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A topological insulator and its spin analog as a gapped spin liquid have characteristic low-energy excitations
�edge states� within the gap when the systems have boundaries. This is the bulk-edge correspondence, which
implies that the edge states themselves characterize the gapped bulk spin liquid. Based on the general principle,
we analyzed the vector chirality and rung-singlet phases of the spin-1

2 ladder with ring exchange by using the
edge states and the entanglement entropy.
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I. INTRODUCTION

Spontaneous symmetry breaking has been fundamental to
characterize phases of matter. An example is a magnetic
phase where a local-order parameter is defined as a quantum
or thermal average of local combination of spins. Its ordered
phase is not invariant against the symmetry operation which
leaves the Hamiltonian invariant. In spite of enormous suc-
cess of this concept, it has been also realized that there still
exist many important phases that cannot be captured by the
spontaneous symmetry breaking. Strong quantum fluctuation
in low dimensions prevents such formation of the ordered
state and makes it possible to realize states without any fun-
damental symmetry breaking. Such phases form a novel
class of matter as quantum liquids and spin liquids. Typical
examples of the quantum liquids are many of integer and
fractional quantum Hall states. Spin analog of the quantum
liquids is the spin liquid which includes the Haldane integer
spin chain,1,2 generic valence bond solid �VBS� states,3,4 and
some of the exactly solvable models that also have these spin
liquid ground states �Kitaev model,5 tensor category,6 and so
on�.

As for an excitation of a quantum system, local characters
of the order parameter and the symmetry breaking are fun-
damental. Generically speaking, one requires some mecha-
nisms to have a gapless excitation. Typical machineries are
the existence of the Fermi surface �formed by fermionic qua-
siparticles� and the Nambu-Goldston bosons associated with
the broken continuous symmetry. An example of the latter is
the spin-wave excitation associated with the Neel order. Ge-
nerically one may construct a gapless excitation by spatial
modulation of the local-order parameter such as the Lieb-
Shultz-Mattis-type spin twists.7 In contrast, as for the quan-
tum liquids and the spin liquids, it is natural to have a finite
excitation gap unless one assumes exotic spinon Fermi sur-
faces.

To characterize such quantum liquids and the spin liquids,
topological quantities such as the Berry phases and the Chern
numbers are quite useful.8,9 They do not have any symmetry
breaking nor local-order parameter. Still, there are many
kinds of interesting quantum states without characteristic
low-energy excitation. Such nontrivial quantum phases are
the topological insulator and its spin analog. A generic con-

cept to discuss such a phase is the topological order which
was first considered for the quantum Hall states.10 As in the
quantum Hall states,11–14 nontrivial topological insulators do
have characteristic edge states or impurity states. The bulk is
gapped and insulating. However the existence of boundaries
or impurities brings low-energy excitations. The quantum
Hall state of graphene also belongs to this topological
insulator.15–17 This is the bulk-edge correspondence where
topologically nontrivial bulk guarantees the existence of lo-
calized modes and such low-energy localized excitations
characterize the gapped bulk insulator13 conversely.

Not only in the electronic systems but also in a quantum
spin system such as the Haldane spin chain is the bulk-edge
correspondence realized as the existence of the Kennedy trip-
let for an open chain,18 which was confirmed experimentally
as well.19 As a novel theoretical tool, the entanglement en-
tropy �E.E.� for the gapped topological insulators has been
quite successful to classify the VBS states of the spin
chains,4,20 where this bulk-edge correspondence plays a fun-
damental role.

The spin-1
2 two-leg ladder with four-spin ring exchange

has rich phase structure due to the frustration.21 For this
model, the static and dynamical properties have been inten-
sively studied.21–29 Although the ring exchange model is
simple, due to the frustration, the ground state is quite in-
volved, namely, in the vector-chirality �VC� phase. In this
paper we consider the VC phase and the rung-single �RS�
phase of this model to identify the ground state properties
from the view point of the bulk-edge correspondence.

II. MODEL

The Hamiltonian is given by

Hcyc = J��
x=1

N/2

�
y=1,2

Sx,y · Sx+1,y + �
x=1

N/2

Sx,1 · Sx,2�
+ K�

x=1

N/2

�Px + Px
−1� . �1�

Hereafter, we parametrize the exchange parameter �J ,K� as
�J ,K�= �cos � , sin ��. The four-spin cyclic exchange consists
of the two- and four-spin exchange interactions as22
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Px + Px
−1 = Sx,1 · Sx,2 + Sx+1,1 · Sx+1,2

+ Sx,1 · Sx+1,1 + Sx,2 · Sx+1,2 + Sx,1 · Sx+1,2

+ Sx,2 · Sx+1,1 + 4�Sx,1 · Sx+1,1��Sx+1,1 · Sx+1,2�

+ 4�Sx,1 · Sx+1,1��Sx,2 · Sx+1,2�

− 4�Sx,1 · Sx+1,2��Sx,2 · Sx+1,1� + 1/4. �2�

Here, Sx,y denotes a spin-1
2 operator at site �x ,y� �see Fig. 1�.

We assume the system-size N to be even.

III. EDGE STATES

The Berry phases as topological order parameters
classify the rung-singlet and the VC and RS phases of the
model.29 In the VC phase, Hamiltonian �1� is adiabatically
connected to a decoupled vector-chiral model Hdvc
=�x=even�Sx,1�Sx,2� · �Sx+1,1�Sx+1,2�, whose ground state is a
direct product of plaquette singlets ��a� �see Fig. 2�a�	, which
is defined as

��a� = ��1,1�,�2,2�	 � ��1,2�,�2,1�	 � ��3,1�,�4,2�	

� ��3,2�,�4,1�	 � ¯ . �3�

Here, we have introduced a singlet at two sites �� and �� ,

��� ,�� 	= ���x ,�y� , ��x ,�y�	, as

��� ,�� 	 =
1

2

��↑��� �↓��� − �↑��� �↓���� . �4�

By taking into account of the translational invariance, we
consider the linear combination of ��a� and ��b� as shown in
Fig. 2�b�. State ��b� is defined as

��b� = ��2,1�,�3,2�	 � ��2,2�,�3,1�	 � ��4,1�,�5,2�	

� ��4,2�,�5,1�	 � ¯ . �5�

Notice that the two dimerized plaquette-singlet states ��a�
and ��b� are not orthogonal to each other, but their overlap is
exponentially small for large N. For N /2 being even, the

overlap is obtained as ��a ��b�=22−N/2. As described later, the
state ��s�� ��a�+ ��b� can be a good trial state to understand
the edge states and the entanglement entropy for the vector-
chirality state.30

In the VC phase, the bulk itself has a finite gap in the
thermodynamic limit.21,24 We introduce two types of
boundaries—�a� diagonal edge and �b� vertical edge �see
Fig. 3�.31 We diagonalized the Hamiltonian numerical by the
Lanczos method. In Fig. 4 we show the size dependence on
the energy gap of the total Sz=0 sector for �=4� /5, where
the bulk spin gap is relatively large. The system with the
vertical edges has almost the same excitation energy as that
of the periodic one. In contrast, there exist additional low-
energy excited states with an exponentially small energy gap
when the system has the diagonal edges. The appearance of

J

J K
x

y

FIG. 1. Lattice structure: J is the exchange interaction in the leg
or rung direction and K is the four-spin cyclic interaction. x− �y−�
axis is defined as the leg �rung� direction.

FIG. 2. Two types of the dimerized plaquette-singlet states.
Shaded links denote the singlet of the two S=1 /2 spins.

FIG. 3. Two types of open boundary conditions �OBCs�.
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FIG. 4. �Color online� System-size dependence of low-
excitation energy for �=4� /5 with the two OBCs compared with
the energy gap under the periodic boundary condition �PBC�.
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such a localized mode indicates the feature of the bulk-edge
correspondence. In fact, this mode is a triplet excitation and
can be interpreted as the Kennedy triplet �see Fig. 5�—triplet
excitation between the effective boundary spins at both
sides.18 We confirmed that this mode is really a triplet exci-
tation from the diagonalization on the different Sz sector.
This mode is observed also in the different �J ,K�’s in VC
phase.32 Note that the Kennedy triplet in this model was also
discussed in a different context before.27

When we introduce the boundary for the trial state ��s�,
i.e., the linear combination of the two dimerized plaquette
singlets, the isolated spins appear near the boundaries �see
Fig. 6�. In the system with diagonal edges they appear at
each boundary, while in the system with vertical edges they
appear as a pair at one side of the edge. Although a pair of
localized spins behaves freely in the decoupled vector chiral
model Hdcv, the pair of the spins couples each other in the
original model Hcyc with vertical edges. Therefore, the
Kennedy triplet excitation does not appear in the system with
the vertical edges. Thus the trial state ��s� gives consistent
understanding for the low-energy spectra of the VC phase.

Next we consider the RS phase. In Fig. 7, we show the
size dependence on the energy gap of the total Sz=0 sector
for �=−� /5. Combining with the calculation on different Sz

sector we obtain the Kennedy triplet mode as in the VC
phase in the case with diagonal edge. This is consistent with
the naive picture of the rung singlet, which is obtained by the

Berry phase �see Fig. 8�. This mode is confirmed also in the
different �J ,K�’s in the RS phase.

IV. ENTANGLEMENT ENTROPY

In this section, let us consider entanglement entropy for
the VC state. Define the density matrix of the state ��� as
�̂= ������ and divide the system into two subsystems A and B
�see Figs. 9�a� and 9�b�	. Then the entanglement entropy is
defined as33

FIG. 5. Schematic of the low-energy excitations.

FIG. 6. Linear combination of the dimerized plaquette singlets
��s� with OBCs.
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FIG. 7. �Color online� System-size dependence of low-
excitation energy for �=−� /5 with the two OBCs compared with
the energy gap under the PBC. The inset is the extended figure for
the first excitation state energy.

(a) Diagonal-edge

(b) Vertical-edge

FIG. 8. Rung singlets with OBCs.
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E.E. = − �log �̂A�A = − Tr��̂A log �̂A	 .

Here the reduced density matrix �̂A is given as �̂A=TrB �̂. It
represents how much state ��� is entangled between sub-
systems A and B.

Let us assume state ��� as a unique ground state under the
PBC in the VC state. We take subsystem A as the subsystem
with the diagonal �vertical� edges with N� spins by the re-
duction from N=20 spin system with the PBC. Similarly as
for the energy gap, we consider two types of open bound-
aries, we calculate the entanglement entropy numerically for
the cases with vertical edge and diagonal edge as shown in
Figs. 9�a� and 9�b�. Figure 9�c� shows the N� dependence of
the entanglement entropy. In both cases, the obtained E.E.
contains a contribution around 3 log 2. The contribution
3 log 2 can be understood by the trial state ��s� �see the
Appendix�.

In the naive picture, in the RS phase the isolated single on
the rung is a good trial state. Therefore we expect that
E.E.=2 log 2 for the diagonal edge and that E.E.=0 for the
vertical edge. We have qualitative agreement that the E.E. for
the diagonal edge is larger than that for the vertical edge,
although there is strong � dependence and large deviation
from the 2 log 2. This is due to the relatively large overlap
on the leg direction.

V. SUMMARY

In summary, it has been shown that in the vector-chirality
state the dimerized plaquette-singlet state ��s� can be a good
trial state to understand the numerical results for the topo-

logical properties—the edge states and the entanglement en-
tropy. The entanglement entropy of ��s� has been obtained as
3 log 2 for both types of the reduced systems while the ap-
pearance of the edge states depends on the type of bound-
aries. These boundary-dependent low-energy excitations as
the generic edge states characterize the vector-chirality
phase. This boundary-dependent edge state is also observed
in the rung-singlet phase. Such localized modes in the
boundary are expected to be observed experimentally
through the impurity or surface effect.
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APPENDIX: ENTANGLEMENT ENTROPY
FOR THE TRIAL STATE

For example, we calculate the entanglement entropy of
��s� in the diagonal-edge case for even N /2 and N� /2 cases.
The reduced density matrix �̂A can be obtained as �see
Fig. 10�

�̂A =
1

4m
�

	,	�=↑,↓
��A		���A		�� + �B		���B		��	

+
m�

4m
��A↑↓��B↑↓� − �A↑↓��B↓↑� + �A ↔ B�	 , �A1�

where m=2+23−N/2 and m�=21−�N−N��/2. States �A		�� and
�B		�� are represented as the tensor product of the dimerized
states in the zigzag chains �see Fig. 10�,

�A		�� = ��1,1�,�2,2�	 � �	��2,1� � ��3,1�,�4,2�	

� ��3,2�,�4,1�	 � ¯ � ��N�/2 − 1,1�,�N�/2,2�	

� ��N�/2 − 1,2�,�N�/2,1�	 � �	���N�/2+1,2�, �A2�

FIG. 9. Two types of the reduction to the subsystem A with �a�
diagonal edge and �b� vertical edge. �c� Entanglement entropy of
subsystem for �=4� /5 with N� spins by reduction from N=20 spin
system.

FIG. 10. Two types of the tensor products of the two dimerized
states in Eq. �A6� with diagonal edges for even N� /2 case
�N�=12�, which corresponds to Fig. 6�a�.
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�B		�� = �	��2,1� � ��2,1�,�3,2�	 � ��2,2�,�3,1�	 � ¯

� ��N�/2 − 2,1�,�N�/2 − 1,2�	

� ��N�/2 − 2,2�,�N�/2 − 1,1�	 � �	���N�/2,2�

� ��N�/2,1�,�N�/2 + 1,2�	 . �A3�

We introduce the dimerized states �D� and �D		�� on the
chain with length N� /2,

�D� = �1,2	 � �3,4	 � ¯ � �N�/2 − 1,N�/2	 , �A4�

�D�		� = �	�1 � �2,3	 � ¯ � �N�/2 − 2,N�/2 − 1	 � �	��N�/2.

�A5�

Changing site indexes to decouple the ladder into
two chains, we have equivalences �A		��= �D� � �D�		� and
�B		��= �D�		� � �D� �see Fig. 10�. Here we have introduced

the normalized state �D̃�� �D�− �D↑↓ �D��D↑↓�− �D↓↑ �D��D↓↑�

by the Gram-Schmidt orthogonalization method. Then we
have the following relation:

�̂A �
1

8 �
	,	�=↑↓

���D̃� � �D		�����D̃� � �D		���

+ ��D		�� � �D̃����D		�� � �D̃��	 . �A6�

The approximation holds up to the order O�2−N�/2�
+O�2−�N−N��/2� and the eight summands correspond to the
states shown in Fig. 6�a�. Thus, the entanglement entropy is
obtained as E.E.�−8�

1
8 log 1

8 =3 log 2. In a similar man-
ner, we can calculate the entanglement entropy in the case of
the other geometry. The entanglement entropy counts the de-
grees of freedom of the spins around the edges, although the
Kennedy triplet does not appear in the system with vertical
edge due to the short-range residual interaction between the
localized effective spins.
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