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Abstract—Managing frequent updates is greatly important in many update-intensive applications, such as location-aware services,

sensor networks, and stream databases. In this paper, we present an R-tree-based index structure (called Rsb-tree, R-tree with

semibulk loading) for efficiently managing frequent updates from massive moving objects. The concept of semibulk loading is

exploiting a small in-memory buffer to defer, buffer, and group the incoming updates and bulk-insert these updates simultaneously.

With a reasonable memory overhead (typically only 1 percent of the whole data set), the proposed approach far outperforms the

previous works in terms of update and query performance as well in a realistic environment. In order to further increase buffer hit ratio

for the proposed approach, a new page-replacement policy that exploits the level of buffered node is proposed. Furthermore, we

introduce the concept of deferring threshold ratio (dtr) that simply enables deferring CPU- and I/O-intensive operations such as node

splits and removals. Extensive experimental evaluation reveals that the proposed approach is far more efficient than previous

approaches for managing frequent updates under various settings.

Index Terms—Indexing moving objects, R-trees, location-aware services, update-intensive applications, frequent updates.
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1 INTRODUCTION

WITH the rapid advances in positioning systems—such as

Global Positioning System (GPS) and Radio-Fre-
quency Identification (RFID)—and mobile computing tech-

nologies, managing up-to-date information about the

locations of massive moving objects has become a critical

area of research [1]. Typical examples of these moving objects

are delivery trucks, vehicles/pedestrians in a metropolitan

area, goods in stock, things that are tagged with electronic

devices like RFIDs, etc. More theoretically, this research area

can be extended into a broad class of problems where a
complex data object can be represented as a point in

multidimensional (feature) space by utilizing a dimension-

ality reduction technique such as GEMINI [2]. These data

include 1) measurement data sensed from tiny sensors

distributed around a city, 2) complex time-series data in

high-dimensional space, and 3) scientific data streams from a

satellite and telescopic observations. In a broad sense, we call

these problems as “update-intensive applications.”
As an illustrative example, suppose that we are

monitoring the locations of 1 million cell phone users in
a city. Each user updates their location every 10 seconds,
and a single location server keeps track of them. The
location server continuously receives the location update

stream as a sequence of location update records in a form
of hoid; pðx; yÞi, where oid is an object identifier and p is its
location which consists of x and y-coordinates. The
location server needed to properly handle 100,000 updates
per second. For each update, a spatial index maintained by
the location server is needed to be updated for answering
various spatial and location-dependent queries. Maximiz-
ing the update performance (update throughput) by
minimizing the above-mentioned update cost for each
update is, therefore, a critical issue for various update-
intensive applications.

As a de facto standard index structure, R-tree [3] is
originally designed for query-intensive setting, i.e., one of
primary concerns in R-tree is to minimize the search cost of
spatial queries. In R-tree, the update operation is very costly
because it will be divided into two separated operations
such as DELETE and INSERT sequentially. We believe
certainly that the original R-tree is inappropriate for
update-intensive setting in which frequent updates are
continuously generated.

In order to tackle this problem, several techniques for
managing frequent updates have been proposed [4], [5], [6].
These techniques are mainly motivated by the fact that, owing
to a multipath search, DELETE is much more costly than
INSERT. In order to avoid the multipath search for locating the
old entry during DELETE operation, Kwon et al. [6] developed
lazy updates performed in a bottom-up manner by adopting a
secondary index on the R-tree. Lee et al. [5] improved this idea
by developing an in-memory summary structure to help both
updates and queries. More recently, Xiong and Aref
proposed a memo-based update in which deletions are
deferred and performed in a batch manner [4]. For this
purpose, the authors proposed a memory data structure
called Update Memo that stores recent updates in R-tree. In
these techniques, at least two disk I/Os are needed to perform
immediately for updating R-trees accordingly against each
incoming update.
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In this paper, we propose a new update strategy that is
trying to defer and group the insertions as well as the
deletions. The main idea is to adopt a small in-memory buffer
to buffer, defer, and group the incoming updates, then inserts
them into disk at once (called semibulk loading). In order to
maximize the update performance, it is essential to 1) defer
the disk I/Os for insertions by exploiting in-memory buffer,
2) group-insert the buffered updates (if needed) and reduce
the number of disk I/Os as much as possible, and 3) filter out
the repeated accesses from the requested I/Os by making the
best use of a page buffer. Our major contributions can be
summarized as follows:

. We propose an R-tree variant index (called Rsb-tree)
that utilizes an in-memory buffer structure of a
reasonable size in order to minimize the update cost
and query cost as well.

. We introduce the concept of deferring threshold ratio
(dtr) that simply enables deferring CPU- and I/O-
intensive operations such as node splits and re-
movals by exploiting the in-memory buffer and
inserting meaningless entries into the underflowed
leaf node, respectively.

. In order to improve buffer hit ratio, a simple
variation of least recently used (LRU) replacement
policy (called Level-Aware LRU) that is aware of
level of nodes stored is proposed.

. Analytical study for the update and storage costs
and an extensive set of experiments are conducted.
The results show that the proposed approach can
greatly reduce the overall update cost by about three
to five times compared with the previous works with
a reasonable memory overhead (1 percent of the
whole data set).

The rest of the paper is organized as follows: Section 2
discusses the related work on supporting frequent
updates for R-trees. In Section 3, we present our approach
and its detailed algorithms. In Section 4, we discuss
advanced techniques for further improving the proposed
approach. Section 5 reports the analytical results. Section 6
presents the results of a performance evaluation of the
proposed Rsb-tree and previous studies. Finally, we
conclude in Section 7 with directions for future work.

2 RELATED WORK AND PRELIMINARIES

2.1 Indexing Moving Objects with R-Trees

As one of the most promising indexes for searching spatial
data, R-tree was proposed by Guttman [3]. It is a
d-dimensional extension of Bþ-tree for multidimensional
objects. Any geometric object is represented by its mini-
mum bounding rectangle (MBR). An MBR is minimal
approximation of a geometric object and a d-dimensional
(hyper-)rectangle R in the data space. Every node has at
least m and at most M entries (m �M=2) unless it is the
root node. Leaf nodes in R-tree contain leaf entries of the
form ðoid;mbrÞ, where oid is a unique object identifier in
the database and mbr is the MBR of the spatially indexed
object. Nonleaf nodes (also called index nodes; we use the
terms interchangeably) contain index entries of the form
ðptr;mbrÞ, where ptr is a pointer to a child node and mbr is

the MBR that spatially covers all MBRs in its child nodes.
Fig. 1 shows an R-tree for point set P in which points that
are spatially close in space are clustered in the same leaf
node. Nodes are then recursively grouped together with
the same principle until the top level, which consists of a
single node (called Root).

In the last few years, many index structures have been
proposed in the area of moving object indexing. These data
structures are classified into two categories based on the
type of data to be stored. One category is for the trajectories
of the moving objects [7], and the other category is for the
current and anticipated location of moving objects [4], [5],
[6], [8], [9], [10], [11]. The latter can also be classified into
two subcategories such as indexing current location [4], [5],
[6], and indexing based on movement vector [8], [9], [10], [11]. A
good survey for the issue of moving objects indexing is [12].

Thanks to its simplicity, the former will be more
generally applicable. Furthermore, due to its close relation-
ship with our proposal, we will discuss these techniques in
detail later in Section 2.3.

The underlying principle of the latter is the linear
movement of moving objects; i.e., the object’s location at
any future time t can be obtained as pref þ �v � ðt� trefÞ
where pref is a reference point at some reference time tref
(t > tref ) and �v is a movement vector. Based on this concept,
TPR-tree indexes time-parameterized MBRs by using the
insertion/deletion algorithms of the R�-tree [13]. Tao et al.
[10] improved the idea of TPR-tree by employing a different
set of insertion and deletion algorithms in order to
minimize the query cost. Similar to these techniques,
Prabhakar et al. [9] proposed so-called velocity-constrained
indexing (VCI) for efficient processing of continuous range
queries. In VCI, each node has an additional field Vmax to
describe maximum speed among all objects in the subtree.
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Fig. 1. An example of R-tree and five updates in which M ¼ 8;m ¼ 3.

(a) The planar representation for an R-tree. (b) Directory structure of

R-tree.



2.2 Reducing I/O Cost with Buffer:
Update Buffer versus Page Buffer

Another important aspect in designing an index structure is
employing a buffer to increase overall I/O performance.
Generally, there are two kinds of buffer such as update
buffer and page buffer. In this section, we discuss the
several aspects of these two schemes.

2.2.1 Page Buffering

Page buffering which is a standard feature of all DBMSs is
the most common way to reduce the number of I/Os. The
most popular algorithm for buffer replacement is LRU
algorithm that replaces the page that was least recently
accessed or used. There are several improvements over the
LRU technique [14], [15], [16].

Assuming B-tree index, Sacco proposed two variations of
LRU: ILRU (Inverse LRU) and OLRU (Optimal LRU) [15].
ILRU guarantees that a page will reside in the buffer until
all of its children are removed from the buffer. Assigning
different buffers to each level of the index tree, OLRU
guarantees that top-level pages of a tree have higher
priority compared to the rest. Leutenegger and Lopez [16]
discuss the effect of pinning higher levels of R-tree index in
the buffer. This pinning technique constantly keeps the
higher pages in buffer, so that the buffer does not change.
Due to this reason, lower page accesses are directly
translated into disk I/Os. Brinkhoff proposed so-called
spatial page-replacement algorithms optimized for spatial
databases [14]. The replacement algorithm replaces a page
based on spatial properties such as the area, the overlap and
the margin of pages, and page entries. Moreover, the
combination of spatial page-replacement strategies with
LRU strategies was also proposed.

In this work, similar to OLRU, we propose Level-Aware
LRU policy which guarantees that top-level pages have
higher priority than the rest. Without pinning any nodes, it
achieves the same effect as OLRU in a simpler way by
merging all buffers into a single level-aware buffer.

2.2.2 Update Buffering

As discussed in [17], basically there are two ways for
buffering updates; one is buffering updates within tree
nodes [18], [19], and the other is buffering in separate
structures [11], [20], [21].

Arge et al. [18] proposed the Buffer R-tree (BR-tree) for

performing bulk updates and queries. In BR-tree, every

node at dlogfð R4MÞeth level of the tree has a buffer, where R is

the number of rectangles that fit in the main memory. The

attached buffer enables the operations such as insertion,

deletion, and query to be performed in a lazy manner. In

[19], Lin and Su proposed a lazy group update (LGU)

algorithm that is extended from the BR-tree. LGU technique

exploits disk-based buffers (I-Buffer) associated with each

index node and a global memory-based buffer (D-Table) to

perform group deletions in a bottom-up manner.
In [11], Cui et al. proposed a grid-based buffering

scheme for TPR-tree, where active and inactive objects are

separately managed by main-memory grid buffer and disk-

based TPR-tree respectively. This will increase the query

performance by reducing the overlap between MBRs in

TPR-tree which is mainly caused by active moving objects.

As an alternative to R-tree variants, Xiong et al. proposed a

grid-file-based index called LUGrid which supports both

lazy-insertion and lazy-deletion [20]. The former is sup-

ported by adopting memory grid (MG) for buffering

unprocessed insertions, and the latter is supported by

“miss-deletion memo” (MDM) for keeping track of dele-

tions. Due to adopting grid-file-based structure, in contrast

to our technique, LUGrid can only index point objects,

which is a significant limitation for many practical applica-

tions. More recently, Biveinis et al. [21] proposed RR-tree

which exploits in-memory operation buffer in the form of

another R-tree and supports bulk-insertion algorithms.

Similar to other R-tree variants, unlike our proposal, this

technique handles an update as a delete-insert pair; this

means that buffer utilization will be decreased by half since

the buffer is shared by both insert and delete entries.
For achieving similar goals, the proposed approach has a

different buffer structure based on in-memory hashtable
and histogram. Moreover, it provides an advanced mechan-
ism for deferring CPU and I/O-intensive operations.

2.3 Different Update Strategies
in R-trees and Our Motivation

In this section, we describe the three most promising

strategies for updating R-trees in the category of “indexing

current locations.” In Fig. 1a, there are five updates needed

to be handled serially. p
ðjÞ
i is the location of object oi

starting from pi after j movements. During a given time

interval, o1 updates its location more frequently than

others. Based on this example, we describe the detailed

operations of updating R-trees (see Fig. 2).
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Fig. 2. Three possible ways of updating R-trees: (a) traditional top-down update [3], [13], (b) bottom-up update [5], [6], and (c) memo-based
update [4].



First, we introduce the top-down update strategy
described in the original R-tree [3]. As shown in Fig. 2a, it
performs in two steps: 1) delete an old entry by performing
a multipath search and reorganize the tree along the search
path, and 2) insert a new entry to the appropriate leaf node
and then reorganize the tree along the insertion path again.
Consider the first movement of o1 from p1 to p

ð1Þ
1 depicted in

Fig. 1a. The deletion of p1 from R3 incurs an underflow, and
this also incurs consequential underflows at R1 and Root
(so-called cascading deletion). As a result, R2 becomes a new
root node and the remaining entries will be reinserted in the
tree. After the whole deletion process, the entry p

ð1Þ
1 is

inserted. If an overflow occurs, the nodes have to be splitted
and therefore the tree has to be updated along the insertion
path. Thus, we believe that the top-down update requires a
very complicated process and it is not able to avoid a huge
number of disk I/Os.

As a preliminary proposal for this problem, Kwon et al.

proposed a bottom-up update strategy called Lazy update

R-tree [6] that exploits a secondary index called Hashtable

whose entry is a form of ðoid; ptrÞ, where ptr is a pointer to its

leaf node. Reconsider the example in Fig. 1a, the movement

from p1 to p
ð1Þ
1 . First, via Hashtable, we can directly find the

leaf node R3 for p1. After the update of R3:mbr, the bottom-

up update is terminated because p
ð1Þ
1 � R3:mbr. In case of the

third movement from p
ð1Þ
1 to p

ð2Þ
1 , however, p

ð2Þ
1 should be

inserted by a top-down insertion because p
ð2Þ
1 6� R3:mbr.

Compared to the top-down update, this 1) simplifies the

deletion of an old entry that requires a multipath search and

2) provides the localized insertion of a new entry. Due to the

frequent top-down insertions, this approach may suffer

performance degradation when the average moving dis-

tance is increased. To overcome this problem, a generalized

bottom-up update strategy was presented in [5]. The authors

provide an in-memory summary structure to help both

updates and queries.
In [4], Xiong and Aref proposed an R-tree variant called

R-tree with update memo (for short RUM-tree) that provides a
unique update operation called memo-based update. This
approach utilizes a top-down insert as is for the insertion of
a new entry, and the deletions of old entries are deferred
and done in a batch manner. As shown in Fig. 2c, each
newly incoming update is tgcqed by StampCounter, and

then inserted into the tree. Then, the corresponding update

memo (UM) entry is needed to be updated to indicate this

change. The old entries get deleted later on by referring to

UM. Recall the example in Fig. 1a. In the example, thus,

only new updates will be inserted and the old entries will

be removed afterwards and as a result, underflow at R3

does not occur. However, the splits are more likely to occur

frequently due to the increased number of entries. For

instance, R6 will be splitted because of the undeleted old

entry p2.

Motivational remarks. One of the most promising

approaches that resolve I/O-intensive problems discussed

in the above example is to adopt a special update buffer.

Then, three movements of p1 in Fig. 1a can be reduced into a

single movement from p1 to p
ð3Þ
1 (third and fourth updates

are performed in the memory buffer). We expect that the

factor of this improvement will increase especially for fast

moving objects. Moreover, inserting p
ð3Þ
1 and p

ð1Þ
3 to R7 can

be done simultaneously. We can also prevent the underflow

at R3 by deleting p1 and inserting p
ð1Þ
2 at a time. In this

paper, we explore this idea of update buffering, and the

details of our approach are given in the next section.

3 THE Rsb-TREE INDEX

3.1 The Basic Concept and Structures

The basic idea underlying our approach is to put the

spatially clustered updates into a group in which most part

of their insertion paths must be shared. Thus, the total

update cost will be drastically decreased. Conceptually

speaking, our objective is to minimize the cost of overall

update operations by increasing the number of updates

processed by a single I/O operation. To this aim, we adopt

a small in-memory buffer to defer/group the incoming

updates as much as possible and to minimize the update

cost by inserting them in a batch.
Fig. 3 shows the basic concept of the proposed structure.

When the buffer is full, the buffered updates are inserted

into the disk-resident R-tree simultaneously by exploiting

the common path (see Fig. 3a). For query processing,

combining two raw answers from the in-memory buffer

and R-tree, and refining the result are needed (see Fig. 3b).

As shown in Fig. 3c, Rsb-tree has the following components:
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Fig. 3. The concept of semibulk loading. (a) The concept of semibulk loading. (b) Query processing on Rsb-tree. (c) The detailed view of in-memory

buffer.



. GlobalClock is a monotonic increasing time stamp
generator that increments whenever inserts/deletes
on the in-memory buffer take place. This is
the unique source of every entry’s time stamp in
Rsb-tree. Using this time stamp, a fresh entry (the
most recent entry of an object) can easily be
distinguished from all other old entries (called
obsolete entries).

. Object Registry (OR) is a set of object-tuple
hoid; p; cid; tstamp;Nhiti1 hashed based on object-id
oid, where p is location of object oid; cid is an
identifier of a histogram cell, tstamp is a time stamp
assigned by GlobalClock, and Nhit is the number of
updates performed within OR (called OR hit). The
capacity of OR (ORSize) is defined as a fraction of
the total number of moving objects, N .

. Histogram (H) is a two-dimensional hash structure

that disjointly divides the data space DS ¼ ½0; 1Þ2
into g� g grid cells, where g is called the histogram

granularity. Each cell is denoted by H½i; j�; 0 � i; j �
g�1 and covers a region of space ½i�; ðiþ 1Þ�Þ �
½j�; ðjþ 1Þ�Þ generated by uniform partitioning,
where � is the length of cell size (1

g ). Each cell

contains the histogram value hist and the object-id

list (OL) of OR entries whose locations are com-

pletely enclosed by the cell (jOLj ¼ hist). For any

two-dimensional point p ¼ ðp1; p2Þ, the correspond-

ing cell of point p can simply be computed as

H½bp1

� c; b
p2

� c�.
. Destruction List (DL) is a set of supplemental

information in order to minimize the deletion cost
of obsolete entries. The underlying principles are the
same conceptually as the concept of update memo
that we borrowed from [4]. Each entry in DL
(denoted as DL½oid�) is a form of hoid; tupd;Noldi
hashed on object-id oid and denotes the number of
obsolete entries which should be removed from the
disk-resident R-tree. Time stamp tupd is the time
stamp of the fresh entry of oid, andNold is the number
of obsolete entries for the object oid in the disk-
resident R-tree.

The disk-resident part of Rsb-tree is same as the

traditional R-tree except that 1) all leaf entries are time

stamped by GlobalClock and 2) all index entries are stored

in their inserted order (see more details in Section 3.4).

Thus, a leaf entry is the form of hoid;mbr; ti, where oid and

mbr are identical to those in the traditional R-tree, and t is a

globally unique time stamp generated by GlobalClock.

Without removing obsolete entries, we are able to distin-

guish the fresh entry from them by using the time stamp t.

This will greatly reduce the deletion cost for old entries.

Owing to the redundant obsolete entries, the total number

of leaf entries stored in the tree will surely increase, and

accordingly the search cost will increase. The introduction

of time stamp will result in the reduced node capacity. In

other words, the capacity of an index node (Mx) is larger

than that of a leaf node (M0). The Rsb-tree’s height (h) is

h ¼ 1þ dlogfx
N
f0
e, where N is the number of moving objects,

and f0 and fx are the average fan outs of a leaf node and an

index node, respectively (e.g., f0 ¼M0 � 67%). Because the

tree’s height highly depends on fx, the tree’s height h is

almost same as R�-tree. In this paper, the root is assumed to

be at level h�1 and leaf nodes are assumed to be at level 0.

For reference convenience, the notations used in the paper

are listed in Table 1.

3.2 Insert, Update, and Delete on In-Memory Buffer

Algorithm 1 shows the INSERT, UPDATE, and DELETE

algorithms of the Rsb-tree which are operated on the in-
memory buffer completely. In the Rsb-tree, update is
identical to an insert operation.2 For each incoming update
hoid; pi; GlobalClock first increments and assigns a time
stamp to the update (line 1). If the corresponding OR entry
OR½oid� 2 OR, it will be updated within OR, and its update
count Nhit will be incremented (lines 3-4). If not, a new OR
entry is inserted into OR (line 7). When there is no enough
space in OR, we perform what we call Flush in order to
make room for the newly incoming update (line 6). For the
proper removal of obsolete entries, which are stored before,
the corresponding DL entry DL½oid� is registered or
updated (lines 8-10).

Unlike the traditional R-tree, only an object-id oid is
needed for DELETE procedure. The reason behind this is
that we can find the obsolete entries not by their spatial
locations, but instead by their oids and time stamps. This
characteristic will make an application simpler by removing
maintenance cost for the location information required to
delete the obsolete entries. As in INSERT, GlobalClock
increments first (line 1). If OR½oid� exists, it is possible to
remove the obsolete entry within OR without any disk
accesses (lines 2-3). If not (this means the obsolete entry is
already stored into disk), then the corresponding DL entry
DL½oid� must be registered or updated (lines 4-6).3

Algorithm 1. INSERT, UPDATE, and DELETE algorithms

INSERT (oid; p) // UPDATE(oid; p) is exactly the same.

Input: oid is object-id and p is location ðp1; p2Þ.
1: t GlobalClock; Increment GlobalClock;
2: if (oid 2 OR) then // Called OR hit

3: Update OR½oid� with hp;H½bp1

� c; b
p2

� c�; ti;
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1. For the purpose of crash recovery, every change in OR is logged into a
stable storage. In our future work, we will investigate the (log-based)
recovery issue in detail.

2. Due to this reason, meaningless DL entries (called phantom entry) can
be created. We will discuss a solution for this issue in Section 3.4.

3. If the object oid have not been inserted before, this also generate an
extra DL entry, and this can also be treated as a phantom entry discussed
in INSERT.

TABLE 1
Notations and Its Meaning



4: Increment OR½oid�:Nhit;
5: else

6: if (OR is full) Invoke FLUSH();

7: Insert OR entry hoid; p;H½bp1

� c; b
p2

� c�; ti into OR;

8: if (oid 2 DL)

9: then Increment DL½oid�:Nold and DL½oid�:tupd  t;

10: else Insert new DL entry hoid; t; 1i;

DELETE(oid)
Input: oid is object-id.

1: t GlobalClock; Increment GlobalClock;

2: if (oid 2 OR) then

3: Remove the OR entry OR½oid�;
4: else if (oid 2 DL)

5: then Increment DL½oid�:Nold and DL½oid�:tupd  t;

6: else Insert new DL entry hoid; t; 1i;

3.3 Semibulk Loading

Semibulk loading is the process of storing the location

information on the in-memory buffer to the disk-resident R-

tree. It is far different from the conventional bulk loading

which is performed in an offline manner because the

ultimate goal is not to maximize the quality of the R-tree,

but to optimize the update and search costs together. In

order to improve the I/O efficiency of semibulk loading, we

choose a proper subset of OR, which have a strong

probability to be inserted to the same leaf node. Based on

the way of choosing the subset (denoted as OLflush), we

propose four possible policies as follows:

. FlushAll: The entire OR will be chosen as OLflush.
This incurs a low I/O efficiency, because the average
number of OR entries to be inserted to a leaf node is
decreased to ORSize�f0

N . Moreover, this will decrease
OR hit ratio also by emptying the entire OR at once.

. FlushCell: In order to maximize I/O efficiency, we

choose a cell that has the maximum histogram

among g� g cells. The performance benefit increases

as the skewness of incoming updates increases.

Also, this does not decrease OR hit ratio rapidly
because the entries still exist in OR even after the

flush. The size of the chosen OLflush is far larger

than the average number of OR entries in a

Histogram cell (jOLflushj 	 ORSize
g2 ), and the perfor-

mance benefit of this policy is affected by the

Histogram granularity (g).
. FlushLRUCell: This policy chooses the cell that has the

maximum histogram except for the top � percent
entries whose time stamps (tstamp) are bigger than
others. In short, this approach filters out the recently
updated entries from OLflush to be inserted to disk.

. FlushLFUCell: Similar to FlushLRUCell policy, this
policy chooses the cell with the maximum histogram
except for the top � percent entries whose update
counts Nhit are bigger than others. In short, this
approach filters out the most frequently updated
entries from OLflush to be inserted to disk.

The FlushAll policy can be effective in the initial state

where the data does not exist (or only the Root node exists).

In this case, it is better for I/O efficiency to insert the entire

OR by a conventional bulk-loading algorithm such as Sort-

Tile-Recursive technique [22]. We call this phase BootRoot

process where the whole framework of index structure is

generated. This will not only improve the speed of insertion

but also maximize the index quality. At this phase, the

objective is to maximize the storage utilization and to

produce as many leaf nodes as possible. As a result, dORSizeCBoot
e

leaf nodes with CBoot ¼ minðmaxðORSizeMx
;m0Þ;M0Þ entries

will be generated. If the generated leaf nodes cannot be

accommodated by a single index node called root (i.e.,

dORSizeCBoot
e > Mx), we recursively apply STR for generating the

resulting R-tree with height h ¼ 1þ dlogfxdORSizeCBoot
ee > 2.

FlushLFUCell and FlushLRUCell policies will be efficient

especially when the update probability of each moving

object is very different. The most typical case is the speed

difference (recall the example in Fig. 1a). Consider a fast

moving object that updates its location very frequently. If

we flush the object continuously, this object will register its

new update into OR again and the rest of flushed entries

will become obsolete entries quickly. This will increase the

number of obsolete entries in the tree. Obviously, this type

of frequently updated entries have to be filtered out from

the chosen OLflush. To this end, FlushLFUCell and

FlushLRUCell utilize the number of OR hits Nhit which is

explicitly accumulated and the recent update time tstamp

of each OR entry, respectively.

Algorithm 2. FLUSH algorithm

FLUSH(OLflush)

Input: OLflush is an object-id list chosen from OR.

1: Initialize OL based on OLflush.

2: A set of path stacks S  CHOOSEOPTIMALPATHS ðOLÞ;
3: foreach path stack s 2 S do

4: Leaf node L s:popðÞ;
5: CLEAN(L); // clean-upon-touch process
6: Insert 8 entry e 2 OL such that e:stack ¼ s into L;

7: if (overflow occurs) Invoke

OVERFLOWTREATMENT(L);

8: if (underflow occurs) Invoke

UNDERFLOWTREATMENT(L);

9: repeat

10: Remove all duplicate stacks in S;

11: foreach path stack s 2 S do

12: Index node N  s:popðÞ; Update N ;

13: until (S is not empty)

CHOOSEOPTIMALPATHS(OL)

Input: OL is a set of entries hoid; sid; optChi where oid is

object-id, sid is a stack index for stack pool S, and optCh

is the node id of next optimal child.

Output: Stack pool S is a set of stacks which present
optimal paths to the optimal leaf nodes.

1: Initialize stack s0: s0.push(Root) and stack pool S  fs0g;
2: foreach entry e 2 OL do

3: e:sid S.indexOfðs0Þ; e:optCh Root;

4: for i ¼ 2 to h do
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5: foreach entry e 2 OL do

6: e:optCh FINDLEASTENLARGEMENT ðe; e:optChÞ;
7: if (jS½e:sid�j < i) S½e:sid�. pushðe:optChÞ, continue;

8: if (S½e:sid�:top ¼ e:optCh) continue;

9: Let s0 be a stack 2 S s.t. s0:top ¼ e:optCh;

10: if ( 6 9s0) then

11: Allocate new stack s0; Copy the content of

S½e:sid� to s0.

12: s0:top e:optCh;S  S [ fs0g;
13: e:sid S.indexOfðs0Þ;

After selecting the subset OLflush, inserting the OR
entries in OLflush is definitely needed through the
exploitation of common insertion path as much as
possible (see Algorithm 2). First of all, the minimum
number of path stacks for the insertion procedure should
be generated by invoking CHOOSEOPTIMALPATHS. We
then remove the obsolete entries in the leaf node L at the
top of each path stack and insert OR entries into L (line 3-
6). If necessary, we call OVERFLOWTREATMENT(L) or
UNDERFLOWTREATMENT(L) which are discussed later in
Section 4.1 (Algorithm 4) (line 7-8). Finally, we reorganize
the tree along the common path (line 9-13).

3.4 Freshening with Garbage Cleaner

The FLUSH operation discussed in the previous section is
essentially bulk insertion, and eliminates the obsolete
entries only in the leaf nodes where insertions are
performed4; therefore, it will not be able to eliminate the
obsolete entries which exist in unvisited leaf nodes.
Consequently, a special process (called Garbage Cleaner; for
short GC), which goes round the whole tree and eliminates
obsolete entries is positively necessary. For the better
quantitative discussion, we first define the concept of
freshness as a measurement of Rsb-tree’s quality.

Definition 1 (Freshness). Freshness FrðeÞ of a leaf entry e is
defined as follows:

FrðeÞ ¼ 1; if e:oid 62 DL or DL½e:oid�:tupd � e:t;
0; otherwise:

�
ð1Þ

Similarly, freshnessFrðLÞ of a leaf node L ¼ fe1; e2; . . . ; efg
is FrðLÞ ¼ 1

f

Pf
i¼1 FrðeiÞ. Freshness FrðT Þ of the disk-

resident R-tree T is defined as the number of fresh entries

stored in disk over the number of entire leaf entries, i.e.,

FrðT Þ ¼ 1

n0

X
L2T

FrðLÞ ¼ Nfresh

NfreshþNobsolete
; ð2Þ

where Nfresh and Nobsolete are the total numbers of fresh and
obsolete entries in the disk-resident part of Rsb-tree, respectively.

GC is a lazy group deletion operated once every K
updates (K is called GCInterval) (see Algorithm 3). GC
finds the next leaf node L (line 2) and removes the
obsolete entries in L (line 3). In order to identify which
leaf entry is an obsolete entry, we use the freshness
concept defined in Definition 1. In case of underflow,
UNDERFLOWTREATMENT is invoked to deal with this

situation (line 4). The total update cost will surely increase
as K decreases; when K decreases, the search cost also
decreases but the total update cost increases. Naturally,
there is a trade-off between the update and search costs.
These are not separated problems but closely related
problems, since another search for finding the optimal
location of a new entry and locating the corresponding
leaf node of an old entry is needed to perform an update.

Algorithm 3. DFS Scanner for Garbage Cleaning

GARBAGE-CLEANER()

1: // Simple DFS traversal using dfsStack;

2: foreach leaf node L periodically do once every K updates

3: CLEAN(L);

4: if (underflow occurs) Invoke

UNDERFLOWTREATMENT();

CLEAN(LeafNode L)

1: foreach leaf entry e in L do

2: if (freshness FrðeÞ < 1) then

3: Delete e from L and decrement DL½e:oid�:count;
4: if (DL½e:oid�:count ¼ 0) Remove DL½e:oid� from

DL;

Unlike RUM-tree, we simply make use of a stack-based

DFS traversal. In RUM-tree, every node has a pointer to its

parent node and all the leaf nodes are doubly linked in a

cycle. Using these auxiliary pointers, the GC of RUM-tree

visits leaf nodes in turn and adjusts the tree in a bottom-up

manner. As stated in [5], having its parent address has a

high maintenance cost. In this way, splitting an index node

at level l incurs updating all parent-link fields of its child

nodes at level l� 1, i.e., on an average ðM þ 1Þ=2 nodes are

updated. When l is close to 0 (the leaf level), this will cause

performance degradation due to frequent page buffer miss.

Moreover, the links between leaf nodes also have to be

updated during node splits and removals.

To avoid this high maintenance cost, GC in this study is

based on DFS traversal that utilizes a special stack (called

dfsStack). The dfsStack stores all node-ids (at most h)

along the path that leads from Root to the leaf where GC

is performed. The node id of ith level is stored in

dfsStack½h� i� and the id of leaf node L where GC is

being performed exists on the top of dfsStack (dfsStack½h�).
If we want to visit the next leaf node, pop out Ls id from

dfsStack and find the next leaf node by using the remaining

dfsStack’s h� 1 nonleaf nodes. If leaf node L is the last

entry of level 2 nonleaf node (with probability of 1
fx

), it must

visit the upper level. Consequently, GC overhead for

visiting the next leaf node will be
Ph�2

i¼0 f
�i
x . However, this

cost is sufficiently low as shown below.

3.4.1 Additional Cost of dfsStack-Based GC

Given an R-tree of height h, the total number of nodes in the

tree is as follows:

Xh�1

i¼0

ni 

Xh�1

i¼0

N

fix � f0
<
X1
i¼0

N

fix � f0
¼ N � fx
ðfx � 1Þf0

; ð3Þ
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where ni is the number of node at level i. Hence, the total

number of nodes increases fx
f0

times rather than the case of

fx¼f0 (the original R-tree). For instance, when we use 4 kB

page (Mx¼204; M0¼145), the growth of tree is about
204
145 
 1:41. The ratio of the number of nonleaf nodes to that

of leaf nodes is

# of nonleaves

# of leaves
<

N�fx
ðfx�1Þf0

� N
f0

N
f0

¼ 1

fx � 1
: ð4Þ

The most important point of (4) is that it becomes a very
small value when fx increases. For 4 kB page, it is smaller
than 0.5 percent. Another point is that most of nonleaf nodes
will be in the page buffer. The result of our initial
experiment shows that the average buffer hit ratio for
visiting additional nonleaf nodes is over 99.5 percent.
Accordingly, it is clear that our dfsStack-based GC has
much more smaller maintenance cost than that of RUM-tree.

3.4.2 Phantom Entry Problem in DL

Since there is no differentiation between insert and update,
the insert operation will generate a new DL entry hoid; t; 1i,
even though there is no such obsolete entry. Such a DL
entry (called phantom entry) will never get removed from
DL because its Nold will never be zero [4]. For this
problem, similar to RUM-tree, we employ a phantom
inspection process that periodically detects and eliminates
phantom entries. First, assign the time stamp of
GlobalClock to � . After this, GC visits all the leaf nodes
and garbage-cleans those nodes. When it has visited all the
nodes, at �� , DL entries whose tupd are smaller than � must
be phantom entries. The inspection cycle of this scheme is
surely K � n0 updates.

We can shorten the inspection cycle by generalizing the

time stamp � . Let �i be the time stamp of GlobalClock when

GC visits the ith leaf node, i 2 ½0; n0�1�, where n0 is the

number of leaf nodes. We maintain an array of r time

stamps T; T ½j� ¼ �jbn0
r c
; j 2 ½0; r�1�. For example, r ¼ 3 and

n0 ¼ 25, then T ½0::2� ¼ f�0; �8; �16g. The inspection will be

performed in the following steps with r times shorter cycle:

1) whenever GC visits the jbn0

r cth leaf node (j 2 ½0; r� 1�),
2) remove all phantom entries in DL whose tupd are smaller

than �j, and 3) update �j by GlobalClock. Moreover,

interfering with the decision of phantom entry, the

insertion/deletion of leaf nodes can be handled properly

by the following way. Increment every �i 2 T by K if a leaf

node is inserted. The deletion of a leaf node only incurs

false negative; i.e., missing some of phantom entries is

possible. They can be dealt with at the next cycle, so we

simply ignore it. Whenever GC visits the 0th leaf node,

every �i 2 T is recomputed by using the updated n0.

3.4.3 Managing dfsStack and Relative

Order of Index Entries

Unlike the B-tree family, the R-tree has no definition of
relative order between index entries in a nonleaf node. By
defining the relative order of index entries, we can certainly
make GC to visit all the leaf nodes thoroughly. The relative

order between index entries is simply defined as their
inserted order; that is, if an index entry e1 is inserted before
an entry e2, then e1 precedes e2 (formally, e1 � e2). For this
purpose, the following conditions should be satisfied:
1) When a new entry is being inserted to an index node, it
must be placed at the end of the node. 2) When an entry is
being deleted, the relative order of remaining entries must
be kept by shifting the succeeding entries consecutively.
3) For node splitting, we first assume that a nonleaf node
N 2 dfsStack to be splitted intoN1 andN2 (whereN1 � N2).
In this case, N1 should contain the index entry that points to
the child node along dfsStack. Otherwise, we make an
exchange between N1 and N2.

Furthermore, as the R-tree dynamically changes,
dfsStack has to be updated accordingly. If a node N 2
dfsStack is deleted, every node along the path from N to
leaf node L at the top of dfsStack should be popped from
dfsStack. Thus, it is possible that the node (called NN)
residing on top of dfsStack can be a nonleaf node. If so, we
must fill dfsStack with every node along the path from NN
to the most preceding leaf node of the subtree rooted at
node NN .

3.5 Query Processing on Rsb-Tree

The general flow of query processing on Rsb-tree is
depicted in Fig. 3b. Now, we discuss range query
processing on query window qw. First of all, the algorithm
searches all OR entries that intersect with qw by using
Histogram as a spatial index. Then, the ordinary search
operation over the R-tree is conducted. However, the raw
answer from the R-tree may contain obsolete entries. We
can obtain the correct answer by combining these two raw
answers and filtering the obsolete entries out by checking
the freshness of their elements.

Searching k-nearest neighbor (kNN) is conducted in a
somewhat different way. Let kthdist and kthdistOR be the
distances between the given query point q and its the
kth nearest neighbor in the Rsb-tree (R-tree and OR) and
that only in OR, respectively. Intuitively, kthdistOR is an
upperbound of kthdist (i.e., kthdistOR 	 kthdist). After
obtaining the kthdistOR from OR, we perform a disk-based
kNN search using kthdistOR as an initial value in a branch-
and-bound manner [23]. During the search, it is needed to
check the freshness of every possible answer. Finally, we
can decide whether to take it as a correct answer or not.

4 IMPROVING Rsb-TREE WITH

ADVANCED TECHNIQUES

4.1 Deferred Overflow/Underflow Treatment

As for the constraint of R-tree, the number of fan outs f of
each node must satisfy the condition f 2 ½m;M�. Otherwise,
the node must be splitted (f > M) or removed (f < m) to
satisfy the condition. These operations are called overflow/
underflow treatment procedures. Due to their high CPU and
I/O cost, it is good to avoid these operations. With this in
mind, we can simply use a smallerm (for example, 10 percent
or 20 percent ofM). However, this will change the entire tree
structure and decrease the average number of fan outs and
storage utilization of the tree. As a result, this will increase
height of the tree, and overall update/search cost will be
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increased. We suggest a new scheme that prevents under-

flow by inserting meaningless entries into the underflowed

leaf node. Similarly, we can defer the insertion of new fresh

entries in order to defer overflow treatment. Such a tolerance

or flexibility is applied only for the leaf level, so that it does

not change the whole structure of tree.
The meaningless entry is called null entry, a special class

of obsolete entry, which has a form of hnull-id;
null mbr;�1i, where null-id is a dedicated identifier for
the null entry and null mbr ¼ ½þ1;�1�d. It does not
belong to any specific object, while an obsolete entry
belongs to a specific object and occupies a DL entry. Every
time GC operates, obsolete entries of a leaf node are deleted
and the null entry is filled if needed. The replacement of an
obsolete entry with a null entry implies that it can be
removed without any DL references. In order to limit the
number of null entries in the Rsb-tree properly, we define
the dtr coefficient as follows:

Definition 2 (Deferring Threshold Ratio (dtr)). Given a

constant dtr 2 ½0; 1Þ, called the deferring threshold ratio,

overflow and underflow treatment for a leaf node L can be

deferred. There are two kinds of dtr: dtr� for m (underflow)

and dtrþ for M (overflow). By using these two dtr coefficients,

underflow threshold m and overflow threshold M are modified

to ~m ¼ dð1� dtr�Þme (called deferred underflow thresh-

old) and ~M ¼ dð1þ dtrþÞMe (called deferred overflow

threshold), respectively.

We can consider a leaf node L with f leaf entries

(f 2 ½m;M�; f ¼ nfresh þ nobsolete, where nobsolete and nfresh
are the numbers of obsolete entries and fresh entries,

respectively) and nOR new entries to be inserted into L. (In

case of operating GC, the procedure is identical except that

overflow does not occur.) Let f 0 be the new number of leaf

entries (f 0 ¼ nfresh þ nOR). There are five different cases for f 0:

Five different cases for f 0

¼

Case ð1Þ: f 0 < dð1� dtr�Þme
Case ð2Þ: dð1� dtr�Þme � f 0 < m

Case ð3Þ: m � f 0 �M
Case ð4Þ: M < f 0 � dð1þ dtrþÞMe
Case ð5Þ: dð1þ dtrþÞMe < f 0:

8>>>>>><
>>>>>>:

In summary, (3) is a normal or desired case, (2) and (4)

are cases in which overflow/underflow is deferred by dtr,

and (1) and (5) are cases in which split/deletion of node is

actually performed. As seen in Fig. 4, the effect of the

dtr coefficient is conceptually expanding the range ½m;M�
where the split/deletion of node does not occur to the range

½dð1� dtr�Þme; dð1þ dtrþÞMe�. We describe how to deal

with each case below:

. Case (1): In the case of underflow, we first find the
candidate set OLcand from OR, such that jOLcandj �
M � f 0; OLcand \OLflush ¼ ;, and 8o 2 OLcand; o �
L:mbr, and then make L to include OLcand (lines 1-2
in Algorithm 4, UNDERFLOWTREATMENT). If under-
flow still occurs, the node must be deleted and the
remaining entries are reinserted (line 5 in Algo-
rithm 4, UNDERFLOWTREATMENT).5 This case is
depicted in Fig. 5a.

. Case (2): Like Case (1), find OLcand and then put it
into L. If the leaf node L meets the condition
f 0 	 dð1� dtr�Þme, fill it with m� f 0 null entries in
order to defer removing the leaf node (lines 3-4 in
Algorithm 4, UNDERFLOWTREATMENT, see Fig. 5b).

. Case (4): Reload the remaining f 0 �M (maximum
dtrþ �M) entries into OR (lines 8-9 in Algorithm
4, OVERFLOWTREATMENT, see Fig. 5c). We adopt
an R�-tree-like approach to choose M out of f 0

entries. For each axis, sort the entries by the
lower then by the upper values of their rectangles
and determine all possible (f 0 �M þ 1) distribu-
tions.6 Choose a distribution with the minimum-
area value. Therefore, the running time of the case
(4) is Oðdðf 0 log f 0 þ ðf 0 �M þ 1ÞÞÞ ¼ Oðf 0 log f 0Þ,
where f 0 > M and d ¼ 2.

. Case (5): This is the case that needs node split (see

Fig. 5d). Create a new leaf node LL and write at most

2M entries to two leaf nodes L and LL. If there are

remaining entries, load the entries into OR (lines 5-6

in Algorithm 4, OVERFLOWTREATMENT). In case of

f 0 > 2M, choose two smallest MBRs of f 0 entries

(lines 1-4 in Algorithm 4, OVERFLOWTREATMENT,

see Fig. 5e). Applying the solution of “choose M out

of f 0” twice may cause the problem of local optima

and a huge overlap between them. So, we devise a

similar approach. For each axis, sort the entries by

the lower then by the upper values of their

rectangles and determine all possible
Pf 0�2Mþ1

i¼1 i ¼
ðf 0�2Mþ1Þðf 0�2Mþ2Þ

2 distributions.7 Then, we choose a

distribution with the minimum-area value, and

resolve ties by choosing the distribution with the

minimum-overlap value. Therefore, the running time

of the case (5) is OðdðM2 þ f 02 � f 0MÞÞ ¼ Oðf 02Þ,
where f 0 > 2M and d ¼ 2.
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Fig. 4. Deferring overflow/underflow treatment with dtr coefficient.

5. In case (1), we can consider an alternative approach that reloads the
remaining entries into OR (only for the leaf level). In our preliminary
experiment, as stated in [3], [13], we observed that the reinsertion is
superior than “reloading into OR” in the overall I/O improvement by
restructuring the whole tree structure gradually.

6. In case (4), the sorted array of f 0 entries can be divided into three
subarrays with i;M, and j entries, respectively, where iþ j ¼ f 0 �M and
0 � i; j � f 0 �M. The number of possible distributions is, therefore,
ðf 0 �M þ 1Þ; i.e., ð0;M; f 0 �MÞ; ð1;M; f 0 �M � 1Þ; . . . ; ðf 0 �M;M; 0Þ.

7. Similar to case (5), the sorted array of f 0 entries can be divided into five
subarrays with i;M; j;M, and k entries respectively, where iþ jþ k ¼
f 0 � 2M; 0 � i � f 0 � 2M, and 0 � j � f 0 � 2M � i. The number of possible
distributions is

Xf 0�2Mþ1

n¼1

n ¼ ðf
0 � 2M þ 1Þðf 0 � 2M þ 2Þ

2
:



Discussion. Intuitively speaking, for small dtr, the tree
keeps its optimal status by performing frequent reorganiza-
tions such as node splits and reinsertions. For large dtr,
however, the tree has a tendency to maintain its current
status as much as possible. More specifically, a large dtr�

depreciates the tree’s freshness by generating a great
number of null entries, and this fact causes a bad influence
on both update and search. Therefore, it is important to find
the optimal dtr� that decreases the update cost by delaying
node deletion without any loss of the freshness. A large dtrþ

depreciates update performance by reducing the number of
entries which are inserted from OR to the tree. However,
this brings an affirmative effect of increasing the storage
utilization due to delaying node splits and reducing the
search cost eventually.

Algorithm 4. Overflow and Underflow Treatment algorithms

UNDERFLOWTREATMENT(Leafnode L)

1: Find OLcand a set of (at most M�f 0) OR entries that are
completely enclosed by L:mbr.

2: Write OR entries in OLcand into L;

3: if (f 0 	 dð1� dtr�Þme) then

4: Fill m� f 0 null entries and write L into disk;

5: else Remove node L and reinserts the remaining f 0

entries;

OVERFLOWTREATMENT(Leafnode L)
1: if (f 0 > 2M) then

2: Choose 2M out of f 0;

3: Create leaf node LL; Distribute 2M entries into L and

LL;

4: Load the remaining f 0 � 2M entries into OR;

5: else if (f 0 > dð1þ dtrþÞMe) then

6: Create leaf node LL and split f 0 entries into L and LL;

7: else

8: Choose M out of f 0 entries (composing smallest MBR)

and store those entries into L;

9: Load the remaining f 0 �M entries into OR;

4.2 Improving LRU Page Buffer Hit Ratio

Assuming both the update and page buffer, the most
efficient strategy for minimizing the update cost is 1) to
defer and group generated updates as much as possible,
and 2) to utilize the page buffer for performing these
updates. Node accesses in R-trees have a property of
hierarchical repeated accesses in nature. Consequently, the

access probability of higher nodes is very high, but that of
lower nodes is relatively low. From this observation we can
introduce the following lemma.

Lemma 1 (Node Reuse Probability). Under the assumption
that every fan out in a node has the same access probability,
Node Reuse Probability of the ith node Nl;i at level l stored
in a page buffer is defined as follows:

PreuseðNl;iÞ ¼
1

fh�l�1
index

; ð5Þ

where h is the height of the tree, and findex is the average fan
out of index node in the tree.

According to Lemma 1, the majority of the LRU page
buffer at specific time will be filled with nonleaf nodes.
However, every visited leaf node is also maintained within
the buffer based on LRU page-replacement policy. Those
leaf nodes (or the nodes which are close to the leaf-level) are
rarely reused according to the lemma presented above.
Therefore, by excluding these low reuse probability nodes
from the buffer, we can increase possibility that highly
reusable nodes are maintained.

Observation 1. Buffering leaf nodes with low reuse
probability have a harmful influence on buffer hit ratio.
It is sufficient to buffer only the nonleaf nodes for the
buffer performance. More specifically, the cost-effective
threshold of the buffer size will be decided by the
number of nonleaf nodes

Ph�1
i¼1 ni which is 1

fx
of the total

number of nodes, because

Xh�1

i¼1

ni 

1

fx

Xh�1

i¼0

ni <
N

ðfx � 1Þf0
: ð6Þ

More buffer memory allocation will not much help to
improve performance (buffer hit ratio).

We can devise a more efficient buffer replacement policy
by exploiting the level of nodes stored in the buffer.

Heuristic 1 (Level-Aware LRU replacement policy). The
Level-Aware LRU (LA-LRU for short) replacement policy is
aware of the levels of nodes stored in the buffer space, and it
chooses the least recently used entry among the lowest level
entries in the buffer as a victim.

Although the proposed LA-LRU policy has workload-
dependent performance, it is remarkably efficient for the
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repeated top-down update/search on the R-tree. Especially,
this can also maximize the buffer hit ratio for GC whenever
it needs to access nonleaf nodes. By using the proposed LA-
LRU policy, we achieve more than 99.9 percent of the buffer
hit ratio for accessing nonleaf nodes. In fact, Observation 1
can also be a good rationale for the concept of update buffer
(OR). Namely, for a given fixed buffer space, we first
allocate enough space to the LRU page buffer to keep
nonleaf nodes that have higher reuse probabilities. In order
to maximize the buffer efficiency, the rest of the buffer
space will be allocated to OR.

5 ANALYTICAL STUDY

In this section, we now analyze update and storage costs of
the three update strategies such as top-down update, memo-
based update, and semibulk-loading-based update. We only
discuss the case of data space DS ¼ ½0; 1Þd, where dimen-
sionality d ¼ 2. And our analysis is based on [24], [25].

Lemma 2. Let r1 and r2 be d-dimensional rectangles randomly

distributed in the data space DS ¼ ½0; 1Þd. Then, the

probability PIntrðr1; r2Þ that they intersect with each other is

PIntrðr1; r2Þ ¼
Qd

i¼1ðjr1ji þ jr2jiÞ, where jrji is the MBR

length of rectangle r along ith dimension. Given a set of ni
rectangles with average size s and a query window q, the

average number of intersected rectangles intsectðni; s; qÞ is

intsectðni; s; qÞ ¼ ni � PIntrðs; qÞ ¼ ni
Yd
j¼1

ðjsjj þ jqjjÞ: ð7Þ

Lemma 3. The expected number of node accesses for answering a
range query q is

NAðqÞ ¼
Xh�1

i¼0

intsectðni; si; qÞ ¼
Xh�1

i¼0

ni
Yd
j¼1

ðjsijjþjqjjÞ
" #

; ð8Þ

where si is the average size of ni rectangles at ith level. If we
assume uniformly distributed data set and a well-structured
R-tree with square-like MBRs, then the average extent of an
ith level node, si is calculated by 81�j�djsijj ¼ ð 1

ni
Þ1=d.

Hence, the expected number of node accesses for

answering a point query q0 s.t. 8jq0ji ¼ 0 is NAðq0Þ ¼Ph�1
i¼0 ½ni

Qd
j¼1 jsijj� ¼

Ph�1
i¼0 niksik, where ksik is the area of

rectangle si; that is, ksik ¼
Qd

j¼1 jsijj.

5.1 Update Cost Analysis

In this section, we first analyze the update cost (UC) without
considering the existence of a page buffer. Then, we revise
this cost by considering a smart page buffer that filters out the
accesses of nonleaf nodes. In the latter case, we only consider
I/O cost for accessing leaf nodes (denoted as UCbuffer).

5.1.1 Top-Down Update Cost

As we already discussed in Section 2, the top-down update
strategy performs an update as a delete-insert pair. Thus,
we need to perform multipath search and one-path update
for deletion, and one-path search and one-path update for
insertion, respectively. By summing up these costs, we have

UCTD ¼ 2h
z}|{insertion cost

þhþ
Xh�1

i¼0

niksik

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{deletion cost

; ð9Þ

where tree height h ¼ 1þ dlogfðN=fÞe and f is the average
fan out. And the update cost assuming a smart buffer can
easily be computed as UCbuffer

TD ¼ 3þ n0ks0k, where n0 is the
total number of leaf nodes, and s0 is their average extent.

5.1.2 Memo-Based Update Cost

The memo-based update utilizes the traditional top-down
insert and deferred deletion of obsolete entries. GC per-
forms every K updates. Thus, its update cost is

UCMemo ¼ 2h
z}|{insertion cost

þ hþ 1

K

zfflffl}|fflffl{GC cost

: ð10Þ

And, the update cost assuming a smart buffer is

UCbuffer
Memo ¼ 2þ 2

K
: ð11Þ

5.1.3 Semibulk-Loading-Based Update Cost

Assume that we have totally U updates to be handled
(U  K), and � is the OR hit ratio during the U updates
(� > 0). Thus, we have Uð1� �Þ OR entries to be flushed
into disk. Using FlushAll policy, we need to perform bUð1��ÞORSizec
flushes and the average update cost of FlushAll policy is

UCFlushAll ¼
2N�fx
ðfx�1Þf0

ð1� �Þ
ORSize

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{flush cost

þhþ 1þ
Ph�2

i¼0 f
�i
x

K

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{GC cost

: ð12Þ

This is upperbound because we assume that there are
enough number of OR entries, so that every node in the tree
will surely be visited (cf. (3) in Section 3.4). And the update
cost assuming a smart buffer can easily be computed as

UCbuffer
FlushAll ¼

2N=f0ð1� �Þ
ORSize

þ 2

K
: ð13Þ

From now on, we will discuss the update cost of the
FlushCell policy which chooses only the maximum histo-
gram cell to be flushed. And we assume that the chosen cell
has �ðgÞ�ORSize

g2 entries, while the whole cells have ORSize
g2

entries on the average. We call �ðgÞ the skewness function, and
definitely �ðgÞ > 1. Without knowing the details of data
distribution, it is not easy to estimate �ðgÞ in a given data set.

UCFlushCell ¼
2 �NA

�
1
g � 1

g

�
ð1� �Þ

�ðgÞ �ORSize=g2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{flush cost

þhþ 1þ
Ph�2

i¼0 f
�i
x

K

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{GC cost

:

ð14Þ

And the update cost assuming a smart buffer is

UCbuffer
FlushCell ¼

2 � intsect
�
N
f0
; s0;

1
g� 1

g

�
ð1� �Þ

�ðgÞ �ORSize=g2
þ 2

K

¼
2 gþ

ffiffiffiffi
N
f0

q� �2

ð1� �Þ
�ðgÞ �ORSize þ 2

K
;

ð15Þ

where s0 ¼ 1
n0

because js0j1 ¼ js0j2 ¼
ffiffiffiffiffiffiffiffiffiffi
1=n0

p
.
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The above analyzed update cost of the proposed
approach highly depends on the average OR hit ratio (�)
that can certainly be derived from the update probability of

each object. We first considered that every object has the
same probability of being updated. The OR hit ratio

(�uniform) under this assumption is

�uniform ¼
1

ORSize

XORSize
i¼0

i

N
¼ ORSizeþ 1

2N
:

For more realistic scenarios, we consider a different

situation where each object has different update probability
such as Zipf distribution [26]. In Zipf distribution, prob-

ability density function (pdf) is defined as

fðk;�;NÞ ¼ 1=k�PN
n¼1 1=n�

¼ 1

k�HN;�
;

where N is the number of elements, k is their rank, � is the

exponent characterizing the distribution, and HN;� is the

Nth generalized harmonic number
PN

i¼1
1
i� . And cumulative

distribution function (cdf) of fð�Þ is F ðk;�;NÞ ¼ Hk;�

k�HN;�
.

Thus, �Zipf can easily be estimated as �Zipf ¼ F ðORSize;�;
NÞ ¼ HORSize;�

ORSize�HN;�
.

Let us find conditions for satisfying the property

UCbuffer
Memo > UCbuffer

FlushAll > UCbuffer
FlushCell. First, in order to satisfy

the subproperty UCbuffer
Memo > UCbuffer

FlushAll, the inequality 2 >
2n0ð1��Þ
ORSize must be satisfied (cf. (11) and (13)). Considering the

upperbound condition of � ¼ 0, the constraint ORSize > n0

must be satisfied. Second, in order to satisfy the subprop-

erty UCbuffer
FlushAll > UCbuffer

FlushCell, the inequality n0 >
ðgþ ffiffiffiffin0
p Þ2
�ðgÞ

must be satisfied (cf. (13) and (15)). Thus, the constraint

�ðgÞ > ð gffiffiffiffi
n0
p þ 1Þ2 must be satisfied, where g > 1. In sum-

mary, in order to satisfy the property UCbuffer
Memo >

UCbuffer
FlushAll > UCbuffer

FlushCell, the following constraints must be

satisfied: ORSize > n0 and �ðgÞ > ð gffiffiffiffi
n0
p þ 1Þ2, where g > 1.

Generally, these constraints hold.

5.2 Storage Cost Analysis

In this section, we analyze the extra storage costs of the
memo-based update and the proposed approach over
R-tree incurred by maintaining obsolete entries.

5.2.1 Memo-Based Storage Cost

GC visits the next leaf node everyK updates and the traversal

of the entire leaf nodes, therefore, needs K � n0 updates. This

is the maximum number of obsolete entries in RUM-tree; i.e.,

maxðNobsoleteÞ ¼ K � n0. Statistically, about half of leaf nodes

will be further cleaned by clean-upon-touch process [4].

Therefore, avgðNobsoleteÞ ¼ K�n0

2 .

5.2.2 Semibulk-Loading-Based Storage Cost

avgðNobsoleteÞ is quite similar to that of RUM-tree; however, it

will be somewhat increased by ORSize because of the

reduced clean-upon-touch processes by buffered updates in

OR; that is, avgðNobsoleteÞ ¼ ðK�n0þORSizeÞ
2 .

In case of dtr� > 0, the deferred underflow threshold

~m ¼ dð1� dtr�Þme (simply, ~m ¼ ð1� dtr�Þm). Therefore,

the maximum number of null entries in a leaf node and

in tree are dtr� �m and maxðNnullÞ ¼ n0 � dtr� �m, respec-

tively. Under the assumption that the number of non-

null entries in a leaf node is uniformly distributed in

½ ~m;M�, the average number of null entries, avgðNnullÞ ¼P
~m�i�m

n0

M� ~mþ1 ðm� iÞ ¼
n0

M� ~mþ1 �
dtr��mð1þdtr��mÞ

2 .

5.3 Optimizing GCInterval K

As analyzed in Section 5.1, the update cost of the proposed

approach will simply be minimized with larger K. How-

ever, an overlarge K incurs too many obsolete entries in

Rsb-tree so that the query cost will surely be increased.

Furthermore, this also increases the cost for locating an

optimal leaf node for inserting a new entry which is highly

dependent on the tree’s height h, then it will compensate

the reduction of the update cost. Consequently, at some

point of K, the update cost has no more performance gain

(see Fig. 6a).
In this section, we intend to optimize K in order to

minimize the update cost with considering the query cost

simultaneously; that is, maximizing K (denoted as K�) as

long as it minimizes the update cost. In other words, our

objective is to maximize Nobsolete maintaining the height. In

short, we have an optimization problem:

Update Cost Optimization Problem:

Maximize Nobsolete subject to hðNÞ ¼ hðN þNobsoleteÞ;

where hðnÞ returns the tree’s height with n leaf entries; i.e.,

hðnÞ ¼ 1þ dlogfx
n
f0
e. Let upperboundðNobsoleteÞ be the max-

imized Nobsolete that satisfies the above condition. Naturally,

it would be

upperboundðNobsoleteÞ ¼ f0 � fhðNÞ�1
x �N; ð16Þ
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Fig. 6. Effect of GCInterval K. (a) Update cost. (b) Query cost.

(c) Freshness. (d) Running time comparison (for chosen K ¼ 10).



where f0 � fhðNÞ�1
x is the maximum number of leaf entries

with the tree’s height hðNÞ. Because avgðNobsoleteÞ ¼
ðK�n0þORSizeÞ

2 , similarly K� would be

K� ¼ 2 � upperboundðNobsoleteÞ �ORSize
n0

¼ 2 � upperboundðNobsoleteÞ �ORSize
ðN þ upperboundðNobsoleteÞÞ=f0

¼
2 f0 � fhðNÞ�1

x �N
� �

�ORSize
f
hðNÞ�1
x

:

Solving the above equation with the given variables in
Section 6 such as N ¼ 106; ORSize ¼ 1 % �N; fx ¼ 136; f0 ¼
97 (67 percent storage utilization, 4 kB page) and hðNÞ ¼ 3,
we have upperboundðNobsoleteÞ 
 79:4 % �N and K� 
 85.
This result is in correspondence with the experiment results
in Section 6 (see Fig. 6a).

6 PERFORMANCE EVALUATION

6.1 Experiment Setup

In this section, we evaluate the performances of R�-tree,
RUM-tree, Rsb-tree with different ORSize (0 percent and
1 percent of the database) and different buffer management
policies such as LRU and LA-LRU with 1 percent of R-tree
nodes. By default, we use LRU as replacement policy for all
techniques. For fair comparison, the number of I/Os for
updates and queries—as the primary performance metric—
is carefully monitored in every experiment. In particular,
our proposed approach has extra logging cost for OR under
a 64 kB log buffer8 and the FlushCell policy will be used by
default. In order to verify the query processing power, we
run 100,000 range queries whose side lengths are randomly
chosen from ½0; 0:03�. In all experiments, we set the page
size as 4 kB, and histogram granularity (g) is fixed as 32. All
experiments are conducted on Intel Pentium 4, 2 GHz and
2 GB RAM running on Linux system. Experimental
parameters and their default values, given in bold, are
summarized in Table 2.

For generating movement data set, we cannot generate a
single perfect data set for simulating all kinds of character-
istics of a real-world phenomena. We use two different data
sets such as UniformNetwork and ZipfRandom in order to
represent different characteristics such as data distribution,
update frequency, and movement patterns. In UniformNet-
work data set generated by the Network-based Generator of

Moving Objects by Brinkhoff [27] with the road network of
Oldenburge, there are 1 M moving objects and they move
along the road network. In the data set, there is no specific
update pattern, and every object has equally the same
update probability. UniformNetwork is for simulating
realistic movement patterns and data distribution, and its
name stands for its uniform update pattern and network-
based movement patterns. In ZipfRandom data set gener-
ated by our GSTD-like generator [28], there are 1 M moving
objects and they random-walk in ½0; 1�2. In the data set, the
update probability of each object follows Zipf-like distribu-
tion [26]; that is, there exist a few fast moving objects and
many slow moving objects together. ZipfRandom is for
simulating realistic update patterns, and its name stands for
its Zipf update pattern and random-walk behavior in objects’
movement. Both data sets are normalized into ½0; 1�2 data
space, and have 3 M updates in total.

6.2 Experiment with Network-Based
Data Set (UniformNetwork)

6.2.1 Effect of Garbage Cleaner’s Interval K

One of the most influential parameters for the proposed
approach is GCInterval K (K for short) that controls the
freshness of the tree. Therefore, choosing an appropriate K
is essential for performance optimization. The results
varying K are given in Fig. 6.

Fig. 6a shows the update cost with different K. As
expected, the results show that the update cost will be
greatly decreased by increasing K, and it will remain the
same in case of K 	 100. This is because the GC cost will
surely be decreased by K, but the increased flush cost by
the reduced freshness (by increasing K) will cancel this
performance gain. Except for K ¼ 1, the proposed approach
far outperforms the existing techniques, even for the case of
ORSize ¼ 0% where there is no additional memory
requirement. As discussed in Section 3.4, this is mainly
due to the fact that the GC of Rsb-tree exploits dfsStack
instead of complex pointers such parent-link and leaf-level
links which have high maintenance cost. Moreover, apply-
ing LA-LRU further decreases the update cost without
additional overhead especially for the case of ORSize ¼ 0%
where more leaf nodes are visited. One of the most
interesting results is that the update costs of existing
techniques are always higher than 1. The main reason for
this behavior of existing techniques is that for performing
an update, they need at least one leaf node access (two disk
I/Os: read and write). Owing to the grouping behavior of
incoming updates, however, the proposed approach can
achieve excellent update performance; i.e., the I/O cost per
update can be much lower than 1.0.

From Fig. 6b, we observe that the search costs of all
techniques increase asK increases. Generally, the search cost
of Rsb-tree (ORSize ¼ 0%) is almost similar to that of RUM-
tree because of their similar behaviors. Due to the update
buffering behavior of Rsb-tree (ORSize ¼ 1%), it performs
fewer clean-upon-touch processes than RUM-tree. This
effect incurs the decreased freshness, so that its search cost
will be slightly increased. However, for a smaller K
(K � 10), the query cost of Rsb-tree (ORSize ¼ 1%) is slightly
smaller than that of RUM-tree and Rsb-tree (ORSize ¼ 0%).
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This is mainly due to the fact that almost obsolete entries are
eliminated from the tree by performing frequent GCs, so that
the tree will be shrunk by ORSize.

Fig. 6c shows the results of freshness varying K. As
expected, the freshness naturally decreases as K increases.
Overall, RUM-tree has the highest freshness, followed by Rsb-
tree (ORSize ¼ 0%) and then Rsb-tree (ORSize ¼ 1%). From
the results of Figs. 6a, 6b, and 6c we can quantitatively decide
an appropriate Kð¼ 10Þ. In case of the chosen K ¼ 10, the
freshness of RUM-tree, Rsb-tree (ORSize ¼ 0%), and Rsb-tree
(ORSize ¼ 1%) are 98.41 percent, 98.40 percent, and
98.11 percent, respectively.

Fig. 6d illustrates the average time consumption of each
technique for performing an operation such as update and
query. For average time consumption of update operation,
the two proposed approaches are 40.0-49.2 percent faster
than other techniques. For average time consumption of
query operation, the proposed approaches offer 4.23 percent
better performance than RUM-tree. However, they perform
slightly worse (10.3 percent) than R�-tree.

6.2.2 Effect of Page Buffering

In this experiment, we investigate both the update and
query cost varying the size of LRU page buffer
(LRUBufferSize) from 0 percent to 10 percent. For all
techniques, update cost (Fig. 7a) decreases with increased
buffer size, as can be expected, and the proposed approach
is significantly better than the rest. From the results, we can
conclude that 1 percent LRU page buffer is sufficient to
optimize the update cost, thanks to the skewed behavior of
search and update in R-trees. Unlike the update cost, the
query cost (Fig. 7b) of all techniques are continuously
decreasing in proportion to LRUBufferSize. The reason is
that in comparison to updates, queries retrieve a relatively
large number of nodes especially leaf nodes. Due to the
same reason, the performance improvement of LA-LRU for
search cost is much greater than for update cost. In terms
of both update and query cost, the proposed two
approaches such as Rsb-tree and Rsb-tree/LA-LRU perform
better than RUM-tree.

6.2.3 Effect of ORSize

We investigate the effect of the capacity of OR from 0
percent to 10 percent of N . The capacity of OR (ORSize) is
mainly for improving the update performance, and it has
three important aspects. First, the overall search cost will be
somewhat increased as ORSize increases. This is because
Rsb-tree performs fewer clean-upon-touch processes than

RUM-tree, and it is owing to its update buffering behavior.
A large ORSize incurs the detrimental effect on the total
number of obsolete entries and freshness of the tree
consecutively. Second, as ORSize increases, the OR hit
ratio (�) will be accordingly increased. As a result,
removing the obsolete entries can be performed in memory
instead of disk. And third, the disk-resident part of Rsb-tree
gets smaller with increasing ORSize. This interesting effect
is owing to the fact that fresh entries migrate to the in-
memory buffer (OR). The average shrinkage of R-tree index
is ð1� �ðgÞ

2g2 ÞORSize for FlushCell policy.
As we can observe in Fig. 8, on the whole, the proposed

approach outperforms the existing techniques in terms of
update and query cost. Especially for the update cost of
ORSize 	 5%, the proposed approach at least seven times
outperforms existing approaches. However, over 5 percent
of ORSize has little effect on the update performance, since
the FlushCell policy only chooses a single cell with the
maximum histogram.

6.2.4 Effect of Different Speed Profiles

In this experiment, we vary the maximum distance between
consecutive updates by choosing different speed profiles
such as low-speed, mid-speed, and high-speed (defined in
the Network-based generator [27]). As can be seen in Fig. 9,
the update cost of R�-tree increases as movement speed
increases. When objects move slowly, the update cost of
R�-tree decreases because there is a tendency to perform an
update at the same leaf node. However, the update
performances of RUM-tree and Rsb-tree nearly remain the
same under different speed profiles because of their way of
performing update: an update is decomposed into an insert
and deferred group deletion. For query performance, all
techniques gradually deteriorate as movement speed
increases. This is due to the increased node extent and
resultant increased node overlapping.
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Fig. 7. Effect of page buffering. (a) Update cost. (b) Query cost.
Fig. 8. Effect of the capacity of OR (ORSize). (a) Update cost. (b) Query
cost.

Fig. 9. Effect of different speed profiles. (a) Update cost. (b) Query cost.



6.2.5 Effect of the Size of Data Set (Scalability)

In this experiment, we vary the size of data set (N) from
100,000 to 10 M in order to see how scalable the proposed
approaches are compared to existing techniques. For update
cost (Fig. 10a), the proposed approach outperforms all
existing techniques under all conditions. Note that for a
large N (N 	 2 M), the update costs of all techniques remain
nearly the same, since LRUBufferSize also increases
accordingly. Moreover, the update cost is closely related to
the tree height which is a log-scale relationship with N . In
spite of the increase of LRUBufferSize, the query cost
monotonically increases in proportion to the size of data set
(N), not to the tree height (see Fig. 10b). This is because the
average extent of the query window is the same for all cases.

6.2.6 Effect of dtr Coefficient

We have discussed the performance benefit of the proposed
approach, however this benefit can further be improved by
fine-tuning the dtr coefficient. In this experiment, we vary
two dtr coefficients (dtr� and dtrþ) from 0.0 to 0.5 to
investigate the effect of dtr in terms of I/O cost and CPU
time. From the results of Figs. 11a and 11b, we can easily
find the best pair (dtr� ¼ 0:5; dtrþ ¼ 0:0) for optimizing the
update cost. This means that a practical solution for
improving the update performance is to 1) defer underflow
treatment (node removal and reinsertion of the remaining
entries) as much as possible, and 2) not to defer overflow
treatment. If overflow treatment is deferred, the number of
OR entries actually flushed into disk will be decreased.
With the optimal pair of (0:5; 0:0), I/O cost and CPU time
for performing an update are minimized by 4.5 percent and
18 percent, respectively.

From the results of Figs. 11c and 11d, we can observe the
effect of dtr on search cost. The behavior of search cost is
somewhat complicated. In general, a larger dtr� that helps
to minimize the update cost increases the query cost by
producing a large number of underflowed nodes. On the
other hand, a larger dtrþ will help to minimize the search
cost by maximizing storage utilization which is owing to the
avoidance of frequent node splits. As we can see in Fig. 11c,
the optimal pair for minimizing the query I/O cost is
(0:1; 0:5) and it reduces the cost by 5.3 percent. Moreover, by
the pair (0:5; 0:1), the query CPU time (Fig. 11d) can also be
minimized by 14.5 percent.

6.2.7 Effect of Buffer Allocation

In this experiment, we investigate the update and query
performance of all techniques under the same memory

requirement. Given the total size of memory buffer (BS),
buffer allocation is denoted as BufferAllocðBS; rÞ, where r
is the fractional size of BS for LRU page buffer
(r ¼ 0-100%). The rest of memory space (BS � ð1� rÞ) is
allocated for the proposed in-memory buffer (OR, H, and
DL). DL is occupied by DL entries as much as obsolete
entries in the tree at most, and the rest is available for OR
and H. Naturally, the existing techniques can only have
LRU page buffer. In this experiment, we adopt three
representative BS of 512 kB, 1,024 kB, and 2,048 kB, and
we assume that the byte sizes of an OR entry and a DL
entry are 28 and 14 bytes, respectively.9

As we can observe in Fig. 12a, the proposed approach is
superior to the others in terms of update cost, except two
extreme cases (r � 1%). We believe that one of the
practically optimal threshold of r (denoted as r�) for LRU
page buffer is strongly related to the number of nonleaf
nodes (6) and this must be closely related to the size of the
hypothetical smart page buffer discussed in Section 5. The
size of the page buffer which accommodates index nodes
only is BS � r� ¼ PageSize �

Ph�1
i¼1 ni. Thus, we have

r� ¼ PageSize
BS

�
Xh�1

i¼1

ni 

PageSize

BS
� N

ðfx � 1Þf0
:

It should be satisfied that r� 2 ð0; 1Þ and BS > PageSize �Ph�1
i¼1 ni.
As we already discussed before, OR is mainly for

improving update cost. Thus, the query cost (Fig. 12b)
increases for a smaller r (r � 10%), i.e., a larger OR.
Generally, in case of r 	 25%, the query cost of the
proposed approach is smaller than or equal to that of
RUM-tree.

6.3 Experiment with Zipf Data Set (ZipfRandom)

In this section, we conduct experiments on ZipfRandom data
set where users’ update patterns follow a Zipf-like distribu-
tion. Assuming a Zipf-like distribution for users’ update
patterns, the update frequency for the ith hot object is
proportional to 1=i�, where � is called the Zipf rank exponent.
By default, the exponent � is set to 1. The effect of the
experimental parameters discussed so far on ZipfRandom
data set is similar to that on UniformNetwork data set. In this
section, we, therefore, conduct two newly designed experi-
ments that is more suitable for ZipfRandom data set.

6.3.1 Effect of Zipf Rank Exponent �

In this experiment, we vary the Zipf rank exponent � from
0.25 to 2.0. As we can observe in Fig. 13a, the update cost of
all techniques gradually decreases when � increases, and
the proposed approaches are superior to the existing
techniques. If the update pattern becomes skewed (i.e., a
larger �), the majority of updates will be generated by a
small number of objects. These updates can be performed
by repeatedly visiting the minority of nodes, so that the
page buffer hit ratio will be increased accordingly. For the
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Fig. 10. Effect of the size of data set. (a) Update cost. (b) Query cost.

9. We assume that an OR entry is consisted of 4-byte object-id oid, two
4-byte floats for location p, two 1-byte for cid, 8-byte long for tstamp, 2-byte
short integer for Nhit, and 4-byte integer for histogram entry for Histogram
(H). We also assume that a DL entry consists of 4-byte object-id oid, 8-byte
long for tupd, 2-byte short integer for Nold.



same reason, moreover, R�-tree outperforms RUM-tree for
highly skewed data sets (� > 1:0); generally, R�-tree has
fewer nodes than RUM-tree and Rsb-tree because of their
space overhead (the time stamp tagged by every leaf entry),
so that given a fixed page buffer, the buffer hit ratio of R�-
tree is surely bigger than that of RUM-tree and Rsb-tree. The
superiority of the proposed approach over the existing
techniques can be explained by the concept of update buffer
(OR). By exploiting OR, a large number of updates can be
filtered (updated within OR) from the disk-based R-tree
index. This will make a huge performance benefit.

In terms of query cost (Fig. 13b), R�-tree always outper-
forms the rest, and the proposed approaches perform better
than RUM-tree. Overall, the query costs of all techniques
remain still without a direct influence of �, since this
parameter has an important influence mainly on the update
cost, not the query cost.

6.3.2 Performance Comparison of Different Flush

Policies Varying FlushDeltaFactor �

Fig. 14 shows the results of different flush policies varying
� (called FlushDeltaFactor) discussed in Section 3.3. Overall,

as � increases, the update costs of the FlushLRUCell and
FlushLFUCell increase (see Fig. 14a). In case of a smaller �
(� < 0:5), however, FlushLFUCell policy outperforms
FlushCell policy which is used as default. Naturally, when
� increases, OR hit ratios of FlushLRUCell policy and
FlushLFUCell policy increase, since more hot objects will be
kept in memory (see Fig. 14b). However, the badly chosen
hot objects can incur the deterioration of the update
performance, even though OR hit ratio is increased. As
we can observe in Fig. 14, this undesirable phenomenon can
occur in FlushLRUCell policy; this means that identifying
the hot objects on the basis of Nhit in FlushLFUCell is better
than FlushLRUCell based on tstamp. Similar to the previous
experiment, the parameter � has no direct influence on the
query costs of all flush polices.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of indexing

moving objects and managing their frequent updates in

update-intensive environments. We proposed an R-tree-

based solution, called Rsb-tree, that exploits a small in-

memory buffer to buffer, defer, and group incoming

updates. With reasonable memory overhead of 1 percent

of database size (or even with the same memory require-

ment), our approach is at least two times faster and incurs

I/O cost much lower by a factor of three to five than the

existing techniques. With the concept of dtr, we can further

improve the CPU and I/O cost of the proposed approach.

We believe that the proposed approach is orthogonal and it

can be applied to other index structures, e.g., B-trees,

Quadtrees, and k-d-B-trees.
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Fig. 11. Effect of dtr coefficient. (a) Update I/O cost. (b) Update CPU time. (c) Query I/O cost. (d) Query CPU time.

Fig. 12. Effect of Buffer Allocation BufferAllocðBS; rÞ. (a) Update cost.
(b) Query cost.

Fig. 13. Effect of Zipf rank exponent �. (a) Update cost. (b) Query cost. Fig. 14. Performance comparison of different flush policies varying �.



Our future work may include

. Extensions of the proposed flush algorithm in order
to improve update and query performance together.

. Efficient data declustering technique for supporting
decentralized environments such as peer-to-peer
and cluster computing environments.
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