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Abstract

We introduce a notion of Gorenstein algebras of codimension c and
demonstrate that Serre duality theory plays an essential role in the theory
of derived equivalences for Gorenstein algebras.

Let R be a commutative noetherian ring and A a Noether R-algebra, i.e., A is
a ring endowed with a ring homomorphism R → A whose image is contained in
the center of A and A is finitely generated as an R-module. Let c ≥ 0 be an
integer. Assume that Exti

R(A,R) = 0 for i 6= c and set

Ω = Extc
R(A,R).

We call A a Gorenstein R-algebra of codimension c if Rp is Gorenstein for
all p ∈ SuppR(A) and Ω is a projective generator for right A-modules. If A
is a Gorenstein R-algebra of codimension c, then we will show that Ω lies in
the center of the Picard group of A (Proposition 3.7), that Ω is a dualizing
complex for A if sup{dim Rp | p ∈ SuppR(A)} < ∞ (Proposition 2.6), and
that AnnR(A) contains an R-regular sequence x1, · · · , xc and A is a Gorenstein
S-algebra of codimension 0, where S is the residue ring of R over the ideal
generated by x1, · · · , xc (Proposition 2.9). Also, we will see that our Gorenstein
algebras are Gorenstein in the sense of [12] (Proposition 2.3). In particular,
commutative Gorenstein algebras are Gorenstein rings. We refer to [12] for
properties enjoyed by Gorenstein algebras and for the relationship of the notion
of Gorenstein algebras to the theory of commutative Gorenstein rings.

Our main aim of this note is to demonstrate that Serre duality theory plays
an essential role in the theory of derived equivalences for Gorenstein algebras.
In Section 3, we will extend Serre duality theory (cf. [8]) to Noether algebras.
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We will see that for an arbitrary Noether R-algebra A there exists a bifunctorial
isomorphism in Mod-R

HomD(Mod-A)(Y •, X• ⊗L
A V •) ∼= RHom•

A(X•, Y •)∗

for X• ∈ Db(mod-A)fpd and Y • ∈ D(Mod-A), where V • = Hom•
R(A, I•) with

I• a minimal injective resolution of R and (−)∗ = HomD(Mod-R)(−, R) (Proposi-
tion 3.3). In particular, a Gorenstein R-algebra A of codimension c with Ω ∼= A
as A-bimodules is (d − c)-Calabi-Yau− in the sense of [15] (cf. also [11]) pro-
vided d = dim Rp for all maximal p ∈ SuppR(A) (Corollary 3.4). On the other
hand, we know from [1, Theorem 4.7] that if V • is a dualizing complex for A
and if inj dim AA = inj dim AA < ∞ then −⊗L

A V • induces a self-equivalence
of Db(mod-A).

Assume that A is a Gorenstein R-algebra of codimension c. Let P • ∈
Kb(PA) be a tilting complex and B = EndK(Mod-A)(P •). In Section 4, we will
ask when B is also a Gorenstein R-algebra of codimension c. Set ν = −⊗L

A Ω.
Then by Serre duality theory we have an isomorphism of B-bimodules

HomD(Mod-A)(P •, νP •[i]) ∼= Exti+c
R (B,R)

for all i ∈ Z. On the other hand, denoting by S the full subcategory of
D−(Mod-A) consisting of complexes X• with HomD(Mod-A)(P •, X•[i]) = 0 for
i 6= 0, we have an equivalence HomD(Mod-A)(P •,−) : S → Mod-B (see [20,
Section 4]). Thus B is a Gorenstein R-algebra of codimension c if and only
if add(νP •) = add(P •) (Corollary 4.4). Unfortunately, this is not the case in
general (Example 4.6). However, B is a Gorenstein R-algebra of codimension c
with Extc

R(B,R) ∼= B as B-bimodules if and only if A is a Gorenstein R-algebra
of codimension c with Ω ∼= A as A-bimodules (Corollary 4.5).

We refer to [7], [13] and [22] for basic results in the theory of derived cate-
gories and to [20], [21] for definitions and basic properties of tilting complexes
and derived equivalences. Also, we refer to [10] for standard homological algebra
in module categories and to [18] for standard commutative ring theory.

1 Preliminaries

Notation

For a ring A we denote by Mod-A the category of right A-modules and by
mod-A the full subcategory of Mod-A consisting of finitely presented modules.
We denote by Proj-A (resp., Inj-A) the full subcategory of Mod-A consisting of
projective (resp., injective) modules and by PA the full subcategory of Proj-A
consisting of finitely generated projective modules. We denote by Aop the op-
posite ring of A and consider left A-modules as right Aop-modules. Sometimes,
we use the notation XA (resp., AX) to stress that the module X considered is
a right (resp., left) A-module. In particular, we denote by proj dim XA (resp.,
proj dim AX) the projective dimension of a right (resp., left) A-module X. Sim-
ilar notation is used to denote the injective dimension.
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In this note, complexes are cochain complexes of modules and, as usual, mod-
ules are considered as complexes concentrated in degree zero. For any n ∈ Z
we denote by Bn(−), Zn(−), B′n(−), Z′n(−) and Hn(−) the n-th boundary, the
n-th cycle, the n-th coboundary, the n-th cocycle and the n-th homology of a
complex, respectively. For an additive category B, we denote by K(B) (resp.,
K+(B), K−(B), Kb(B)) the homotopy category of complexes (resp., bounded
below complexes, bounded above complexes, bounded complexes) over B. For
an abelian category A, we denote by D(A) (resp., D−(A), D+(A), Db(A)) the
derived category of complexes (resp., complexes with bounded above homol-
ogy, complexes with bounded below homology, complexes with bounded homol-
ogy) over A. We always consider K∗(B) (resp., D∗(A)) as a full triangulated
subcategory of K(B) (resp., D(A)) closed under isomorphism classes, where
∗ = +, − or b. In particular, for a noetherian ring A, we identify D∗(mod-A)
with D∗

mod-A(Mod-A), the full triangulated subcategory of D∗(Mod-A) consist-
ing of complexes X• with Hn(X•) ∈ mod-A for all n ∈ Z, where ∗ = − or b.
We denote by Hom•(−,−) (resp., − ⊗• −) the single complex associated with
the double hom (resp., tensor) complex and by RHom•(−,−) (resp., − ⊗L −)
the right (resp., left) derived functor of Hom•(−,−) (resp., −⊗• −).

Finally, for an object X in an additive category B, we denote by add(X) the
full subcategory of B whose objects are direct summands of finite direct sums
of copies of X.

Gorenstein dimension

Throughout this note, R is a commutative noetherian ring. We denote by dim R
the Krull dimension of R, by Spec(R) the set of prime ideals of R and by (−)p

the localization at p ∈ Spec(R). For an R-module M , we set SuppR(M) = {p ∈
Spec(R) | Mp 6= 0} and AnnR(M) = {x ∈ R | xM = 0} and we denote by
ER(M) an injective envelope of M in Mod-R. We set

D = RHom•
R(−, R) : D(Mod-R) → D(Mod-R).

Then for any X•, Y • ∈ D(Mod-R) we have a bifunctorial isomorphism

θX•,Y • : HomD(Mod-R)(X•, DY •) ∼→ HomD(Mod-R)(Y •, DX•).

For any X• ∈ D(Mod-R) we set

ξX• = θ−1
X•,DX•(idDX•) : X• → D2X•.

Also, for any complex X• and k ∈ Z, we define the following truncated com-
plexes

σ′≥k(X•) : · · · → 0 → Z′k(X•) → Xk+1 → Xk+2 → · · · ,

σ′<k(X•) : · · · → Xk−2 → Xk−1 → Bk(X•) → 0 → · · · ,

σ≤k(X•) : · · · → Xk−2 → Xk−1 → Zk(X•) → 0 → · · · ,

σ>k(X•) : · · · → 0 → B′k(X•) → Xk+1 → Xk+2 → · · · .
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In this subsection, we recall several basic results on Gorenstein dimension
for finitely generated R-modules and bounded complexes of finitely generated
R-modules (see e.g. [9] for details).

Definition 1.1 ([3]). A module M ∈ mod-R is said to have Gorenstein dimen-
sion zero if the canonical homomorphism

M → HomR(HomR(M, R), R), x 7→ (f 7→ f(x))

is an isomorphism and Exti
R(M, R) = Exti

R(HomR(M, R), R) = 0 for i > 0.
We denote by GR the full additive subcategory of mod-R consisting of modules
which have Gorenstein dimension zero. Note that PR ⊂ GR. Next, a module
M ∈ mod-R is said to have finite Gorenstein dimension if M has a left resolution
P • → M with P • ∈ Kb(GR).

Definition 1.2. A complex X• ∈ Db(mod-R) is said to have finite Gorenstein
dimension if X• ∼= Y • in D(Mod-R) for some Y • ∈ Kb(GR).

Remark 1.3. For any M ∈ mod-R the following are equivalent.

(1) M has finite Gorenstein dimension as a module.

(2) M has finite Gorenstein dimension as a complex.

Proof. The implication (1) ⇒ (2) is obvious. Conversely, let Y • ∼= M in
D(Mod-R) with Y • ∈ Kb(GR). Since Hi(Y •) = 0 for i > 0, it follows by [3,
Lemma 3.10] that Z0(Y •) ∈ GR. Thus we have a left resolution σ≤0(Y •) → M
with σ≤0(Y •) ∈ Kb(GR).

Lemma 1.4 ([16, Proposition 2.10]). For any X• ∈ Db(mod-R) the follow-
ing are equivalent.

(1) X• has finite Gorenstein dimension.

(2) Hi(DX•) = 0 for i À 0 and ξX• is an isomorphism.

Lemma 1.5 ([17]). Let 0 → L → M → N → 0 be an exact sequence in mod-R.
Then the following hold.

(1) If L,M have finite Gorenstein dimension, so does N .

(2) If M, N have finite Gorenstein dimension, so does L.

(3) If N, L have finite Gorenstein dimension, so does M .

Proof. For the benefit of the reader, we include a proof. Since we have a dis-
tinguished triangle DN → DM → DL → in D(Mod-R), and since we have a
homomorphism of distinguished triangles in D(Mod-R)

L −−−−→ M −−−−→ N −−−−→
ξL

y ξM

y ξN

y
D2L −−−−→ D2M −−−−→ D2N −−−−→ ,

the assertions follow by Lemma 1.4 together with Remark 1.3.
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We refer to [6] for the definition and basic properties of commutative Goren-
stein rings.

Remark 1.6. Let M ∈ mod-R with Rp Gorenstein for all p ∈ SuppR(M). Then
M has Gorenstein dimension zero if Exti

R(M, R) = 0 for i > 0. In particular,
M = 0 if Exti

R(M, R) = 0 for all i ≥ 0.

Proof. It suffices to see that Exti
R(HomR(M, R), R) = 0 for i > 0 and

M
∼→ HomR(HomR(M, R), R), x 7→ (f 7→ f(x)).

So, localizing at each p ∈ SuppR(M) ⊂ SuppR(A), we may assume that R is a
Gorenstein local ring. Take a projective resolution P • → M in mod-R and set
Q• = Hom•

R(P •, R). Then for any i > 0 we have

Exti
R(Z′1(Q•), R) ∼= Exti+l−1

R (Z′l(Q•), R) = 0

for l > dim R. The assertion follows by [3, Proposition 3.8].

Remark 1.7. Assume that M ∈ mod-R has finite Gorenstein dimension. Assume
that there exists an integer c ≥ 0 such that Exti

R(M, R) = 0 for i 6= c and set
N = Extc

R(M, R). Then Exti
R(N, R) = 0 for i 6= c and M

∼→ Extc
R(N, R).

Proof. Since DM ∼= N [−c] in D(Mod-R), and since M
∼→ D2M in D(Mod-R),

it follows that Exti
R(N, R) = 0 for i 6= c and M

∼→ Extc
R(N, R).

Dualizing complexes

Throughout the rest of this note, A is a Noether R-algebra, i.e., A is a ring en-
dowed with a ring homomorphism R → A whose image is contained in the center
of A and A is finitely generated as an R-module. Note that AnnR(A) coincides
with the kernel of the structure ring homomorphism R → A and that SuppR(A)
coincides with the set of prime ideals of R containing AnnR(A). We fix a min-
imal injective resolution R → I• in Mod-R and set V • = Hom•

R(A, I•) ∈
K+(Mod-Ae), where Ae = Aop ⊗R A. Note that V • ∈ K+(Inj-A) and V • ∈
K+(Inj-Aop). We refer to [13] for the definition and basic properties of dualiz-
ing complexes.

In the next lemma, A can be replaced by Aop.

Lemma 1.8. As an R-module A has finite Gorenstein dimension if and only if
the following conditions are satisfied:

(1) Hi(V •) = 0 for i À 0;

(2) HomK(Mod-A)(V •, V •[i]) = 0 for i 6= 0; and

(3) We have an R-algebra isomorphism A
∼→ EndK(Mod-A)(V •) given by left

multiplication.
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Proof. Note first that DA ∼= V • in D(Mod-R). We have a cochain map

δ : A → Hom•
A(V •, V •)

given by the left multiplication map

A →
∏

i≥0

EndA(V i), a 7→ (vi 7→ avi)i≥0

and an isomorphism of complexes

Hom•
A(V •, V •) ∼= Hom•

R(Hom•
R(A, I•), I•).

As the composite of them we define a cochain map

ηA : A → Hom•
R(Hom•

R(A, I•), I•).

It then follows by [1, Lemma 2.3] that ξA is an isomorphism if and only if
ηA is a quasi-isomorphism. Thus ξA is an isomorphism if and only if δ is a
quasi-isomorphism. Now, since

Hi(Hom•
A(V •, V •)) ∼= HomK(Mod-A)(V •, V •[i])

for all i ∈ Z, the assertion follows by Lemma 1.4 together with Remark 1.3.

Lemma 1.9. The following are equivalent.

(1) V • is a dualizing complex for A.

(2) Rp is Gorenstein for all p ∈ SuppR(A) and sup{dim Rp | p ∈ SuppR(A)} <
∞.

Proof. See e.g. [1, Propositions 3.7 and 3.8].

2 Gorenstein algebras

Throughout the rest of this note, c ≥ 0 is an integer.

Definition 2.1. We say that A is a Gorenstein R-algebra of codimension c if
the following conditions are satisfied:

(1) Rp is Gorenstein for all p ∈ SuppR(A);

(2) Exti
R(A,R) = 0 for i 6= c; and

(3) Extc
R(A,R) is a projective generator in Mod-A.
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As for the ring structure of a Gorenstein R-algebra A, we may restrict our-
selves to the case where c = 0 because AnnR(A) contains an R-regular sequence
x1, · · · , xc and A is a Gorenstein S-algebra of codimension 0, where S is the
residue ring of R over the ideal generated by x1, · · · , xc (Proposition 2.9). Also,
we will see that our Gorenstein algebras are Gorenstein in the sense of [12]
(Proposition 2.3). So we refer to [12] for properties enjoyed by Gorenstein alge-
bras and for the relationship of the notion of Gorenstein algebras to the theory
of commutative Gorenstein rings.

There is another notion of Gorenstein algebras. Consider the case where R
is an artinian Gorenstein ring. Then an Artin R-algebra A is sometimes called
Gorenstein if inj dim AA = inj dim AA < ∞ (see e.g. [4]). It follows by [19,
Proposition 1.6] that an Artin R-algebra A is Gorenstein in this sense if and
only if HomR(A,R) ∈ mod-Ae is a tilting module. We will extend this fact to
Noether algebras. Assume that Rp is Gorenstein for all p ∈ SuppR(A), that
sup{dim Rp | p ∈ SuppR(A)} < ∞, and that Exti

R(A,R) = 0 for i 6= c. Then
inj dim AA = inj dim AA < ∞ if and only if Extc

R(A,R) ∈ mod-Ae is a tilting
module (Proposition 2.7).

Throughout this section, we assume that Exti
R(A,R) = 0 for i 6= c and set

Ω = Extc
R(A,R).

Note that V • ∼= Ω[−c] in D(Mod-Ae). Also, Hi(V •) ∼= Exti
R(A,R) for all i ∈ Z.

Lemma 2.2. The following hold.

(1) We have a quasi-isomorphism V • → σ′≥c(V
•) in K(Mod-Ae).

(2) σ′≥c(V
•) ∈ K+(Inj-A) and σ′≥c(V

•) ∈ K+(Inj-Aop).

(3) Exti
A(M, Ω) ∼= Exti+c

R (M, R) in Mod-Aop for all M ∈ Mod-A and i ≥ 0.

Proof. The first two assertions are obvious. Then for any i ≥ 0 and M ∈ Mod-A
we have functorial isomorphisms in Mod-Aop

Exti
A(M, Ω) ∼= HomK(Mod-A)(M, (σ′≥c(V

•)[c])[i])
∼= HomK(Mod-A)(M, σ′≥c(V

•)[i + c])
∼= HomK(Mod-A)(M, V •[i + c])
∼= HomK(Mod-R)(M, I•[i + c])
∼= Exti+c

R (M, R).

Proposition 2.3. For any p ∈ SuppR(A) with Rp Gorenstein the following
hold.

(1) Ωp 6= 0 and hence dim Rp ≥ c.

(2) Exti
Rp

(Rp/pRp,Ωp) = 0 for i < dim Rp − c.
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(3) inj dim ΩpAp
= dim Rp − c.

Proof. (1) Suppose otherwise. Then Exti
Rp

(Ap, Rp) = 0 for all i ≥ 0 and by
Remark 1.6 Ap = 0, a contradiction.

(2) Take a projective resolution Q• → Ap in mod-Rp. Then

Hi(Hom•
Rp

(Q•, Rp)) ∼= Exti
Rp

(Ap, Rp)
∼= Exti

R(A,R)p

for all i ≥ 0. Thus Hi(Hom•
Rp

(Q•, Rp)) = 0 for i 6= c and Hc(Hom•
Rp

(Q•, Rp)) ∼=
Ωp, so that we have exact sequences in mod-Rp

0 → HomRp(Q0, Rp) → · · · → HomRp(Qc, Rp) → Z′c(Hom•
Rp

(Q•, Rp)) → 0,

0 → Ωp → Z′c(Hom•
Rp

(Q•, Rp)) → HomRp(Q−c−1, Rp) → · · ·
with the HomRp(Qi, Rp) projective. Applying HomRp(Rp/pRp,−), the asser-
tion follows.

(3) By Lemma 2.2(2) we have an injective resolution Ωp → σ′≥c(V
•
p )[c] in

Mod-Ap. Since V •
p
∼= Hom•

Rp
(Ap, I

•
p ) with I•p a minimal injective resolution of

Rp in Mod-Rp (see [5, Corollary 1.3]), it follows that inj dim ΩpAp
≤ dim Rp−c.

Next, by Lemma 2.2(3) we have

Exti
Ap

(Ap/pAp,Ωp) ∼= Exti
A(A/pA,Ω)p

∼= Exti+c
R (A/pA,R)p

∼= Exti+c
Rp

(Ap/pAp, Rp)

for all i ≥ 0. Since Ap/pAp is a finite direct sun of copies of Rp/pRp in Mod-Rp,
we have Exti+c

Rp
(Ap/pAp, Rp) 6= 0 for i = dim Rp − c.

Lemma 2.4. The following are equivalent.

(1) A has finite Gorenstein dimension as an R-module.

(2) Exti
A(Ω,Ω) = 0 for i > 0 and A

∼→ EndA(Ω), a 7→ (w 7→ aw).

(3) Exti
Aop(Ω,Ω) = 0 for i > 0 and A

∼→ EndAop(Ω)op, a 7→ (w 7→ wa).

Proof. (1) ⇔ (2). Since Hi(V •) = 0 for i > c, this follows by Lemma 1.8.
(1) ⇔ (3). By symmetry.

Remark 2.5. If Rp is Gorenstein for all p ∈ SuppR(A), then A has finite Goren-
stein dimension as an R-module.

Proof. Take a projective resolution P • → A in mod-R and set M = Z′−c(P •).
Then Exti

R(M, R) ∼= Exti+c
R (A,R) = 0 for i > 0 and by Remark 1.6 M has

Gorenstein dimension zero.
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Throughout the rest of this section, we assume further that Rp is Goren-
stein for all p ∈ SuppR(A). Then by Lemma 2.4 and Remark 2.5 we have
Exti

A(Ω,Ω) = Exti
Aop(Ω,Ω) = 0 for i > 0 and Ω ∈ mod-Ae is faithfully balanced,

i.e., A
∼→ EndA(Ω), a 7→ (w 7→ aw) and A

∼→ EndAop(Ω)op, a 7→ (w 7→ wa).

Proposition 2.6. The following are equivalent.

(1) sup{dim Rp | p ∈ SuppR(A)} < ∞.

(2) V i = 0 for i À 0.

(3) inj dim ΩA < ∞.

(4) inj dim AΩ < ∞.

Proof. By symmetry, it suffices to show (1) ⇔ (2) ⇔ (3).
(1) ⇒ (2). Assume that V i 6= 0. Since HomR(A, Ii) 6= 0, there exists p ∈

Spec(R) such that ER(R/p) is a direct summand of Ii and HomR(A,ER(R/p)) 6=
0. Note that p ∈ SuppR(A) and ER(R/p) ∼= ERp(Rp/pRp) in Mod-Rp. Since
ER(R/p) is a direct summand of Ii

p and Rp → I•p is a minimal injective resolu-
tion in Mod-Rp (see [5, Corollary 1.3]), it follows that i = dim Rp.

(2) ⇒ (3). By Lemma 2.2(2).
(3) ⇒ (1). See [1, Proposition 3.7].

We refer to [19] for tilting modules. Note however that a module is a tilting
module if and only if it is isomorphic to a tilting complex in the derived category
(see e.g. [2, Proposition 3.9]).

Proposition 2.7. Assume that sup{dim Rp | p ∈ SuppR(A)} < ∞. Then the
following are equivalent.

(1) Ω ∈ mod-Ae is a tilting module.

(2) proj dim AΩ = proj dim ΩA < ∞.

(3) inj dim AA = inj dim AA < ∞.

Proof. (2) ⇒ (3) ⇒ (1). See [1, Theorem 3.9].
(1) ⇒ (2). See e.g. [2, Lemma 1.5].

Proposition 2.8. The following are equivalent.

(1) Ω ∈ PA and Ω ∈ PAop .

(2) add(Ω) = PA in Mod-A.

(3) add(Ω) = PAop in Mod-Aop.

Proof. Since Ω ∈ mod-Ae is faithfully balanced, (2) ⇔ (3) follows by Morita
theory. Then (3) together with (2) implies (1).

(1) ⇒ (3). By Lemmas 2.2(3), 2.4 we have A ∼= Extc
R(Ω, R) in Mod-Aop and

hence Ω ∈ PA implies A ∈ add(Ω) in Mod-Aop.
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Proposition 2.9. There exists an R-regular sequence x1, · · · , xc in AnnR(A).
Set S = R/(x1, · · · , xc) with (x1, · · · , xc) the ideal of R generated by x1, · · · , xc.
Then the following hold.

(1) A has Gorenstein dimension zero as an S-module.

(2) HomS(A,S) ∼= Ω in Mod-Ae.

(3) Sq is Gorenstein for all q ∈ SuppS(A).

Proof. Set a = AnnR(A). Let i < c and p ∈ SuppR(A). Note that Ω is
faithful as an R/a-module. Thus R/a can be embedded as a submodule in
a finite direct sum of copies of Ω. Then (R/a)p can be embedded as a sub-
module in a finite direct sum of copies of Ωp

∼= Extc
Rp

(Ap, Rp) and hence
Exti

R(R/a, R)p
∼= Exti

Rp
((R/a)p, Rp) = 0. Thus Exti

R(R/a, R) = 0 for i < c
and the first assertion follows (see [6, Corollary 2.11]).

Note that HomR(S, Ii) = 0 for i < c and Hom•
R(S, I•)[c] is a minimal injec-

tive resolution of S in Mod-S (see [5, Theorem 2.2]). Since

Hom•
S(A,Hom•

R(S, I•)[c]) ∼= Hom•
R(A, I•[c]),

by setting W • = Hom•
S(A,Hom•

R(S, I•)[c]), we have Hi(W •) ∼= Hi+c(V •) for
all i ∈ Z. Thus Exti

S(A,S) = 0 for i > 0 and HomS(A,S) ∼= Ω. Then as
an S-module A has finite Gorenstein dimension by Lemma 2.4 and hence has
Gorenstein dimension zero by Remark 1.7. Finally, it is easy to see that Sq is
Gorenstein for all q ∈ SuppS(A).

3 Serre duality

In this section, we will extend Serre duality theory (cf. [8]) to Noether algebras.
We set

(−)∗ = HomD(Mod-R)(−, R) : D(Mod-R) → Mod-R.

Note that (−)∗ ∼= H0(D(−)).
Recall that a complex X• ∈ Db(mod-A) is said to have finite projective

dimension if HomD(Mod-A)(X•[−i],−) vanishes on mod-A for i À 0. We denote
by Db(mod-A)fpd the full triangulated subcategory of Db(mod-A) consisting
of complexes which have finite projective dimension. Note that Kb(PA) ∼→
Db(mod-A)fpd canonically. Similarly, a complex X• ∈ Db(mod-A) is said to
have finite injective dimension if HomD(Mod-A)(−, X•[i]) vanishes on mod-A
for i À 0. We denote by Db(mod-A)fid the full triangulated subcategory of
Db(mod-A) consisting of complexes which have finite injective dimension.

Definition 3.1. We say that A has Serre duality if there exist a self-equivalence
of a triangulated category F : Db(mod-A) ∼→ Db(mod-A) and a bifunctorial
isomorphism in Mod-R

HomD(Mod-A)(Y •, FX•) ∼= RHom•
A(X•, Y •)∗
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for X• ∈ Db(mod-A)fpd and Y • ∈ Db(mod-A). If this is the case, we call F a
Serre functor for A.

Note that if A has finite global dimension then Db(mod-A)fpd = Db(mod-A)
and that if R is selfinjective then we have bifunctorial isomorphisms in Mod-R

RHom•
A(X•, Y •)∗ ∼= H0(DRHom•

A(X•, Y •))
∼= DH0(RHom•

A(X•, Y •))
∼= HomD(Mod-A)(X•, Y •)∗

for X•, Y • ∈ Db(mod-A). These facts would justify the definition above.

Remark 3.2. Assume that there exists a Serre functor F : Db(mod-A) ∼→
Db(mod-A) for A. Then the restriction of F to Db(mod-A)fpd is unique up
to isomorphism and the following hold.

(1) F induces a self-equivalence of Db(mod-A)fpd and there exists a tilting
complex P • ∈ Kb(PA) such that FA ∼= P • in D(Mod-A) and A ∼=
EndK(Mod-A)(P •).

(2) For any i ∈ Z we have a functorial isomorphism in Mod-Aop

HomD(Mod-A)(M, FA[i]) ∼= Exti
R(M, R)

for M ∈ mod-A. In particular, Hi(FA) ∼= Exti
R(A,R) in Mod-Ae for all

i ∈ Z.

(3) Assume that Exti
R(A,R) = 0 for i 6= c and set Ω = Extc

R(A,R). Then
FA ∼= Ω[−c] in D(Mod-A) and Ω ∈ mod-Ae is a tilting module.

Proof. The first assertion follows by Yoneda’s lemma.
(1) See [20, Proposition 8.2].
(2) Note first that the isomorphism

HomD(Mod-A)(Y •, FX•) ∼= RHom•
A(X•, Y •)∗

in the definition above is an isomorphism of EndD(Mod-A)(X•)op-modules. Thus
for any M ∈ mod-A and i ∈ Z we have isomorphisms in Mod-Aop

HomD(Mod-A)(M, FA[i]) ∼= RHom•
A(A[i],M)∗

∼= HomD(Mod-R)(M [−i], R)
∼= Exti

R(M, R).

(3) This follows by (1), (2) above.

Proposition 3.3. We have a bifunctorial isomorphism in Mod-R

HomD(Mod-A)(Y •, X• ⊗L
A V •) ∼= RHom•

A(X•, Y •)∗

for X• ∈ Db(mod-A)fpd and Y • ∈ D(Mod-A).

11



Proof. For any P ∈ PA, Q ∈ Mod-A and I ∈ Inj-R, since we have functorial
isomorphisms in Mod-R

Q⊗A HomA(P, A) ∼→ HomA(P, Q), x⊗ f 7→ (a 7→ xf(a))

and

P ⊗A HomR(A, I) ∼→ HomR(HomA(P, A), I), a⊗ g 7→ (f 7→ g(f(a))),

we have functorial isomorphisms in Mod-R

HomA(Q,P ⊗A HomR(A, I)) ∼= HomA(Q,HomR(HomA(P, A), I))
∼= HomR(Q⊗A HomA(P, A), I)
∼= HomR(HomA(P, Q), I).

It is not difficult to see that the functorial isomorphism in Mod-R

HomA(Q,P ⊗A HomR(A, I)) ∼= HomR(HomA(P, Q), I)

for P ∈ PA, Q ∈ Mod-A and I ∈ Inj-R can be extended to a bifunctorial
isomorphism in K(Mod-R)

Hom•
A(Q•, P • ⊗•A V •) ∼= Him•

R(Hom•
A(P •, Q•), I•)

for P • ∈ Kb(PA) and Q• ∈ K(Mod-A). Note that P • ⊗•A V • ∈ K+(Inj-A).
Applying H0(−), the assertion follows.

Corollary 3.4. Assume that A is a Gorenstein R-algebra of codimension c
with Extc

R(A,R) ∼= A as A-bimodules and that d = dim Rp for all maximal
p ∈ SuppR(A). Then, denoting by E the direct sum of all ER(R/p) with p ∈
SuppR(A) maximal, we have a bifunctorial isomorphism in Mod-R

HomD(Mod-A)(Y •, X•[d− c]) ∼= HomR(HomD(Mod-A)(X•, Y •), E)

for X• ∈ Db(mod-A)fpd and Y • ∈ D(mod-A) with the Y i of finite length.

Proof. For any X• ∈ Kb(PA) and Y • ∈ D(mod-A) with the Y i of finite length,
since V • ∼= A[−c] in D(Mod-Ae), and since HomR(Homi

A(X•, Y •), Ij) = 0
unless j = d, by Proposition 3.3 we have bifunctorial isomorphisms in Mod-R

HomD(Mod-A)(Y •, X•[d− c]) ∼= HomD(Mod-A)(Y •, X•[d]⊗L
A V •)

∼= H0(Hom•
R(Hom•

A(X•[d], Y •), I•))
∼= H0(Hom•

R(Hom•
A(X•, Y •), I•[d]))

∼= H0(Hom•
R(Hom•

A(X•, Y •), Id))
∼= H0(Hom•

R(Hom•
A(X•, Y •), E))

∼= HomR(H0(Hom•
A(X•, Y •)), E)

∼= HomR(HomD(Mod-A)(X•, Y •), E).
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Theorem 3.5. Assume that Rp is Gorenstein for all p ∈ SuppR(A) and that
sup{dim Rp | p ∈ SuppR(A)} < ∞. Then V • ∈ Db(mod-Ae) and the following
are equivalent.

(1) A has Serre duality with a Serre functor

−⊗L
A V • : Db(mod-A) ∼→ Db(mod-A).

(2) A and Aop have Serre duality.

(3) inj dim AA = inj dim AA < ∞.

Proof. See [1, Proposition 3.8] for the first assertion.
(1) ⇒ (3). By Remark 3.2(1) there exists a tilting complex P • ∈ Kb(PA)

such that V • ∼= P • in D(Mod-A) and A ∼= EndK(Mod-A)(P •). The assertion
follows by [1, Theorem 3.9].

(3) ⇒ (1) and (2). By [1, Theorem 4.7] we have a self-equivalence

−⊗L
A V • : Db(mod-A) ∼→ Db(mod-A)

which is a Serre functor for A by Proposition 3.3. By symmetry, we also have a
Serre functor for Aop

V • ⊗L
A − : Db(mod-Aop) ∼→ Db(mod-Aop).

(2) ⇒ (3). Let F : Db(mod-A) ∼→ Db(mod-A) be a Serre functor for A.
Then by Remark 3.2(1) there exists a tilting complex P • ∈ Kb(PA) such that
FA ∼= P • in D(Mod-A). Take an integer d ≥ 1 such that dim Rp < d for all
p ∈ SuppR(A). Then for any i ≥ d and M ∈ mod-A we have Exti

R(M, R)p
∼=

Exti
Rp

(Mp, Rp) = 0 for all p ∈ SuppR(A) and hence by Remark 3.2(2) we have
HomD(Mod-A)(M, P •[i]) ∼= Exti

R(M, R) = 0. Thus P • ∈ Db(mod-A)fid. Since
add(P •) generates Db(mod-A)fpd as a triangulated category, it follows that
A ∈ Db(mod-A)fpd ⊂ Db(mod-A)fid and inj dim AA < ∞. By symmetry, we
also have inj dim AA < ∞. The assertion follows by [23, Lemma A].

A complex ∆• ∈ Db(mod-Ae) is said to be invertible if there exists a complex
∆̃• ∈ Db(mod-Ae), called the inverse of ∆•, such that ∆•⊗L

A ∆̃• ∼= ∆̃•⊗L
A ∆• ∼=

A in D(Mod-Ae). Note that ∆̃• ∼= RHom•
A(∆•, A) ∼= RHom•

Aop(∆•, A). Also,
an invertible complex is a special type of two-sided tilting complex (see [21]).

Lemma 3.6. Let ∆• ∈ Db(mod-Ae) be an invertible complex and ∆̃• the in-
verse of ∆•. Then V • ⊗L

A ∆• ∼= ∆• ⊗L
A V • ∼= Hom•

R(∆̃•, I•) in D(Mod-Ae).

Proof. We have isomorphisms in D(Mod-Ae)

V • ⊗L
A ∆• ∼= RHom•

A(∆̃•, V •)
∼= Hom•

A(∆̃•, V •)
∼= Hom•

R(∆̃•, I•),
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∆• ⊗L
A V • ∼= RHom•

Aop(∆̃•, V •)
∼= Hom•

Aop(∆̃•, V •)
∼= Hom•

R(∆̃•, I•).

Proposition 3.7. Assume that A is a Gorenstein R-algebra of codimension c.
Then Ω = Extc

R(A,R) lies in the center of the Picard group of A.

Proof. It follows by Proposition 2.8 that Ω lies in the Picard group of A. Since
Ω ∼= V •[c] in D(Mod-Ae), the assertion follows by Lemma 3.6.

4 Derived equivalences

Throughout this section, we fix a tilting complex P • ∈ Kb(PA) and set B =
EndK(Mod-A)(P •). Note that B is a Noether R-algebra and that there exists a
tilting complex Q• ∈ Kb(PB) such that A ∼= EndK(Mod-B)(Q•).

Proposition 4.1. The following hold.

(1) AnnR(A) = AnnR(B) and hence SuppR(A) = SuppR(B).

(2) If A has finite Gorenstein dimension as an R-module, then so does B.

(3) If inj dim AA = inj dim AA < ∞, then inj dim BB = inj dim BB < ∞.

Proof. Set X• = Hom•
A(P •, P •). Then Hi(X•) = 0 for i 6= 0 and H0(X•) ∼= B.

Thus we have exact sequences in mod-R

0 → X−l → · · · → X0 → Z′0(X•) → 0,

0 → B → Z′0(X•) → X1 → · · · → X l → 0

for some l ≥ 0 with Xi ∈ add(AR) for all i ∈ Z.
(1) Since every Xi is annihilated by AnnR(A), it follows that B is annihilated

by AnnR(A). By symmetry, A is annihilated by AnnR(B).
(2) This follows by Lemma 1.5.
(3) See e.g. [16, Proposition 1.7].

Throughout the rest of this section, we assume that Exti
R(A,R) = 0 for

i 6= c. We set Ω = Extc
R(A,R) and

ν = −⊗L
A Ω : D−(mod-A) → D−(mod-A).

We denote by S the full subcategory of D−(Mod-A) consisting of complexes
X• with HomD(Mod-A)(P •, X•[i]) = 0 for i 6= 0. In the following, we define
add(P •) as a full subcategory of D−(Mod-A). However, the canonical functor
K(Mod-A) → D(Mod-A) induces an equivalence between add(P •) defined in
Kb(PA) and add(P •) defined in D−(Mod-A) (cf. [14, Remark 1.7]).
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Remark 4.2. Assume that Rp is Gorenstein for all p ∈ SuppR(A) and add(Ω) =
PA in Mod-A. Then by Proposition 2.8 we have a self-equivalence ν : PA

∼→ PA.

Theorem 4.3. The following hold.

(1) Exti
R(B,R) = 0 for i 6= c if and only if νP • ∈ S.

(2) Assume that νP • ∈ S. Then Extc
R(B,R) is a projective generator in

Mod-B if and only if add(νP •) = add(P •).

(3) If Ω ∼= A in Mod-Ae, then Exti
R(B,R) = 0 for i 6= c and Extc

R(B,R) ∼= B
in Mod-Be.

Proof. (1) Since V • ∼= Ω[−c] in D(Mod-Ae), and since B ∼= RHom•
A(P •, P •) in

D(Mod-R), by Proposition 3.3 we have

Exti
R(B,R) ∼= HomD(Mod-R)(B[−i], R)

∼= RHom•
A(P •[i], P •)∗

∼= HomD(Mod-A)(P •, P • ⊗L
A V •[i])

∼= HomD(Mod-A)(P •, νP •[i− c])

for all i ∈ Z.
(2) We know from [20, Section 4] that the functor

HomD(Mod-A)(P •,−) : S → Mod-B

is an equivalence. Since we have isomorphisms in Mod-Be

HomD(Mod-A)(P •, νP •) ∼= Extc
R(B,R) and HomD(Mod-A)(P •, P •) ∼= B,

the assertion follows.
(3) If Ω ∼= A in Mod-Ae, then νP • ∼= P • as complexes and the assertion

follows.

Corollary 4.4. Assume that A is a Gorenstein R-algebra of codimension c.
Then B is a Gorenstein R-algebra of codimension c if and only if add(νP •) =
add(P •).

Proof. By (1), (2) of Proposition 4.1 and (1), (2) of Theorem 4.3.

Corollary 4.5. The following are equivalent.

(1) A is a Gorenstein R-algebra of codimension c with Extc
R(A,R) ∼= A in

Mod-Ae.

(2) B is a Gorenstein R-algebra of codimension c with Extc
R(B,R) ∼= B in

Mod-Be.

Proof. By (1), (2) of Proposition 4.1 and Theorem 4.3(3).
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Example 4.6. Assume that R is a Gorenstein ring containing an R-regular
sequence x1, · · · , xc, x. Set S = R/(x1, · · · , xc) with (x1, · · · , xc) the ideal of R
generated by x1, · · · , xc and define Noether R-algebras A,B as follows:

A =
(

S S
xS S

)
and B =

(
S S/xS
0 S/xS

)
.

In [2, Example 4.7], we have constructed a tilting complex P • ∈ Kb(PA) such
that B ∼= EndK(Mod-A)(P •). Also, we have seen that A is a Gorenstein S-algebra
of codimension 0. Thus A is a Gorenstein R-algebra of codimension c. On the
other hand, Exti

R(B,R) 6= 0 for i = c and c + 1, so that νP • /∈ S.

Consider the case where A is a Gorenstein R-algebra of codimension c and
Exti

R(B,R) = 0 for i 6= c. At present, we do not know whether or not B is
a Gorenstein R-algebra of codimension c. The example above does not tell us
anything about this question.
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