu_1(\beta_{\mu_0\mu_0} + \beta_{\mu_1\mu_1}),$$

on $M \setminus M'$ by Lemma 4. Then $\mu_1 \gamma_{\mu_0} + \mu_0 \gamma_{\mu_1} = 0$. Hence $\gamma(\mu_0, \mu_1) = \phi(\mu_0^2 - \mu_1^2)$ for a smooth real-valued function ϕ on $\mathbb{R} \setminus \{\mu_0^2(p) - \mu_1^2(p) \mid p \in M \setminus M'\}$. Since

$$\begin{split} \gamma_{\mu_0}(\mu_0,\mu_1) &= 2\mu_0\phi'(\mu_0^2-\mu_1^2),\\ \gamma_{\mu_1}(\mu_0,\mu_1) &= -2\mu_1\phi'(\mu_0^2-\mu_1^2),\\ \gamma_{\mu_0\mu_0}(\mu_0,\mu_1) &= 4\mu_0^2\phi''(\mu_0^2-\mu_1^2) + 2\phi'(\mu_0^2-\mu_1^2),\\ \gamma_{\mu_1\mu_1}(\mu_0,\mu_1) &= 4\mu_1^2\phi''(\mu_0^2-\mu_1^2) - 2\phi'(\mu_0^2-\mu_1^2), \end{split}$$

we have

$$\gamma_{\mu_0\mu_0}(\mu_0,\mu_1) + \gamma_{\mu_1\mu_1}(\mu_0,\mu_1) = 4(\mu_0^2 + \mu_1^2)\phi''(\mu_0^2 - \mu_1^2) = 0.$$

Hence the equation (5.9) holds on $M \setminus M'$ for a non-zero real number A and a real number C. Since every element of M' is an isolated point and γ is smooth on M, the equation (5.9) holds on M.

By the equation (5.1), we have the equation

$$\left(\begin{array}{c} \beta_{\mu_0} \\ \beta_{\mu_1} \end{array}\right) = 2A \left(\begin{array}{c} \mu_0 \\ \mu_1 \end{array}\right).$$

Hence the equation (5.8) holds for a non-zero real number A and a real number B on $M \setminus M'$. Since every element of M' is an isolated point and β is smooth, the equation (5.8) holds on M.

Conversely, we assume that β and γ are given by the equations (5.8) and (5.9) respectively. Then we see that the equation (4.2) holds and γ is a harmonic mapping by a direct calculation.

6. Examples

We apply Theorem 4 and Theorem 5 to obtain examples of Lagrangian branched immersions. We calculate left normal vectors of the examples to see that there are examples with both conformal Maslov forms (see [4]) and non-conformal Maslov forms.

Let $f: M \to \mathbb{C}^2$ be a Lagrangian immersion with its left normal vector N and its right normal vector $je^{\beta i}$. The map $(N, je^{\beta i}): M \to S^2(1) \times S^1(1)$ is a decomposition of the generalized Gauss map of f, where $S^1(1)$ is a circle in $\{j(u+vi) \mid u, v \in \mathbb{R}\}$ with radius one centered at origin. Let ω_1 is the symplectic form of \mathbb{C}^2 and H the mean curvature vector of f. The one-form ϖ on M defined by $\varpi(X) = \omega_1(X, H)/\pi$ is called the *Maslov form* of f. A Maslov form ϖ is said to be *conformal* if the tension field of the left normal vector N of f vanishes, or equivalently d * (dN) = hN with a real-valued function h on M. Locally, this equation is equivalent to the equation

$$N_{xx} + N_{yy} = kN, (6.1)$$

where (x, y) is a local coordinate of M such that x+yi is a local complex holomorphic coordinate and k is a local real-valued function on M (see [11] for example).

We use the following coordinate transformation. Let μ_0 and μ_1 be real-functions on M such that $\mu_0 - \mu_1 i$ is a complex holomorphic function on M. Then (μ_0, μ_1) is a coordinate of M and $\mu_0 - \mu_1 i$ is a complex holomorphic coordinate except branch points of $\mu_0 - \mu_1 i$. Let $x = \mu_0(\mu_0^2 + \mu_1^2)^{-1}$ and $y = \mu_1(\mu_0^2 + \mu_1^2)^{-1}$. Then (x, y) is a coordinate on M such that x + yi is a complex holomorphic coordinate of M except branch point and zeros of $\mu_0 - \mu_1 i$. We see that $x_0^2 + x_1^2 = (\mu_0^2 + \mu_1^2)^{-1}$.

Example 1. Let $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is a non-constant complex holomorphic function vanishing nowhere on M. We assume that the mappings β and γ are given by the equations (5.4) and (5.5) with non-zero real number A and B = C = 0. Then

$$\mu(\mu_0,\mu_1) = \mu_0 e^{-A\mu_1^2(\mu_0^2 + \mu_1^2)^{-2}i} + j\mu_1 e^{A\mu_0^2(\mu_0^2 + \mu_1^2)^{-2}i}$$

is a Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $je^{\beta i}$ by Theorem 4.

Let (x, y) be a coordinate of M such that $x = \mu_0(\mu_0^2 + \mu_1^2)^{-1}$ and $y = \mu_1(\mu_0^2 + \mu_1^2)^{-1}$. Since

$$\begin{split} \mu &= \frac{x}{x^2 + y^2} e^{-Ay^2 i} + j \frac{y}{x^2 + y^2} e^{Ax^2 i}, \\ \mu_x &= \frac{-x^2 + y^2}{(x^2 + y^2)^2} e^{-Ay^2 i} + j \frac{2xy\{-1 + A(x^2 + y^2)i\}}{(x^2 + y^2)^2} e^{Ax^2 i}, \\ \mu_y &= \frac{2xy\{-1 - A(x^2 + y^2)i\}}{(x^2 + y^2)^2} e^{-Ay^2 i} + j \frac{x^2 - y^2}{(x^2 + y^2)^2} e^{Ax^2 i}, \end{split}$$

the left normal vector of μ is

$$\mu_{y}\mu_{x}^{-1} = -je^{-A(x^{2}-y^{2})i}$$

By the equation (6.1), we see that the Maslov form of μ is conformal. The section <u>1</u> of a Hamiltonian-minimal Lagrangian line bundle *L* with its complex structure J^L defined by $J^L \underline{1} = \underline{j} e^{\beta i}$ is a non-zero quaternionic holomorphic section. We define a smooth mapping λ by $\underline{1} = \underline{\hat{\mu}} \hat{\lambda}$.

Denominators of Lagrangian surfaces

Figure 1. (Example 1) $U = \{x + yi \in \mathbb{C} \mid 0.5^2 \le x^2 + y^2 \le 4^2\}, \ \mu_0 = x, \ \mu_1 = -y, \ \mu_1 = -y, \ \mu_2 =$ A = 1, Im $\mu: U \to \text{Im } \mathbb{H}$.

Then

$$\lambda(\mu_0,\mu_1) = \frac{1}{\mu_0^2 + \mu_1^2} \\ \times \left(\mu_0 e^{A\mu_1^2(\mu_0^2 + \mu_1^2)^{-2}i} - j\mu_1 e^{A\mu_0^2(\mu_0^2 + \mu_1^2)^{-2}i}\right)$$

is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$

which is not Hamiltonian-minimal by Theorem 4. Let $x = \mu_0(\mu_0^2 + \mu_1^2)^{-1}$ and $y = \mu_1(\mu_0^2 + \mu_1^2)^{-1}$. Then (x, y) is a coordinate of M such that x + yi is a complex holomorphic coordinate except branch point of $\mu_0 - \mu_1 i$. Since

$$\begin{split} \lambda &= x e^{Ay^2 i} - jy e^{Ax^2}, \\ \lambda_x &= e^{Ay^2 i} - j2Axy i e^{Ax^2 i}, \ \lambda_y &= 2Axy i e^{Ay^2 i} - j e^{Ax^2 i}, \end{split}$$

the left normal vector of λ is

$$\lambda_y \lambda_x^{-1} = \frac{4Axyi}{1 + 4A^2 x^2 y^2} + j \frac{(4A^2 x^2 y^2 - 1)e^{A(x^2 - y^2)i}}{1 + 4A^2 x^2 y^2}$$

After long computation, we see that the Maslov form of λ is not conformal since the equation (6.1) does not hold.

Example 2. Let μ be the Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $je^{\beta i}$ defined in the same way as Example 1. The function

$$\alpha = \frac{2A\mu_0\mu_1}{(\mu_0^2 + \mu_1^2)^2}$$

Katsuhiro Moriya

Figure 2. (Example 1) $U = \{x + yi \in \mathbb{C} \mid 0.5^2 \le x^2 + y^2 \le 4^2\}, \mu_0 = x, \mu_1 = -y, A = 1, \text{Im } \lambda: U \to \text{Im } \mathbb{H}.$

satisfies the equation $*(d\alpha) = (d\beta)$. Then

$$\nu = \alpha - jie^{\beta i} = \frac{2A\mu_0\mu_1}{(\mu_0^2 + \mu_1^2)^2} - jie^{\{A(\mu_0^2 - \mu_1^2)(\mu_0^2 + \mu_1^2)^{-2}\}i}$$

is a Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $j e^{\beta i}.$ Indeed,

$$(d\nu) = (d\alpha) + je^{\beta i}(d\beta),$$

*(d\nu) = (d\beta) - je^{\beta i}(d\alpha) = (d\nu)(-je^{\beta i}).

Since the left normal vector of ν is $-je^{\beta i}$, we see that the Maslov form of ν is conformal by the equation (6.1). The image $\nu(M)$ is a part of a circular cylinder.

We define a smooth mapping λ by $\underline{\hat{\nu}} = \underline{\hat{\mu}}\hat{\lambda}$. Then

$$\begin{split} \lambda(\mu_0,\mu_1) &= \frac{1}{(\mu_0^2 + \mu_1^2)^3} \\ \times \left[\left\{ 2A\mu_0^2 \mu_1 e^{A\mu_1^2(\mu_0^2 + \mu_1^2)^{-2}i} + \mu_1(\mu_0^2 + \mu_1^2)^2 i e^{A\mu_1^2(\mu_0^2 + \mu_1^2)^{-2}i} \right\} \\ &+ j \left\{ -2A\mu_0 \mu_1^2 e^{A\mu_0^2(\mu_0^2 + \mu_1^2)^{-2}i} - \mu_0(\mu_0^2 + \mu_1^2)^2 i e^{A\mu_0^2(\mu_0^2 + \mu_1^2)^{-2}i} \right\} \right] \end{split}$$

is a Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ which is not Hamiltonian-minimal by Theorem 4.

Denominators of Lagrangian surfaces

Figure 3. (Example 2) $U = \{x + yi \in \mathbb{C} \mid 0.68^2 \le x^2 + y^2 \le 1.5^2\}, \mu_0 = x, \mu_1 = -y, A = 1, \operatorname{Im}(i\nu): U \to \operatorname{Im} \mathbb{H}.$

Figure 4. (Example 2) $U = \{x + yi \in \mathbb{C} \mid 0.68^2 \le x^2 + y^2 \le 1.5^2\}, \mu_0 = x, \mu_1 = -y, A = 1, \text{Im}(i\lambda): U \to \text{Im} \mathbb{H}.$

Let
$$x = \mu_0(\mu_0^2 + \mu_1^2)^{-1}$$
 and $y = \mu_1(\mu_0^2 + \mu_1^2)^{-1}$. Then
 $\lambda = (2Ax^2 + i)ye^{Ay^2i} + jx(-2Ay^2 - i)e^{Ax^2i},$
 $\lambda_x = 4Axye^{Ay^2i} + j(1 + 2Ax^2i)(-2Ay^2 - i)e^{Ax^2i},$
 $\lambda_y = (2Ax^2 + i)(1 + 2Ay^2i)e^{Ay^2i} + j(-4Axy)e^{Ax^2i}.$

Hence the left normal vector of λ is

$$\begin{split} \lambda_y \lambda_x^{-1} &= \frac{8Axy(1+4A^2x^2y^2)}{1+4A^2x^4+16A^2x^2y^2+4A^2y^4+16A^4x^4y^4}i\\ +j \left\{ \frac{1+16A^4x^4y^4-4A^2(x^4+y^4)}{1+4A^2x^4+16A^2x^2y^2+4A^2y^4+16A^4x^4y^4} \right. \end{split}$$

Figure 5. (Example 3) $U = \{x + yi \in \mathbb{C} | 0.1 \le |x| \le 2.6, |y| \le 2.6\}, \mu_0 = x, \mu_1 = -y, A = 1, \operatorname{Im} \mu: U \to \operatorname{Im} \mathbb{H}.$

$$\left. + \frac{4A(x^2 - y^2)(1 + 4A^2x^2y^2)}{1 + 4A^2x^4 + 16A^2x^2y^2 + 4A^2y^4 + 16A^4x^4y^4}i \right\} e^{A(x^2 - y^2)}$$

After long computation, we see that the Maslov form of λ is not conformal by the equation (6.1).

Example 3. Let $\mu = \mu_0 e^{(\beta - \gamma)i/2} + j\mu_1 e^{(\beta + \gamma)i/2}$ with real-valued functions μ_0 and μ_1 on M such that $\mu_0 - \mu_1 i$ is a non-constant complex holomorphic function vanishing nowhere on M. We assume that the mappings β and γ are given by the equations (5.8) and (5.9) with non-zero real number A and B = C = 0. Then

$$\mu = \mu_0 e^{A\mu_1^2 i} + j\mu_1 e^{A\mu_0^2 i}$$

is a Lagrangian branched immersion which is not Hamiltonian minimal with its right normal vector $je^{\beta i}$ by Theorem 5. We see that the Maslov form of μ is not conformal in a similar way as Example 1.

Let p be a point in M and

$$\nu(\mu_0, \mu_1) = \int_{\mu_0(p)}^{\mu_0} e^{At^2 i} dt + j \int_{\mu_1(p)}^{\mu_1} e^{At^2 i} dt.$$

Then ν is a Lagrangian branched immersion with its right normal vector $je^{\beta i}$ which is not Hamiltonian-minimal. Indeed,

$$(d\nu) = e^{A\mu_0^2 i} (d\mu_0) + j e^{A\mu_1^2 i} (d\mu_1), * (d\nu) = e^{A\mu_0^2 i} (d\mu_1) - j e^{A\mu_1^2 i} (d\mu_0) = (d\nu) \left(-j e^{A(\mu_0^2 + \mu_1^2) i} \right).$$

Figure 6. (Example 3) $U = \{x + yi \in \mathbb{C} | 0.1 \le |x| \le 2.6, |y| \le 2.6\}, \mu_0 = x, \mu_1 = -y, A = 1, \operatorname{Im} \nu: U \to \operatorname{Im} \mathbb{H}.$

Since the left normal vector of ν is $-je^{A(-\mu_0^2+\mu_1^2)i}$, we see that the Maslov form of ν is conformal by the equation (6.1). In the case where $M = \{x + yi \mid x, y \in \mathbb{R}\} = \mathbb{C}, A = 1, \mu_0 = x, \mu_1 = -y$, and p = 0, the map ν is a flat Lagrangian embedding given in [4].

Let us define a smooth mapping λ by $\underline{\hat{\nu}} = \hat{\mu}\hat{\lambda}$. Then

$$\begin{aligned} \lambda(\mu_0,\mu_1) &= \frac{1}{\mu_0^2 + \mu_1^2} \\ \times \left[\left\{ \mu_0 e^{-A\mu_1^2 i} \int_{\mu_0(p)}^{\mu_0} e^{At^2 i} dt + \mu_1 e^{A\mu_0^2 i} \int_{\mu_1(p)}^{\mu_1} e^{-At^2 i} dt \right\} \\ + j \left\{ \mu_0 e^{-A\mu_1^2 i} \int_{\mu_1(p)}^{\mu_1} e^{At^2 i} dt - \mu_1 e^{A\mu_0^2 i} \int_{\mu_0(p)}^{\mu_0} e^{-At^2 i} dt \right\} \right] \end{aligned}$$

is a Hamiltonian-minimal Lagrangian branched immersion with its right normal vector $je^{\gamma i}$ by Theorem 5. We should seek an alternative method to the equation (6.1) to conclude whether the Maslov form of λ is conformal since the computation becomes very long.

References

 Burstall, F. E., Ferus, D., Leschke, K., Pedit, F., and Pinkall, U.: Conformal geometry of surfaces in S⁴ and quaternions. Lecture Notes in Mathematics 1772, Springer-Verlag, Berlin, 2002.

Figure 7. (Example 3) $U = \{x + yi \in \mathbb{C} | 0.1 \le |x| \le 2.6, |y| \le 2.6\}, \mu_0 = x, \mu_1 = -y, A = 1, \operatorname{Im} \lambda: U \to \operatorname{Im} \mathbb{H}.$

- Ferus, D., Leschke, K., Pedit, F., and Pinkall, U.: Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori. *Invent. Math.* 146 (3) (2001), 507–593.
- 3. Forster, O.: Lectures on Riemann surfaces, Graduate Texts in Mathematics 81, Springer-Verlag, New York, 1991.
- 4. Castro, I. and Urbano, F.: Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. *Tohoku Math. J.* (2) **45** (4) (1993), 565–582.
- Hélein, F. and Romon, P.: Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions. *Comment. Math. Helv.* **75** (4) (2000), 668–680.
- Hélein, F. and Romon, P.: Hamiltonian stationary Lagrangian surfaces in C². Comm. Anal. Geom. 10 (1) (2002), 79–126.
- Oh, Y.-G.: Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds. *Invent. Math.* **101** (2) (1990), 501–519.
- Pedit, F. and Pinkall, U.: Quaternionic analysis on Riemann surfaces and differential geometry. In: Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. Extra Vol. II (1998), 389–400.
- 9. Peters, G. P.: Soliton spheres. Dissertation, Technischen Universität Berlin, 2004.
- Rodin, Y. L.: Generalized analytic functions on Riemann surfaces. Lecture Notes in Mathematics 1288, Springer-Verlag, Berlin, 1987.
- Urakawa, H.: Calculus of variations and harmonic maps. Translations of Mathematical Monographs 132, Translated from the 1990 Japanese original by the author, American Mathematical Society, Providence, RI, 1993.

12. Vekua, I. N.: Generalized analytic functions. Pergamon Press, London, 1962.

moriya3.tex; 14/12/2007; 17:11; p.26