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Abstract. Stacking involving aromatic rings has significant contribution to structural stability of 
biological macromolecules. However, conventional calculations such as density functional theory 
(DFT) and molecular mechanics (MM) fail to estimate such stabilization energies, most of which are 
fundamentally derived from van der Waals interactions. For the accurate description, higher level ab 
initio calculations, such as CCSD(T), should be employed; however, their computational costs are 
huge. MM calculations provide better estimation of the interactions of the aromatic rings than the 
DFT, but not sufficient. In this report, we propose a novel scheme to calculate the interaction energy 
at the accuracy compatible to the CCSD(T) with the computational costs comparable to the MM 
calculations. In our scheme, the electron density of the aromatic rings is represented by 
Gaussian-type functions, and the parameters involved in the functions are determined by an 
optimization sheme to reproduce the CCSD(T) results. Here, we employ model structures involving 
tryptophan and tyrosine rings, and successfully obtain the optimal parameter set. By using this type 
of the representation of stacking proposed, the computational time to calculate the interaction energy 
is dramatically reduced by 10-10 fold, compared with the CCSD(T). (189 words: limit 200 words)
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1. Introduction 

Stacking involving aromatic rings, aliphatic chains, or cations/anions has been widely 
observed in three-dimensional structures of biological macromolecular systems such as nucleic 
acids and proteins, and is also known to contribute to thermodynamic stabilization [1-4]. Many 
theoretical studies have been performed to unravel the dominant energy terms that contribute to 
such large stabilizations; in these studies, the van der Waals (vdW) energy was shown to be the 
primary origin of the stabilization energy for stacking between aromatic rings [4, 5]. This 
indicated that for accurate description of precisely evaluate the electron correlation effects, more 
sophisticated ab initio calculations are required to precisely evaluate the electron correlation 
effects, such as quantum Monte Carlo (QMC) calculations and the coupled cluster method with 
singles, doubles, and perturbative triples (CCSD(T)) [6-8]. Thus, it has been shown that 
conventional ab initio calculations, such as Hartree–Fock (HF) and density functional theory 
(DFT) calculations, are unable to estimate the stabilization energy gained by stacking aromatic 
rings [4, 5, 9]. 

Accordingly, to account for the vdW energy using the DFT calculations, various approaches 
have been proposed; modification of conventional functionals, adding correction terms to the 
standard DFT energy, and using perturbation methods in the DFT (DFT-SAPT) where the 
dispersion energy is included as second-order energy [10]. Those approaches have shown a 
good consistency with CCSD(T) calculations. However, a serious problem included in those 
calculations is the computational costs, which are too huge to make it impractical to use such 
methodologies in long-time MD simulations; for instance, more than ~10-ns calcualtions are 
required for protein folding simulations. Thus, a widely-used way to perform such long MD 
simulations is to employ molecular mechanics (MM) calculations, where the vdW interaction is 
described using empirical functions, e.g., Lennard–Jones (LJ) potential. However, it has been 
reported that the estimates obtained by MM calculations are inadequate in those cases [11-16]. 

On the contrary, the importance of stacking is well known to structural and functional features 
of various biological macromolecules including protein folding; actually, for instance, all of the 
folding simulations for the smallest peptide, i.e. chignolin, which involves stacking between Tyr 
and Trp, cannot reproduce the conformations of the stacked amino acid residues observed in the 
experimental structures, even though this stacking has been indicated to be crucial for its 
structural stabilization of this small peptide [17-19].  

The aim of the present study is to provide an accurate description of the stabilization energy 
from stacking by vdW interactions, which can be efficiently calculated currently using a 
reasonable level of computational resources. Our goal is to reproduce not only the accuracy 
required at the CCSD(T) level with a large basis set, but also an efficiency compatible with MM 



3 
 

calculations. The scheme developed should then be applicable even to molecular dynamics 
(MD) calculations, such as protein folding simulations. 
  

2. Methodology 
2.1. Energy function 

For that purpose, we first express the electron density derived from an atom i using a 
Gaussian-type function: 
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Here, r and qi show the position vectors and the number of electrons of atom i, respectively. xi, 

yi, and zi are the coordinates of atom i, and ai,λ (λ = x, y, z) are parameters that regulate 
distributions of electrons specific to the x, y, and z directions. Anisotropic qualities of the 

electron density can be taken into consideration when different values are assigned to each ai,λ. 
The Gaussian-type function is not essential for the shape of the functions; other functions, such 
as the Slater-type, can be used to describe the total electron density, although the involvement of 
the anisotropic effects is complicated, when the Slater-type function is used. 

Next, an effective functional is used to describe the vdW energy. One can, in general, utilize 
any desired potential functional; in this report, we employ the Andersson–Langreth–Lundqvist 
(ALL) functional, which was developed to correct the vdW energy using an electron density 
derived from ab initio calculations, for example, DFT [20]. The ALL functional describes the 
vdW interaction between two molecules, denoted by molecules 1 and 2: 
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Here, ρ(r) is the total electron density at a position vector r; r1 and r2 are position vectors 
corresponding to molecules 1 and 2, respectively. The distribution range of the vectors, i.e. 
those of the electrons, is determined by V1 and V2, which show the volumes of molecules 1 and 
2, respectively. For numerical calculations of equation (2), the formulation is written using a 
grid-based description; the grids are distributed around atoms involved in the molecules, and 
accordingly, this equation is described as a summation of interactions between two atoms, A and 
B, each of which belongs to either of the regions related to V1 and V2, respectively. 
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In MM calculations, vdW interactions are described using the LJ potential; 
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Rij shows the distance between atoms i and j; Aij and Bij denote the parameters that regulate the 
degrees of repulsive and attractive energies, respectively. It should be noted here that the 
interaction energy, described using equation (2), corresponds to the dispersion energy in the 
vdW interaction, and therefore, the attractive term in the LJ potential can be replaced with 
equation (2). For the description of bonding and electrostatic energies, we employ the harmonic 
functions used in the Amber 9.0 program package without modification [21]. Thus, the energy 
function that describes the total energy of the system involving the stacking between aromatic 
rings is written as follows. 
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Since the ALL functional depends on the electron density ρ(r), parameter values in the 
functional should be determined through a fitting procedure, so that the total energy curves 
obtained by higher level ab initio calculations prior to this fitting are reproduced by the total 
energy function involving the ALL functional, i.e. equation (6). This optimization of parameters 
in the total electron density can be performed as follows. First, the potential energy profiles are 
calculated by CCSD(T) calculations for the two models in this study, i.e. T-type and 
parallel-type models. To prepare the model structures in the parallel type conformation, we 
placed two aromatic rings such that the line through the center of masses of the two rings is 
perpendicular to each ring, and then, to yield several conformations for obtaining potential 
curves, one ring was shifted in the perpendicular direction. For the T-type conformation, we 
placed two rings such that the line through the center of masses is perpendicular to one ring, and 
is parallel to the other ring. Then, one ring was shifted along the line to yield several 
conformations.  

The accuracy of CCSD(T) calculations is known to be dependent on the basis set, and thus, to 
estimate accurate energy values from the stacking, a larger basis set is required. However, the 
computational cost increases markedly as the basis set becomes larger. In this study, CCSD(T) 
energy is estimated at a basis set limit that mimics energy calculated using a complete basis set, 
using a procedure described in the section 2.2 [22]. Second, we fit values obtained from the total 
energy function defined by equation (6), which includes the ALL-functional-based vdW energy 
to reproduce the potential energy profile obtained by CCSD(T) calculations at the basis set limit. 

We employed simulated annealing (SA) protocol for the fitting, where ai,λ, which regulates the 
distributions of the electron density in equation (1), is used as a variable. In addition, 
coefficients for the repulsive terms in the LJ potentials used in the Amber 9.0 program are also 
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exploited as another variable in this study. At each step of the SA protocol, a set of those 
parameters is obtained, and then, the total energy values obtained by equation (6) are calculated 
for the two modeled structures. Then, deviations between the current outputs using equation (6) 
and energy values obtained at the CCSD(T) level are evaluated using the Metropolis criteria in 
the SA protocol.  

To summarize, our scheme to obtain an effective potential by computation to describe vdW 
energy consists of the following four steps: (i) calculation of the total electron density for each 
grid with use of a parameter set; (ii) calculation of the vdW energy using an effective potential 
(e.g., the ALL functional) with use of the total electron density; (iii) calculation of the total 
energy for the stacked aromatic rings with equation (3); and (iv) evaluation of the total energy 
values obtained in the step (iii) and those from higher level ab initio calculations performed 
beforehand. It should be noted here that the forms of the total electron density, as well as the 
effective potential to describe the vdW energy, can be substituted by other functionals. 
  
2.2. Estimation of CCSD(T) energy using a complete basis set 

CCSD(T) calculations are known to be dependent on the basis sets used; in order to 
accurately estimate stacking energy, larger basis sets are required. However, computational 
costs increase significantly with the size of basis sets used. In this study, CCSD(T) energy is 
estimated at a basis set limit (ECCSD(T)(limit)), which mimics energy calculated using a complete 
basis set, by exploiting a procedure proposed by Tsuzuki et al [22]. According to this scheme, 
ECCSD(T)(limit) is calculated on the basis of the following equation:  
  

CCSD(T)(limit)MP2(limit) CCSD(T)(limit)EE =+∆  (7) 

where ΔCCSD(T)(limit) denotes the CCSD(T) correction term, i.e., ΔCCSD(T) = ECCSD(T) − 
EMP2 at the basis set limit. EMP2 and ECCSD(T) denote stacking energies obtained at the MP2 and 
CCSD(T) levels, respectively. Here, stacking energy at the MP2 level with use of the basis set 
limit (EMP2(limit)) is estimated by the following equation: 

 
MP2(limit)HF(limit)corr(MP2)(limit)EEE =+  (8) 

EHF(limit) and EcorrMP2(limit) denote stacking energies at the Hartree–Fock (HF) level (EHF) and MP2 
level correlation energies (Ecorr(MP2) = EMP2 – EHF), respectively, at the basis set limit. In practice, 
EMP2(limit) is obtained by extrapolation of the correlation energy with use of Helgaker’s method as 
follows [23]. First, Ecoor(MP2) are calculated by using aug-cc-pVDZ and aug-cc-pvTZ basis sets, 
and then, these two values are fitted by exploiting a formula, a+bX−3 (where X is 2 for 
aug-cc-pVDZ and 3 for aug-cc-pVTZ). Next, Ecorr(MP2)(limit) is estimated by extrapolation of the 
obtained function, and finally, EMP2(limit) is obtained by equation 8. The value of 
ΔCCSD(T)(limit) is estimated by the following equation: 
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 CCSD(T)(limit)CCSD(T)(M)(M)CCSD(T)∆=∆+∆  (9) 

Here, ΔCCSD(T)(M) shows ΔCCSD(T) obtained using a medium-size basis set, and 
Δ(M)ΔCCSD(T) shows a correction term for ΔCCSD(T) obtained using the medium-size basis 
set, since ΔCCSD(T) is dependent on the size of the basis sets used in calculations. This term is 
estimated by the following equation: 

  
ΔCCSD(T)corr(MP2)ΔCCSD(T)corr(MP2)(limit )corr(MP2)(M)(M)CCSD(T)(M)[]FEFEE∆∆=×∆=×−  (10) 

where Ecorr(MP2)(M) denotes Ecorr(MP2) obtained using the medium-size basis set. Δ(M)Ecorr(MP2) is a 
correction term for Ecorr(MP2) due to the dependency of the basis set size used in MP2 calculations. 
FΔCCSD(T) is a scaling factor applied to estimate Δ(M)ΔCCSD(T). 

Interaction energies of benzene, thiophene and naphthalene dimers, calculated using various 
basis sets (6-31G*, 6-311G*, 6-311G*, cc-pVDZ and a modified cc-pVTZ basis set), have 
shown that ΔCCSD(T) is about 20% to 29% of the absolute value of Ecorr(MP2) [5, 23–27]. These 
results suggest that Δ(M)ΔCCSD(T) is approximately 25 ± 5% of the absolute value of 
Δ(M)Ecorr(MP2). Therefore, FΔCCSD(T) can be set to −0.25. In this manner, CCSD(T) energies for 
the model systems were calculated to obtain their potentials. All calculations were performed 
using the Gaussian 03 package [28]. 
  

3. Results and discussion 

 
Figure 1. 
Modeled structures of the Tyr–Trp system. Left and Right panels show parallel and T-shaped 
conformations, respectively. 

  
As a test case, we applied the scheme thus developed to stacking between tyrosine (Tyr) and 

tryptophan (Trp). Modeled structures used have “parallel” conformation, where each base stacks 
parallel to each other, and “T-shaped” conformation, where each ring stacks perpendicularly to 
the next. (Fig. 1); for each conformation, we calculated energy potentials with respect to the 
distance between the centers of mass of two interacting aromatic rings, by MM, HF, DFT, MP2, 
CCSD(T) calculations at the basis set limit, and a potential function obtained using our scheme. 
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The energy profiles of the interaction energies with respect to distances between two centers of 
mass of each aromatic ring are shown in Fig. 2a. According to the profile obtained by CCSD(T) 
calculations at the basis set limit, energy-minimum geometries for the T- and parallel types are 
at distances of 4.8 and 3.6 Å, with corresponding interaction energies −3.98 and −3.53 kcal/mol, 
respectively. By contrast, DFT and HF calculations are unable to estimate the stabilization 
energy, whereas MP2 calculations significantly overestimate the interaction energy. Compared 
to those calculations, MM calculations provides potential curves closer to the CCSD(T) 
calculations. However, interaction energies in optimal-geometries are underestimated, in 
particular, in the parallel conformations.  
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Figure 2. 
(a) The potential energy curve with respect to the distance between centers of mass of two 
aromatic rings (Å). The potential curves obtained by HF (filled circle:●), DFT (triangle: ▲), 
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MP2 (square: ■), MM (cruciform: +), and our scheme (diamond shape: ♦). The potential curve 
obtained via CCSD(T) at basis set limit is shown with error bars which derives from empirical 
term described in Methodology section. For each method, two potential curves are shown; the 
potential curve which have the minimum in larger distance is calculated with respect to 
T-shaped type conformations, while the other which have the minimum in shorter distance is 
calculated with use of parallel-type conformations. (b) The potential energy curve with respect 
to the angle between two aromatic rings (in degrees); the angles are 0°, 15°, 30°, 45°, 60°, 75°, 
90°, and the distances between the two center of masses are 3.6 Å, 3.8 Å, 4.0 Å, 4.2 Å, 4.4 Å, 
4.6 Å, 4.8 Å, respectively. In those structures, the line through the center of masses of the two 
rings is perpendicular to one ring. The representation manner is the same as (a). 
  

In contrast, the energy profiles obtained using our scheme are in good agreement with those 
obtained by CCSD(T) calculations at the basis set limit (Fig. 2a). Thus, it is indicated that the 
density-based representation proposed in the present study can be fitted to the energy profiles 
obtained using CCSD(T) calculations at the basis set limit. Further, in order to validate the 
parameter set obtained by our method, we employed a set of different model structures 
composed of Tyr and Trp, where the angle between the two aromatic rings is rotated from 0.0° 
to 90.0° (the angle of 0.0° corresponds to the parallel-type conformation and that of 90.0° to the 
T-shaped conformation). As a validation test, we generated energy profiles by DFT, MP2, MM, 
and CCSD(T) calculations at the basis set limit, and the total energy function was obtained. The 
resulting energy profiles obtained by DFT, MP2, and MM calculations show trends similar to 
those obtained from the calculations discussed above, which are not consistent with energy 
profiles obtained by CCSD(T) calculations at the basis set limit (Fig. 2b). By contrast, the 
energy profiles obtained using our scheme approach very closely to those obtained by CCSD(T) 
calculations, even though our parameter set is not optimized for conditions used in the 
calculations. This indicates that completely optimized equation (1) describes all the freedom of 
the total electron density to represent the interaction of Tyr and Trp, thus confirming the 
robustness of the developed energy function. 

It should be noted here that the computation time using the energy function obtained in this 
study was dramatically reduced to 1.73 s/step to calculate one point total energy, whereas 1.66 × 
1010 s/step is estimated to be required for CCSD(T) calculations using the aug-cc-pVTZ basis 
set, when using the SGI Altix 3700 system with an Intel Itanium 2 processor (1.6 GHz). Even 
when our calculation scheme is compared with the method proposed by Tsuzuki et al to mimic 
the CCSD(T) calculation at the basis set limit obtained by MP2 calculations with a huge basis 
set, the CPU time to calculate our energy function obtained in this study is also significantly 
reduced—by 106-fold. 
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In this way, using the energy function obtained, we can anticipate performing much more 
precise simulations, even when the configurations of Tyr and Trp are significantly changed 
during the calculations, such as molecular dynamics (MD) simulations of biological 
macromolecules where stacking is involved. In those calculations, our scheme demonstrates its 
advantages, enabling to significantly reduce the computational time for MD simulations: The 
CCSD(T) calculations at a basis set limit are performed only to obtain the accurate energy 
potential as reference for the optimization of the parameters in the electron density function. 
The optimized parameter values are fixed in MD simulations because of the robustness as 
mentioned earlier. This leads to significant speed up of MD simulations, since by using our 
calculation scheme, one can omit the self-consistent field procedure, which is required at every 
integration step of MD simulations when ab initio calculations are used. 
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