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ABSTRACT: Three types of carbazole containing 1,5-disubstituted poly(2,6-naphthalene) derivatives, i. 

e., 2,6-naphthalene homopolymer that has a carbazolyl side chain at 1,5-positions, random copolymers 

and alternating copolymers consisting of 1,5-dialkoxynaphthalene-2,6-diyl and N-phenylcarbazole-2,7-

diyl were newly synthesized by Ni-mediated Yamamoto polycondensation and Pd-catalyzed Suzuki 

coupling reaction. The number-average molecular weights (Mn) of the polymers and their polydispersity 

indices (Mw/Mn) were 5.4–8.2×103 and 1.4–1.7, respectively. These polymers exhibited blue 

photoluminescence in the film states and high fluorescence quantum efficiencies in CHCl3 (φfl= 0.70–

1.00). The electroluminescence properties of these polymers were investigated by fabricating a PLED 

device that has a configuration of ITO/PEDOT(PSS)/polymer/CsF/Al. The device fabricated with the 

random copolymer exhibited highest performances showing a maximum brightness of 8370 cd/m2 at 13 

V and a maximum efficiency of 2.16 cd/A at 7 V.  
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Introduction 

Low molecular naphthalenes have remarkable inherent properties such as intense fluorescence, strong 

π-stacking, and good chemical stabilities. With these properties, considerable naphthalene derivatives 

have been investigated and used as fluorophores of luminescent materials,[1-5] organic 

semiconductors,[6-11] and a variety of mesogenic cores of liquid crystals.[12-14] In addition to the 

studies based on small molecular naphthalenes, a variety of polynaphthalenes has been developed and 

investigated for each purpose. M. Sato et al. have synthesized for the first time polynaphthalenes that 

have different linkages of 1,4-, 1,5-, 2,6-, and 2,7-positions as conducting polymers.[15] 

Poly(binaphthyl) derivatives have been synthesized as chiral materials by Habaue et al.[16, 17] 

Naphthalene containing polymers have also been attracted attention as luminescent materials, and in 

1997, M. Hohloch et al. first reported the synthesis and electroluminescence (EL) properties of 

poly(2,6-naphthylenevinylene) derivatives, which showed a yellow-green emission with a maximum 

brightness of 70 cd/m2.[18] Since then, several poly(2,6-naphthylenevinylene) derivatives have been 

synthesized to be applied in the PLED and photovoltaic devices.[19-21] Recently, J. Pina et al. have 

reported the spectral and photophysical studies of poly[(2,6-(1,5-dioctylnaphthalene))thiophenes] to 

improve luminescent properties of polythiophene backbone by incorporating the 2,6-naphthalene 

moiety.[22] Curiously, in spite of extensive studies in regard to naphthalene containing polymers, there 

were few reports on conjugated polynaphthalenes. Therefore, we have recently investigated the 

synthesis and optical properties of a variety of polynaphthalene homopolymers and copolymers.[23] 

They exhibited notable optical properties that are dependent on the linkage positions of the naphthalene 

moiety. Among these polymers, the 2,6-linked poly(1,5-dialkoxynaphthalene)s showed the higher 

fluorescence quantum yields (φfl> 0.7) and better polymerization yields compared to polynaphthalenes 

with other linkages. These advantages are attributed to effective extension of π-conjugation along the 

2,6-linked polynaphthalene main chain and less steric hindrance around the 2,6-linkage positions.  

Poly(1,5-dialkoxy-2,6-naphthalene)s that exhibit intense bluish luminescence are expected to be good 

emitters for blue PLEDs. Therefore, we preliminarily fabricated PLED devices that have a configuration 
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of ITO/PEDOT(PSS)/polymer/LiF/Ca/Al using poly(1,5-dialkoxy-2,6-naphthalene) homopolymers and 

alternating copolymers with phenylene as the emitting layer material. However, their EL performances 

were very poor, i. e., the maximum luminances were around 100 cd/m2 even at high operating voltages 

and the EL efficiencies were very low (0.03-0.05 cd/A). This poor result might be due to a large barrier 

of carrier injection from ITO/PEDOT(PSS) (–5.20 eV) to polynaphthalenes (–5.6 eV).[23, 24] In 

addition to the problem of the carrier injection, appropriate carrier mobility in the emitting layer is 

required for efficient EL. To achieve a good hole injection and mobility, we designed new poly(2,6-

naphthalene) derivatives that contain carbazole moieties. Carbazole-based polymers such as poly(N-

phenylcarbazole-2,7-ylene)s have somewhat higher HOMO levels (ca. –5.5 eV)[25] than those of 

polynaphthalenes, while poly(vinylcarbazole) (PVK) has been known as a hole transporting 

material[26] regardless of the low HOMO level (–5.8 eV). Therefore, we adopt two strategies to 

improve performance of poly(2,6-naphthalene) derivatives for PLEDs. One is introduction of carbazole 

side chains into 1,5-positions of the naphthalene moiety of  the poly(2,6-naphthalene) homopolymer, the 

other is random or alternating copolymerization of 1,5-dihexyloxynaphthalene-2,6-diyl and N-

phenylcarbazole-2,7-diyl. In this paper, we report the synthesis of above-mentioned polymers, their 

optical properties, and EL performance of PLEDs. 

 

Experimental 

Materials 

Bis(1,5-cyclooctadiene)nickel(0) (Ni(cod)2) and tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) 

were purchased from Kanto Chemical Co Inc., and were used under an argon atmosphere. 2,6-Dibromo-

1,5-dihydroxynaphthalene (1) was synthesized from 1,5-dihydroxynaphthalene by the procedure in the 

literature.[27] N-(6-Bromohexyl)carbazole (2) was prepared according to a synthetic procedure of N-

alkylcarbazoles with 1,6-dibromohexane.[28] 2,6-Dibromo-1,5-dihexyloxynaphthalene (4), N-phenyl-

2,7-dibromocarbazole (5a) and N-(4-(2-ethylhexyloxy)phenyl)-2,7-dibromocarbazole (5b) were 

prepared according to literature procedures.[19, 29] Other reagents and solvents were purchased from 



 

4

Kanto Chemical, Tokyo Chemical Industry, Aldrich and Nacalai Tesque Inc. N,N-Dimethylformamide 

(DMF), acetonitrile and tetrahydrofuran (THF) were used after purification by distillation using an 

appropriate drying reagent such as molecular sieves and Na, respectively, under argon. Other chemicals 

were used as received without further purification.  

1,5-Bis[6-(carbazol-9-yl)hexyloxy]-2,6-dibromonaphthalene (3) 

1,5-Bis[6-(carbazol-9-yl)hexyloxy]-2,6-dibromonaphthalene (3) was synthesized by the modified 

procedure reported in our previous work.[23] Under an argon atmosphere, a solution of 2,6-dibromo-

1,5-dihydroxynaphthalene 1 (0.76 0g, 2.39 mmol), KOH (0.530 g, 9.45 mmol) in EtOH (25 ml) was 

refluxed for 30 minuets. Afterwards, N-(6-bromohexyl)carbazole 2 (3.20 g, 9.69 mmol) was added to 

the solution, which was successively refluxed for 24 hours, cooled to room temperature, and dissolved 

in CH2Cl2. The organic layer was washed with NaOH aq, water and brine, and was dried over anhyd. 

Na2SO4. After removing the solvent, the resultant black residue was chromatographed on silica gel 

(CH2Cl2/hexane= 1:1) to afford a yellow solid, which was recrystallized from hexane/CH2Cl2 to obtain 

pure 3 (0.80 g, yield: 41 %). 1H NMR (270 MHz, CDCl3) δ = 1.55, 1.65 (m, 8H), 1.91 (m, 8H), 4.01 (t, 

J = 6.43, 4H), 4.35 (t, J = 7.25, 4H), 7.23 (m, 4H), 7.48 (m, 8H), 7.57 (d, J = 9.06, 2H), 7.65 (d, J = 9.06, 

2H), 8.10 (d, J = 7.75, 4H). 13C NMR (270 MHz, CDCl3) δ = 25.9, 27.2, 29.0, 30.1, 43.0, 74.2, 108.5, 

113.7, 118.7, 119.2, 120.3, 122.7, 125.5, 129.9, 130.9, 140.3, 152.5. C46H44Br2N2O2 (816.66): Calcd. C 

67.65, H 5.43, Br 19.57, N 3.43, O 3.92; Found. C 68.64, H 5.69, Br 18.26, N 3.23. 

N-phenyl-2,7-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolate)carbazole (6a) 

Under an argon atmosphere, to a solution of N-phenyl-2,7-dibromocarbazole (5a) (0.150 g, 0.399 

mmol), PdCl2[1,1′-Bis(diphenylphosphino)ferrocene](II) (0.0195 g, 0.0239 mmol), KOAc (0.234 g, 

2.39 mmol) in DMF (5 ml) was added bis(pinacolato)diborane (0.223 g, 0.878 mmol), which was 

refluxed for 24 hours. After cooling to room temperature, CH2Cl2 was added to the solution. The 

organic layer was washed with water  and brine, and was dried over  anhyd. Na2SO4. After 

evaporation, a black residue was obtained, which was purified by a silica gel chromatography 

(CH2Cl2/hexane= 2:1) to afford a white solid. The recrystallization of the solid from EtOH gave pure 6a 
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(0.070 g, yield: 29 %). 1H NMR (270 MHz, CDCl3) δ= 1.33 (s, 24H), 7.60, 7.62, 7.65 (m, 5H), 7.74 (d, 

J = 7.74, 2H), 7.80 (s, 2H), 8.14 (d, J = 7.74, 2H). 13C NMR (270 MHz, CDCl3) δ= 24.9, 83.8, 116.1, 

119.8, 125.4, 125.9, 127.4, 127.6, 129.9, 137.5, 140.9. C30H35BNO4 (495.23): Calcd. C 72.76, H 7.21, N 

2.83; Found. C 72.03, H 6.99, N 2.97. 

N-[4-(2-Ehtyl-hexyloxy)phenyl]-2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolate)carbazole (6b) 

A similar procedure to the synthesis of 6a except for using N-[4-(2-ehtylhexyloxy)phenyl]-2,7-

diiodocarbazole as the starting material was carried out. After recrystallization from EtOH, a white solid 

of 6b was obtained (0.090 g, Yield: 60 %). 1H NMR (270 MHz, CDCl3) δ= 0.98, 0.99 (m, 6H), 1.33 (s, 

24H), 1.51, 1.55 (m, 8H), 1.78, 1.81 (m, 1H), 3.95 (d, 2H), 7.12 (d, J = 9.06, 2H), 7.39 (d, J = 9.06, 2H), 

7.72 (d, J = 7.75, 2H), 7.74 (s, 2H), 8.13 (d, J = 7.75, 2H). 13C NMR (270 MHz, CDCl3) δ= 11.3, 14.2, 

23.2, 24.0, 24.9, 29.2, 30.7, 39.6, 70.8, 83.7, 115.6, 116.1, 119.8, 125.2, 125.6, 128.9, 129.8, 141.4, 

158.6. C38H51BNO5 (623.44): Calcd. C 73.21, H 8.25, N 2.25; Found. C 72.44, H 7.82, N 2.30. 

Poly[1,5-bis[6-(carbazol-9-yl)hexyloxy]-2,6-naphthalene] (P1) 

Under an argon atmosphere, a solution of Ni(cod)2 (0.110g, 0.400 mmol), 2,2’-bipyridine (0.0700 g, 

0.448 mmol) and 1,5-cyclooctadiene (0.100 g, 0.924 mmol) in DMF (1 ml) was heated to 80 °C for 30 

minutes. The monomer 3 (0.150 g, 0.184 mmol) dissolved in THF (1 ml) under argon was added to the 

DMF solution. The reaction solution was heated at 80 °C for 2 days. After the reaction solution was 

cooled to room temperature, the resultant polymer was precipitated from methanol/HCl aq, and 

reprecipitated from methanol/NH3 aq and from methanol, respectively, to afford P1 (0.10 g) as a light 

yellow solid (yield: 85 %). 1H NMR (270 MHz, CDCl3) δ = 0.98, 1.09 (br, 8H), 1.34, 1.52, 1.68, 1.79 

(m, 8H), 3.56 (br, 4H), 3.99 (t, 4H), 7.02, 7.04, 7.07, 7.14, 7.29 , 7.90, 7.97(m, aromatic-CH). 13C NMR 

(270 MHz, CDCl3) δ = 25.8, 26.8, 29.0, 30.1, 43.0, 73.5, 108.5, 114.6, 118.7, 120.2, 122.6, 125.5, 129.8, 

140.2, 152.7. (C46H44N2O2)n (656.87)n: Calcd. C 84.11, H 6.75, N 4.26, O 4.87; Found. C 83.04, H 6.75, 

N 4.08. 

Poly[1,5-dihexyloxy-2,6-naphthalene-co-N-(4-hexyloxyphenyl)-2,7-carbazole] (P2) 
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Under an argon atmosphere, a solution of Ni(cod)2 (0.133g, 0.485 mmol), 2,2’-bipyridine (0.0757 g, 

0.485 mmol) and 1,5-cyclooctadiene (0.0524 g, 0.485 mmol) in DMF (1.4 ml) was heated to 80 °C for 

30 minutes. The monomer 4 (0.100 g, 0.206 mmol) and 5a (0.0182 g, 0.0364 mmol) dissolved in 

toluene (1.4 ml) under argon were added to the DMF solution. The reaction solution was kept heating at 

80 °C for 3 days. After the reaction solution was cooled to room temperature, the resultant polymer was 

precipitated from methanol/HCl aq, and reprecipitated from methanol/NH3 aq and from methanol, 

respectively, to afford P2 as a light yellow solid (0.060 g , yield: 88 %). 1H NMR (270 MHz, CDCl3) δ 

= 0.78–1.60 (br, –CH2–CH3, 30H ) 3.76, 4.16 (br, O–CH2, 5H), 6.84–7.11, 7.51–8.26 (br, Ar–H, 7H). 

13C NMR (270 MHz, CDCl3) δ = 14.1, 22.7, 25.7, 25.8, 26.1, 29.4, 30.3, 31.7, 68.3, 73.9, 104.9, 110.6, 

114.7, 115.6, 117.2, 117.8, 118.5, 119.9, 121.9, 126.6, 127.4, 127.7, 128.5, 128.9, 129.4, 129.6, 129.9, 

130.7, 136.7, 142.0, 152.4, 152.8, 155.0, 158.4. (C25.6H33.45N0.15O2.15)n (377.69)n: Calcd. C 81.43, H 8.93, 

N 0.56, O 9.11; Found. C 81.29, H 8.38 N 0.71. 

Poly[1,5-dihexyloxy-2,6-naphthalene-co-N-[4-(2-ethylhexyloxy)phenyl]-2,7-carbazole] (P3) 

P3 was similarly synthesized according to the synthetic procedure of P2 except for using 5b in the 

feed ratio of 4 : 5b = 50 : 50, to afford a pale yellow solid (0.033 g) in 33 % yield. 1H NMR (270 MHz, 

CDCl3) δ = 0.70–1.88 (br, m, –CH2–CH3, 27H), 3.53, 3.88 (br, O–CH2, 3H), 6.75, 7.07 (br, m, Ar–CH2, 

2H), 7.29–8.14 (m, Ar–CH2, 10H). 13C NMR (270 MHz, CDCl3) δ =11.3, 14.2, 22.6, 22.7, 23.2, 24.0, 

25.7, 26.1, 29.2, 29.4, 30.3, 30.7, 31.7, 39.6, 68.2, 70.8, 76.5, 108.6, 110.6, 114.5, 115.6, 117.8, 119.9, 

120.3, 121.6, 122.0, 126.0, 126.3, 128.0, 128.6, 128.8, 129.7, 130.0, 131.0, 136.7, 140.2, 142.0, 142.3, 

152.0, 152.4, 154.9, 158.6. (C48H57NO3)n (695.97)n: Calcd. C 82.84, H 8.26, N 2.01, O 6.90; Found. C 

82.60, H 7.94, N 2.67. 

Poly(1,5-dihexyloxy-2,6-naphthalene-alt-N-phenyl-2,7-carbazole) (P4) 

Under an argon atmosphere, a solution of 4 (0.0982 g, 0.202 mmol), 6a (0.100 g, 0.202 mmol), and 

Pd(PPh3)4 (0.00233 g, 0.00202 mmol) in toluene (2 ml) was heated to 85 °C for 10 minutes, and then 

2M K2CO3 aq (2 ml) was added to the reaction solution, which was reacted at 85 °C for 3 days. After 

the reaction solution was cooled to room temperature, the resultant polymer was precipitated from 
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methanol/HCl aq, reprecipitated from methanol/NH3 aq and methanol, respectively, to afford a pale 

green solid of P4 (0.110 g, yield: 95 %). 1H NMR (270 MHz, CDCl3) δ = 0.69–1.52 (br, m, –CH2–CH3, 

22H ) 3.54, 4.04 (br, m, O–CH2, 4H), 7.18–8.20 (br, m, Ar–H, 15H). 13C NMR (270 MHz, CDCl3) δ = 

14.1, 22.6, 25.8, 30.4, 31.7, 73.9, 110.6, 117.8, 118.3, 120.0, 122.0, 122.2, 127.2, 127.5, 129.1, 129.7, 

129.9, 130.5, 136.8, 137.5, 141.5, 152.4, 152.6. (C40H41NO2)n (567.77)n: Calcd. C 84.62, H 7.28, N 

2.47; Found. C 76.80, H 6.92, N 2.25. 

Poly[1,5-dihexyloxy-2,6-naphthalene-alt-N-[4-(2-ethylhexyloxy)phenyl]-2,7-carbazole] (P5) 

P5 was similarly synthesized according to the synthetic procedure of P4 except for using 6b as the 

monomer to obtain a pale yellow solid (0.065 g) in 73 % yield. 1H NMR (270 MHz, CDCl3) δ = 0.69–

1.52 (br, m, –CH2–CH3, 22H ) 3.54, 4.04 (br, m, O–CH2, 4H), 7.18–8.20 (br, m, Ar–H, 15H). 13C NMR 

(270 MHz, CDCl3) δ = 14.1, 14.2, 22.6, 22.8, 25.7, 25.8, 30.4, 31.7, 31.8, 73.9, 74.5, 110.6, 113.3, 

117.8, 118.4, 120.0, 122.0, 122.1, 122.2, 122.3, 127.2, 127.5, 129.1, 129.7, 129.9, 130.9, 136.3, 136.8, 

137.5, 141.5, 152.4, 152.6. (C48H57NO3)n (695.99)n: Calcd. C 82.84, H 8.26, N 2.01; Found. C 79.77, H 

7.95, N 1.84. 

 

Characterization of materials 

1H NMR and 13C NMR spectra were measured with a JEOL EX-270 at 270 MHz in CDCl3. 

Photoluminescence and UV-vis absorption spectra of materials in CHCl3 and coating polymer films on 

a quartz glass plate were recorded on a U-3500 spectrophotometer (Hitachi) and a FP-750 

spectrofluorometer (Jasco). The fluorescence quantum yields in CHCl3 were estimated using 9,10-

diphenylanthracene (φfl= 0.90) in cyclohexane as a standard. Average molecular weights (Mn and Mw) 

of the polymers were estimated by gel permeation chromatography (GPC) using polystyrene standards 

in THF. Thermal gravimetric analysis (TGA) was carried out by EXTAR 6000 TG/DTA (SII) at a 

heating rate of 10 °C/min under an argon atmosphere. Electrochemical measurements of the polymers 

were carried out by cyclic voltammetry with a polymer film coated on a Pt disc electrode (diameter: 5 

mm) as the working electrode, a Pt plate as the counter electrode and a saturated calomel electrode 
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(SCE) as the reference electrode in acetonitrile (0.1 M Et4NBF4) at a scan rate of 50 mV/s under an 

argon atmosphere. Ionization potentials (vs vacuum) of the polymers were estimated from the onset of 

their oxidation in cyclic voltammograms on the basis that ferrocene/ferrocenium is 4.8 eV below the 

vacuum level,[30] and the HOMO levels were basically followed by the equation: HOMO level= Eonset 

+ 4.4.[31] 

 

Fabrication of PLED 

The EL devices were fabricated on a patterned indium tin oxide (ITO) coated (150 nm) glass substrate 

with a sheet resistance of 10.2–11.8 Ω/sq. The substrate was cleaned with a 10 % base solution (Clea 

635N, Kanto Chemical Co Inc.) in an ultrasonic bath for 5 minutes, washed under running water for 5 

minutes, dried using a spincoater, and irradiated with a UV light (NL-UV253, Filgen). On top of the 

substrate, an aqueous solution of poly(ethylenedioxthiophene) doped with poly(styrenesulfonate) 

(Baytron P VP AI 4083, H. C. Starck) was spin-coated in 90 nm thickness, then dried on a hot plate at 

200 °C for 15 minutes. After cooling to room temperature, polymers in toluene (0.80–1.30 wt %) were 

spin-coated on the substrate. For the polymers which were difficulty in dissolving in toluene at the 

concentration, a small amount of 1,2-dichloroethane was added. After the spin-coating, the devices were 

dried under a pressure of 0.3 Torr at room temperature for 90 minutes. The emitting layers were 

obtained in 40–90 nm thickness. After that, CsF was vacuum-deposited in 2 nm thickness and finally Al 

was deposited in 150 nm thickness under 1.5–2.3×10-6 Torr.  

 

Results and discussion 

Synthesis and characterization of polymers 

The synthetic routes of the polymers are shown in Schemes 1, 2 and 3. The polymerization results are 

summarized in Table 1. As shown in Scheme 1, the homopolymer (P1) was prepared from 3 by the Ni-

mediated dehalogenative polycondensation.[32, 33] The number-average molecular weight (Mn) of P1 

was 5.4×103, and the degree of polymerization (DP) was 8. The carbazole moiety in the side chain 
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might decrease the solubility of the polymer, which resulted in the low Mn. Scheme 2 shows the 

synthetic route of the random copolymers P2 and P3, which were prepared by the Ni-mediated 

polymerization using a mixture of monomers (2,6-dibromo-1,5-dihexyloxynaphthalene and 2,7-

dihalogeno(N-phenyl)carbazole derivatives) in the molar ratio of 85:15 for P2 and 50:50 for P3, 

respectively. Both polymers were soluble in common organic solvents such as THF, CHCl3, and DMF. 

The polymerization results indicated that P2 had the higher molecular weight than P3. The composition 

ratios of the naphthalene and carbozaole units in P2 and P3 were estimated by elemental analysis and 

1H NMR. The composition ratios found for P2 and P3 were almost same to the feed ratios. Scheme 3 

shows the synthetic route of the alternating copolymers (P4 and P5) that are synthesized by the Pd-

catalyzed Suzuki coupling reaction[34] using 2,6-dibromo-1,5-dihexyloxynaphthalene 4 and 

corresponding carbazole-2,7-diboronic acid ester. P4 was poor soluble in organic solvents, which is due 

to having no alkyl side chains at the carbozole unit. On the other hand, P5 having the 2-ethylhexyloxy 

side chain at the carbazole unit showed a good solubility. Figure 1 shows TGA curves of the polymers 

under an argon atmosphere. Temperatures at 5 wt % loss in TGA of P1-P5 were 369, 365, 381, 365, and 

366 °C, respectively, which suggest that these polymers have high thermal stability. 
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Scheme 1. Synthetic route of P1. 
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Scheme 2. Synthetic route of P2 and P3. 
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Scheme 3. Synthetic route of P4 and P5. 

 

Table 1. Polymerization results. 

Polymer 
Yield 

(%) 
Mn (×103)a Mw (×103)a 

Td
b 

(° C) 

Ratio of 

naphthalene:carbazole 

P1 85 5.4 8.1 369 ― 

P2 88 8.2 13.4 365 83 : 17c 89 : 11d 

P3 33 5.9 8.3 381 32 : 68c 48 : 52d 

P4 95 6.9 11.9 365 ― 
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P5 73 7.7 12.7 366 ― 
a Average molecular weights were determined by using polystyrene standards in THF. 
b Decomposition temperature (5% weight loss). 
c Estimated by elemental analysis. 
d Estimated by 1H NMR. 
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Figure 1. TGA curves of the polymers at a heating rate of 10°C min-1 under Ar. 

 

Absorption and photoluminescence properties 

Figure 2 shows the absorption and photoluminescence (PL) spectra of P1-P5 in CHCl3, and the 

spectral results are summarized in Table 2. All the polymers showed an absorption band around 300-

380 nm, which is due to π-π* transition of the conjugated main chain. In the previous papers, the 

absorption maxima (λmax) of poly(2,6-naphthalene) and poly(N-phenylcarbazole-2,7-ylene) were found 

at around 330 nm and 380 nm, respectively,[23, 29] which means that the former has shorter π-
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conjugation length than the latter.  P1 that is the homopolymer of the naphthalene unit showed the 

absorption λmax at about 330 nm with sharp and distinct absorption peaks at 333 and 341 nm. The two 

additional absorption bands are attributed to the carbazole portion in the side chains.[35] P2 and P3 that 

are the random copolymers of the naphthalene and carbazole units showed λmax at 349 and 373 nm, 

respectively. The presence of the carbazole unit in the polymer main chain contributes to increase the π-

conjugation of the polymer. Similarly, P4 and P5 that are alternating copolymers of the naphthalene and 

carbazole units showed almost the same absorption λmax at about 365 nm. Consequently, P3 showed the 

longest absorption λmax. The highest content of the carbazole portions might contribute the longest 

conjugation, otherwise the random copolymerization might have an advantage to take more coplanar 

conjugated sequences in the polymer.  

 

Table 2. Absorption and photoluminescence spectral data of the polymers. 

 Abs. λmax (nm) PL λmax (nm) CIE (x, y) 

polymer in CHCl3 filmb in CHCl3 filmb film 
φfl

a 

P1 333, 341 334, 348 385 386, 461 0.15, 0.15 0.70 

P2 349 350 390 407, 478 0.14, 0.20 0.90 

P3 373 369 412 431,c 453, 483c 0.15, 0.13 1.00 

P4 364 365 404 417, 452, 480 0.16, 0.15 0.78 

P5 365 380 402 415, 455, 484 0.15, 0.17 0.97 
a Fluorescence quantum efficiencies in CHCl3 were determined by using 9,10-diphenylanthracene in 
cyclohexane (φfl= 0.90) as a standard. 
b Polymer films cast on a glass substrate from a CHCl3 solution. 
c Shoulder peaks. 
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Figure 2. UV-vis and PL spectra of the polymers in CHCl3. 

 

The PL spectra of the polymers in CHCl3 are also dominated by the electronic properties of each 

polymer backbone. The PL spectrum of P1 was typical of poly(2,6-naphthalene)s, which had an 

emission peak at around 390 nm in the region of blue-violet color. The PL peaks of P2-P5 were found 

in the longer region in wavelength than P1. Of all the polymers, P3 had the emission peak at 412 nm 

that was the longest in wavelength, and the PL spectrum was close to that of poly(N-phenylcarbazole-

2,7-ylene).[29] These red shifts are dependent on the conjugation length of each polymer main chain. 

The fluorescence quantum yields of these polymers in CHCl3 were high (φfl= 0.70–1.00), being 

comparable to polycarbazoles and polyfluorenes.  

The absorption and PL spectra of the polymers in the thin solid film state are shown in Figure 3, and 

the optical data are summarized in Table 2. In all cases, the absorption maxima were slightly red-shifted 

compared with those in solution, which is due to increase of coplanarity of the polymer backbones in 

the thin film state. In contrast, the PL spectra were quite different from those in solution, i. e., more or 
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less three peaks (or shoulders) in the region of 380-500 nm and a tailing band in the longer region were 

observed. In the case of P1, the spectrum with apparent two emission bands at 386 and 461 nm is 

typical of poly(1,5-dialkoxy-2,6-naphtahlene)s that usually have two emission bands at about 400 and 

480 nm.[23, 36] The random copolymer P2 in which the rate of content of the naphthalene units is 

higher than the carbazole unit shows a poly(naphthalene)-based PL spectrum having λmax at 407 and 

478 nm. While, the random copolymer P3 in which the rate of content of the carbazole unit is highest 

shows a poly(carbazole)-based PL spectrum having the intense band at 453 nm with shoulder bands at 

about 431 and 481 nm, which is similar to those of poly(2,7-carbazole)s in the film state.[29] The PL 

spectra of the alternating copolymers, P4 and P5, are similar each other and basically consist of three 

PL bands (at around 415, 450, and 480 nm) and the tailing one in the longer region (>500 nm). In all 

cases, the PL peak that is observed shortest in wavelength originates from excited states of conjugated 

sequences having considerable dihedral angles in isolated polymer chains, which could be almost 

identical to the emission in dilute solution. The other peaks in the longer wavelength and the tailing 

band have possibilities of emissions from ground state aggregates and excimeric emissions. To present 

clear explanations, we need more detail experiments in PL spectroscopy.  

In spite of broadening of the PL spectra by overlapping of each PL band in the film state, their PL 

colors are within the range of pure blue as the CIE coordinates shown in Table 2 suggest. 
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Figure 3. UV-vis and PL spectra of the polymers in the film states. 

 

Electrochemical properties 

The HOMO energy levels of the polymers are estimated by the conventional electrochemical 

method,[30, 31] and the results are summarized in Table 3. The onsets of the oxidation peak of the 

polymers were in the range of 1.26–1.30 V (vs. SCE), which means that the HOMO levels are almost 

equal around 5.64–5.68 eV and also almost identical to the HOMO level of poly(1,5-bis(dihexyloxy)-

2,6-naphthalene) (5.65 eV) whether or not the polynaphthalene has the carbazole unit in the main chain. 

The structural differences between the random and alternating copolymers also little affect the HOMO 

level of the materials. 
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Table 3. Electrochemical characteristics of the polymers. 

 Eonset (V vs SCE) HOMO (eV) LUMO (eV) Eg (eV)a 

P1 1.26 –5.64 –2.64 3.00 

P2 1.30 –5.68 –2.88 2.80 

P3 1.30 –5.68 –2.88 2.80 

P4 1.30 –5.68 –2.98 2.70 

P5 1.30 –5.68 –2.78 2.90 
a Energy gaps were estimated from the onset of absorption spectra in the film state. 

 

Electroluminescence properties 

The EL properties of the polymers are investigated by constructing PLED devices that have a 

configuration of ITO/PEDOT(PSS)/polymer/CsF/Al, and the results are summarized in Table 4.  Figure 

4 displays luminous intensity-current density-voltage (L-J-V) characteristics of the devices. Their turn-

on voltages were observed at 6–7 V with a little difference, which suggests that interfacial barriers of 

carrier injection are similar each other. On the other hand, the maximum brightness (Lmax) was different 

depending on the polymer backbones. Figure 5 shows typical of the EL spectra of P1–P5 observed at 9 

V, which are almost invariant in the range of operating voltages from 7 to 12 V. All the EL spectra that 

have an emission peak at around 490 nm are simpler and narrower than corresponding PL spectra in the 

film state. Their emission colors were in the range of blue green to green by reference to the CIE 

coordinates of P1–P5. These spectra are very similar to those of poly(2,6-naphthalene)s having strong 

red-shifted emissions at around 480 nm discussed in the PL spectra in the film state. 

The device using P1 exhibited Lmax of 500 cd/m2 at 12 V, which is more than ten times higher in 

comparison with the results of devices using other poly(2,6-naphthalene)s in our preliminary 

investigation. This improvement is attributed to the carbazole side chain assisting hole injection and 

transport. The devices using P2 and P3 that are random copolymers exhibited significantly high Lmax of 

6040 cd/m2 at 10 V for P2 and 8370 cd/m2 at 13 V for P3, respectively. Of all the polymers, P2 showed 

the highest maximum current efficiency (ηmax) of 2.16 cd/A that is superior to poly(N-aryl-2,7-
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carbazole)s reported recently.[34] Furthermore, Figure 6 shows EL spectra of P2 under operating 

voltages in the range from 7 to 15 V. Little spectral change of EL during the operating voltages suggests 

high color stability of the device.  On the other hand, Lmax of the devices fabricating with P4 and P5 

were rather low, being 50 cd/m2 and 90 cd/m2, respectively. Consequently, the random copolymers 

exhibited significantly higher performances than the other polymers in this work. The results of 

electrochemical properties showed no evidences of raising HOMO levels, which suggests that carrier 

injection is little reflected on these performances. A conformational disorder in random copolymers 

might prevent undesirable packing that decreases the EL performances, and make effective conjugation 

sequences for carrier transport. 

 

Table 4. Electroluminescence characteristics of the polymers. 

polymer 
Turn-on voltage a 

(V) 

EL λmax
b 

(nm) 

Lmax 

(cd/m2[V]) 

ηmax 

(cd/A [V]) 
CIE (x, 

y)b 

P1 7 488 500 [12] 0.16 [10] 0.20, 0.30

P2 6 488 6040 [10] 2.16 [7] 0.17, 0.29

P3 6 491 8370 [13] 0.90[9] 0.20, 0.32

P4 7 500 50 [12] 0.10 [8] 0.22, 0.41

P5 7 503 90 [15] 0.15 [8] 0.21, 0.43
a Light output of 1 cd/m2. 
b At 9 V. 
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Figure 4. Luminance–current-voltage characteristics of the devices; open circle: P1, open triangle: P2, 
filled circle: P3, filled triangle: P4, open square: P5.  
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Figure 5. EL spectra of the devices fabricated with P1–P5 at 9 V operating voltage. 
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Figure 6. EL spectra of P2-device under operating voltages in the range of 7–15 V. 

 

Conclusions 

Novel poly(2,6-naphthalene) derivatives having the carbazole portions in the side chain and main 

chain were synthesized. They exhibited blue-violet PL with high PL quantum efficiencies of φfl= 0.70–

1.00 in CHCl3, while they showed pure blue PL in the film state. The considerable red-shifts of PL 

observed in the film state are mostly attributed to interactions between the planar naphthalene portions 

and fluorophores. We fabricated the PLED devices that have a configuration of 

ITO/PEDOT(PSS)/polymer/CsF/Al using these polymers as the emitting layer materials, and 

investigated their EL performances for the first time. Characteristics of these PLED devices are 

summarized as below, i. e., they emitted blue-green to green with an EL λmax at around 490 nm, and 

their EL spectra were invariant and stable during the operating voltages (6-12 V). This suggests that EL 

of these devices are all dominated by the emissions from the conjugated sequences that include π-stacks 



 

21

with the planar polynaphthalene backbones. P1 that is the polynaphthalene homopolymer having the 

carbazole side chain surely showed an improved EL performance than poly(naphthalene)s that we have 

previously synthesized. The carbazole side chains might assist carrier injection and transport in the 

emitting material. The devices embedded with the random copolymers (P2 and P3) as the emitting layer 

materials exhibited high performances of their brightness and efficiencies, respectively. In addition, the 

ηmax of P2 (2.16 cd/A) exceeds those of polycarbazole-based PLED devices that have the same 

configuration.[25] The random copolymerization might bring about preferable conjugated sequences of 

fluorophores for the stable EL with a balanced carrier transport in these cases. On the other hand, the 

alternating copolymers of naphthalene and carbazole units (P4 and P5) showed disappointing EL 

performances. Absence of the strongly emissive polycarbazole sequences in the alternating copolymers 

might result in the low performance. In conclusion, we have demonstrated that polynaphthalenes have a 

possibility to be applied in optoelectronic materials in this paper, although the polymers must be 

modified by taking into account the specific π-electronic interaction of naphthalene portions for further 

practical applications. 
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Captions 

Scheme 1. Synthetic route of P1. 

Scheme 2. Synthetic route of P2 and P3. 

Scheme 3. Synthetic route of P4 and P5. 

Figure 1. TGA curves of the polymers at a heating rate of 10°C min-1 under Ar. 

Figure 2. UV-vis and PL spectra of the polymers in CHCl3. 

Figure 3. UV-vis and PL spectra of the polymers in the film states. 

Figure 4. Luminance–current-voltage characteristics of the devices; open circle: P1, open triangle: P2, 

filled circle: P3, filled triangle: P4, open square: P5. 

Figure 5. EL spectra of the devices fabricated with P1–P5 at 9 V operating voltage. 

Figure 6. EL spectra of P2-device under operating voltages in the range of 7–15 V. 

Table 1. Polymerization results. 

Table 2. Absorption and photoluminescence spectral data of the polymers. 

Table 3. Electrochemical characteristics of the polymers. 

Table 4. Electroluminescence characteristics of the polymers. 

 


