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SMOOTHLY SYMMETRIZABLE SYSTEMS AND
THE REDUCED DIMENSIONS II

By

Tatsuo NisHITANI* and Jean VAILLANT!

1. Introduction

Let L be a first order system

n

L(x.D) =" 4(x)D;
=1
where A; =1 is the identity matrix of order m and A;(x) are m x m matrix
valued smooth functions. In this note we continue the study [1] on the ques-
tion when we can symmetrize L(x, D) smoothly. In particular we discuss some
connections between the symmetrizability of L(x, D) at every frozen x and the
smooth symmetrizability. Let L(x,&) be the symbol of L(x,D):

L(x,8) =Y 4;(x)& = (¢](x, )],
Jj=1

where ¢;(x, &) stands for the (i, j)-th entry of L(x,&) which is linear form in &.
Recall that

d(L(x,-)) = dim span{gzﬁ}(x, )}

is called the reduced dimension of L at x. This is nothing but the dimension of
the linear subspace of M (m;R), the space of all real m x m matrices, spanned by
A1), A ().

Our aim in this note is to prove

THEOREM 1.1.  Assume that L(x, &) is symmetrizable at every x near X, that is
there exists a non singular matrix S(x) which is possibly non smooth in x such that
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S(x)'L(x,&)S(x) is symmetric for every & and the reduced dimension of L(%,-) >
m(m+1)/2 —[m/2] and m > 3. Then L(x,&) is smoothly symmetrizable near X,
that is there is a smooth non singular matrix T(x) defined near X such that

T(x) " L(x,&)T(x)

is symmetric for any ¢ and any x near X.

In the series of papers [2], [3], [4] and [5] the second author proved that if
L(D) is strongly hyperbolic and the reduced dimension of L(-) > m(m+1)/2 -2
then there exists a constant matrix S such that S™'L(&)S is symmetric for every
¢. Combining with the above theorem we conclude that the strong hyperbolicity
of L(x,D) at every frozen x implies the strong hyperbolicity of L(x,D) if the
reduced dimension of L(x,-) >m(m+ 1)/2 —2. This result, when the reduced
dimension of L(x,-) >m(m+1)/2 — 1, was proved in our previous paper [1].

2. A Lemma

Recall that L(x,&) = (¢;(x, ¢));;—1 where i and j denotes i-th row and j-th
column respectively.

Lemma 2.1.  Assume that there exist two rows, say p-th and q-th rows such
that ¢/ (%,-), 1 <j<m, ¢](X,-), 1 <i<m, i # p are linearly independent and
for every x we can find a positive definite H(x) such that
(2.1) L(x,&)H(x) = H(x)'L(x,&).

Then H(x)/hl(x) is smooth near X where we have denoted H(x)= (hj(x)).

Proor. Since Af(x) >0 then H(x)/hf(x) is again positive definite and
verifies (2.1). We denote H(x)/h}(x) by H(x) again. Let us consider the (p, j)-
th entry of the equation (2.1):

m

(2.2) Z¢ (x5, )F(x) = Y il (x, Ehf (x) = 0.
k=1
Take j = ¢ then we get
D B N (x) — HLx, Y (x) = il (x, €)
k= k=1,k#p

because //(x) = 1. To simplify notations let us write
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{#f1<k<mg/1<j<m,j#p}={0;]1<j<2m—1}
{hy, 1 <k<mh' 1< j<mj#p}={yll<j<2m—1}.

Since 6;(x,-) are linearly independent, with

$) = Z Ci(x)&k
=1

one can find j; < --- < jo,—1 so that
- 2m—1
det(C; (x)); %=y # 0

which holds near X. Then solving the equation
Z =smooth, k=1,2,....2m—1

we conclude that y;(x) are smooth near X.
We next study (2.2) with j (# ¢):

D o Hx = l(x, Ohf(x
k=1 k=1

Since hf(x), 1 <k <m are smooth near X, applying the same arguments as
above we conclude that hj1 (x),...,h/"(x) are smooth near X because #r(x,), 1<
k < m are linearly independent. This shows that H(x) is smooth near X and hence
the result. O

3. A Special Case
Let us denote J = {(i,)|i > j} and J = {(i,))|i > j}. We show

ProproSITION 3.1. Let m =4 and d(L(X,-)) = 8. Assume that L(X,&) is sym-
metric and for every x near X there is a positive definite H(x) such that

L(x,&)H(x) = H(x)'L(x,¢).
Then there is p such that H(x)/hl(x) is smooth near X.
ProOF. We first note that for any permutation matrix P, P~'L(x,&)P

verifies the hypothesis with H(x) replaced by P~'H(x)P and if the statement
holds for P~'H(x)P then so does for H(x). Let us denote by E(i, ) the matrix
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obtained from the zero matrix by replacing the (i, j) entry by 1. Then for a
permutation matrix P we define the index (i, /)" by

PUE(, j)P = E((i,))")-
Let K be a subset of indices (i, /) then we denote

Kp={(i,)"1(,]) € K}.
We devide the cases into three according to the dimension of E:

E= span{(/ﬁjf‘()‘c7 Jli> j}.

Note that 4 < dim E < 6 by our assumption.

I) dim £ =6. This shows that there are two u,v such that ¢/(X,-) and
¢,(X,-) are linear combinations of the other ¢/(%,), (i, /) € J\{(x, #), (v,v)} which
are linearly independent. The two rows which contains neither ¢//j nor ¢, verify
the hypothesis of Lemma 2.1 and hence we have the assertion thanks to Lemma
2.1.

II) dim £ = 4. By the assumption there are (p,q), (p,q) € J such that ACK!
and ¢§()€,~) are linear combinations of ¢/(x,-), (i,7) € J\{(p,q),(p,9)} = J\K
where we have set

K={(p,9), 9}

Taking a suitable permutation matrix P we may assume that (2,1) € Kp. We
drop the suffix P in Kp. We still devide the cases into two:

II), the other entry of K is on the third row

IT), the other entry of K is on the last row.
Assume II),. Then either K = {(2,1),(3,1)} or {(2,1),(3,2)}. Recall that

(3.1) L(x, O)H(x) = H(x)'L(x,).

Dividing H(x) by /(x) which is positive we may suppose that /4 (x) = 1 in (3.1).
Let us put

H(x) = "(hy (x), h3 (), B3 (x), hy (), B (x), g (), 3 (x), 15 (), 3 (%))

Equating the (1,2),(1,3),(1,4),(2,3),(2,4), (3,4)-th entries in both sides of (3.1)
in this order, we get

(3.2) L(x,&)H(x) = F(x,&)

where L(x,&) is a 6 x 9 matrix and
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F(x,8) = (0,0, =¢4 (x,€),0, =43(x, &), =43 (x,€)).
We choose ¢V so that
pr(x,V) =1, ¢/(x,V) =0, V(i) ¢K, (i) #(1,1),i= .
Note that we have
(33) ¢;(x,cV) =0, V(@ j) #(1,1)

because for (i, ) € K, (/ﬁj(fc, -) is a linear combination of ¢/’(5c, D, i>J, (,))¢K
and L(%,-) is symmetric. We take the first three equations in (3.2) with & = &(U.
We next choose f@ so that

HEE) =1 ) =0, V@) ¢K 2] (i])#(22)
and take 4-th and 5-th equations of (3.2) with &= E@ . Choose ¢@ so that
$(xcN) =1, g%V =0, V@, )EK, iz () #(33)
and take the 6-th equation of (3.2) with & = &3 We choose é(4>,é(5),é(6> so that
$ (%) =1, (=) =0, V(uv) K, u>v

where j=1,2,3 and take 3-rd, 5-th and 6-th equations of (3.2) with &= W
e £ respectively. Collecting these nine equations we get

(3.4) M(x)H(x) = G(x)
where
G(x) =—"(0,0, 4 (x, EM),0, 7 (x, E)), 43 (x, E0)), 64 (x, W), h3 (x, D)), 63 (x, £9))

and M(x) is a 9 x 9 matrix. It is easy to see that

1 0
10) S0 1
M(x) = 0 1
-1 0 0
0 -1 0 *
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Then M (X) is non singular and hence near X there is a smooth inverse of M(x)
and hence

which proves the assertion.

We turn to the case II),. If the entry on the last row is (4, j) # (4,3) then by
P7'L(x,¢)P with a suitable permutation matrix this case is reduced to the case
II),. Thus we may assume that the reference entry of K is (4,3). We choose the
same é“), . ,é<5> and the same eight equations of (3.2) with & = f“), . ,§<5> as
in the case II),. Choose E© 5o that

AEED) =1, ¢(xD) =0, Y@ )¢k () #G1),i>]
and take the 2-nd equation of (3.2) with & = ¢® . Then M(x) in (3.4) at X yields

1 0
0 0 1
M(X) = 0 1
-1 0 0
0 -1 0 %
-1 0 1

This is invertible and we get the desired assertion.

IT) dim E = 5. By the assumption there is (i, jo), io > jo such that ¢/’;’ (x,-)
is a linear combination of ¢;(X,-), (i, ) # (io, o), i > j and there is s such that
¢;(X,-) is a linear combination of ¢;(X,-), i = j, (i,j) # (s,5), (io, jo). Let us set

K = {(s,5), (io, jo)}-

Considering P~'L(x,¢)P with a suitable permutation matrix we may assume
that (1,1) € K. Again taking P~'L(x, )P we may suppose that either K = {(1,1),
(2,1)} or K={(1,1),(3,2)}. Note that at least two of

(91 =), (B =), ( — d)(E)
are linearly independent when gb; (x,-)=0,i>j, (i,j) ¢ K by the assumption. Let

us assume that (¢11 - ¢§)(X, ’)’ (¢11 - ¢2)(X', ')) ¢;(X7 ')a i> j’ (la ]) ¢ K are linearly
independent. We choose 6(8),6(9) so that
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(¢ — )Y =1, ¢/(x,¥) =0, V(G j)¢K, i>

(1 — ¢ (® D) =1, ¢i(x,V) =0, V(i j)¢K, i>]
and take the second and third equations of (3.2) with & = é(8>,é(9). Choose the
same f<2>,f<3>,f<4), 6(5), E©) and the same equations as before, that is 4-th, 5-th of
(3.2) with & = E?), 6-th of (3.2) with & =¢®)| 3-rd, 5-th, 6-th of (3.2) with & =
é(4>,f(5),f(6) respectively. Finally we choose E7 5o that

$x D) =1, gz =0, Vi, j)¢K,i> ) (i,)) # (4.2)

and take the third equation of (3.2) with ¢ = ED. Then we get the equation
(3.5) M(x)H(x) = G(x)
where G(x) is
—(0,4(x,E™),0,03(x,E@), 3 (x,EY), 63 (x, W), 47 (x,€9), 93 (%, €9), 3 (x,E7)).

It is easy to see that

1 0
0 0 1
0 1
M(x) =
-1 0 0 0
0 -1 0 0 *
0 0 -1 0

which is non singular. Thus we get the desired assertion. The remaining case can
be proved by the same arguments. O

4. Proof of Theorem

We first show the next lemma.

LemmA 4.1.  Let m > 3. Assume that L(X,&) is symmetric m X m matrix with

d(L(%, ) > ”l(’”;l)m
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and for every x near X there is a positive definite H(x) such that
(4.1) L(x,&)H(x) = H(x)'L(x, ).
Then there is a 1 < p <m such that H(x)/hl(x) is smooth near X.

ProOF. We prove this lemma by induction on the size of the matrix L(x,&).
When m =3 or m =4 with d(X,-) = 9, the assertion was proved in our previous
paper [1] (see the proof of Theorem 1.1 in [1]) and the case m = 4 with d(x,-) =8
is just Proposition 3.1. Suppose that the assertion holds for L(x,¢) of size at most
m—1 with m > 5. Let

so that m =2k or m =2k + 1. We devide the cases into two.
Case I:

dimspan{q#(fc, Ji>jt= M— m—k,

and
Case II:

dim span{gbj(fc, Ji>j} = w

-m—k+1.
We first treat Case I. We denote by K the set of indices (i, j), i > j such that
¢!(%,-), (i, ) € K are linear combinations of the other m(m + 1)/2 — m — k entries

¢f()’c, -), i > j which are linearly independent. By the assumption, ¢;(Sc, D, 1=,
(i, j) ¢ K are linearly independent. Considering P~'L(x, )P with a suitable per-
mutation matrix P, we may assume that (2,1) € Kp. As before we drop the suffix
P in Kp. We further devide Case I into two cases: we first assume that K contains
no (i,j) with i >3, j=1,2.
Write
(42) L(x,&) = (é“(x’ | el f)>
(X%, &) Ln(x, &)

where Ly (x,&) is the (m — 2) x (m — 2) submatrix consisting of the last (m — 2)
rows and the last (m —2) columns of L(x,¢). Let
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. H]l(x) ng(x)
Hx) = <H21(X) sz(x)>

where the blocking corresponds to that of (4.2). Then (4.1) is written as

(4.3) Ly Hyy + Ly Hyy = Hy 'Ly + Hyp'Ly
(4.4) Ly Hyy + Ly Hy = Hoy 'Ly + Ho'Ly,.
Since ¢;(>‘c,-), i >3, j=1,2 are linearly independent, near X one can solve
Ly (x,&) =0 so that & = (&;,...,&,), N =2(m —2) are linear combinations of
the other &, = (&;,,...,¢;,,) with coefficients which are smooth functions of x

where ¢ = (&,,&,) is some partition of the variables &. Substituting these &, into
L(x,&) the equation (4.3) becomes

(4.5) Loy (x, &) Ho(x) = Hy(x)'Laa(x, &,).
Note that
d(Ln (%) = W_ (k—1)

§ (m—2)2(m—1)_[m2—2]

and Ha(x) is positive definite. By the induction hypothesis there is h!(x), 3 <
i <m such that Ha(x)/hi(x) is smooth near x. Then denoting H(x)/h!(x) by
H(x) we have (4.3) and (4.4) for H(x) where Ha(x) is smooth. Solve

$l(x,&) =0, V(i,j)¢K, i>]

which gives &, = f(x,&,), with a partition of the & variables & = (&,, &) as above,
where f(x,¢&,) is linear in &, with smooth coefficients in x. Substituting this rela-
tion into (4.4) we get

(4.6) Lo (x, &) Hor(x) = Ha (%) 'Li (%, ) = (9] (x,€0))
where g/(x) are smooth. Note that
Lo(X,&0)Hy — Hy 'Ly (X,&,) =0
implies that
6/ (%, €0) = $e (%, Clhf =0, k=1,2,j >3

because ¢} (%,&,) =0 if i # j and hence H; = 0. This proves that the coefficient
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matrix of the linear equation (4.6) is non singular at xX. Thus (4.6) is smoothly
invertible and we conclude that Hy;(x) is smooth near x. We finally study Hj;(x).
Considering (1,2)-th, (3,2)-th and (3,1)-th entries of (4.1) we get

R AN 9
(4.7) 0 ¢ ; h|=19
A VAN &
where g; are known to be smooth near X. Take & so that ¢ (%,&) = ¢3(%,&) # 0
and ¢3(x,&) — ¢l (%,&) # 0 and consider the equation (4.7) with & = ¢
sees that the determinant of the coefficient matrix at X is
[#3(3,8) — 91 (%, Dl (%, # 0

so that we can conclude that A (x),hl(x) and A3(x) are smooth near X. This

Then one

proves the assertion.
We turn to the second case that K contains (i, j) with i >3, 1 < j <2. Let
us consider the set

K =A{(i,))|(i,j)e K or (j,i)€K}.
Assume that K contains more than two such entries then it is clear that
#(K N {the first 2 rows}) >4
and this implies that
#(K N {the last m —2 rows}) <2k —4 <m — 4.

Hence, among the last m — 2 rows, we can choose two rows which verify the
hypothesis of Lemma 2.1. Then one can apply Lemma 2.1 to conclude the
assertion. Thus we may assume that K contains only one such (i, j).

Considering P~'L(x,&)P with a suitable permutation matrix P we may
assume that either K > {(2,1),(3,1)} or K = {(2,1),(3,2)}. We show that there
is a p-th row with p >4 such that

KN {p-th row} = &.

If not we would have

#K)=4+(m—3)=m+1=2k+1
since K has at least 4 entries in the first three rows. This is a contradiction
because #(K) < 2k. Again considering P~!'L(x,&)P we may assume that KN
{4-th row} = . Denote
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L L
I ( 11 12)
Ly Lx
where Ly, is the (m — 3) x (m — 3) submatrix consisting of the last (m — 3) rows
and columns of L(x,&). We may assume that K contains no (i, j) with i >4,

1 <j<3.1If not we have at least 5 entries of K on the first three rows and
hence

#(K N {the last m — 3 rows}) <2k —5<m—35.

Thus one can choose two rows among the last m — 3 rows which verify the
hypothesis of Lemma 2.1. Applying Lemma 2.1 we get the desired assertion.
Solving L,i(x,&) =0 we apply the same arguments as above. Note that

d(Ln(%, ")) > W_ (k —2)
(m=3)(m-2) [m-3
= 2 _[ P ]

since K contains 2 entries in lower diagonal part of Li;(¥,-). If m > 6 then from
the induction hypothesis we conclude that there is i >4 such that Ha/hi(x) is
smooth near X. If m =5 and hence k =2 then the existence of such i follows
from Theorem 1.1 in [1] or rather its proof. Denote H(x)/h!(x) by the same
H(x). It remains to show that Hj;(x) and Hj;(x) are smooth near Xx. Recall the
equation

(4.8) Ly Hyy + Ly Hy = Hy 'Ly + Hy'Ly.
Solving again ¢;(x, &) =0, Y(i,j) ¢ K, i > j, the equation (4.8) becomes
Lo (%, &0)Hai (x) = Hoi(x) 'L (x,&y) = (9/(x, &)

where the right-hand side is known to be smooth in x near X and & = (&,,&,) is
some partition of the variables £. Note that this equation turns out at x = X

(¢ = () 0 0 h
(4.9) 0 (¢ —)(xe) 0 hj | = smooth
0 0 (¢ — ) (%:¢) ) \ b

because ¢7(%,&,) =0, ¢3(%,&) =0, ¢3(X,&,) =0 and L(X,-) is symmeric where
j>4. We choose &, so that

(4] = $D)(=.&) #0, k=123 />4
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and study (4.8) with &, = &, fixed. Then (4.9) shows that the coefficient matrix
of the equation at x = X is non singular and hence we conclude that H>;(x) is
smooth near X. We turn to the equation for Hj;(x). These can be written as

~#H 0 H-E B s\

4 0 ¢ =k h—h b 12
32 13 2 2 43 3
(4.10) 04 9 95 ¢i1 Y b~ s 1131 = smooth.
¢1 0 0 ¢2 ¢3 0 h2
0 4 0 ¢ 0 il
2
0 0 41 0 N 4 hs

Here we have equated the (1,2),(1,3),(2,3),(1,4),(2,4),(3,4)-th entries in both
sides of (4.8) in this order. Choose & so that ¢{(%,&) =1, k=1,2,3 and

Pl(x,E) =0, (i.j)¢K, (i,))# &k, k=1,23i>;

and (¢} — $3)(%.8), (4} — (%), (43 — #3)(x,&) are large enough. Let us study
(4.10) with & = &. Then it is clear that the coefficient matrix of the equation thus
obtained is non singular at x = ¥ and hence we conclude that Hj;(x) is smooth
near Xx.

We now study Case II. We show that we may assume that

m(m+ 1)

7 -m—k+1.

(4.11) dim span{(/ﬁ;(fc, Ji>j} =

Otherwise setting dimspan{¢/(x,-)|i > j} =m(m+1)/2—m—¢, we have / <
k —2. Then one has k —/ > 2 entries on the diagonal which are linear com-
binations of the other m(m + 1)/2 —m — ¢ entries. Hence

#K) <20+ (k—0)=k+(<2k—-2<m-2.

Thus one can find two rows which verify the assumptions of Lemma 2.1.
From Lemma 2.1 we conclude the assertion. Assume (4.11). There is a subset
K, = J with #(K;) = k — 1 such that (/5/’()?, -), (i,j) € K, are linear combinations
of ¢;(x,-), (i, /) € J\Ki and there is s such that ¢](x,-) is a linear combination of

¢;(X7')a (i,j)¢K:K1U{(S,S)}, i ].

Considering P~'L(x,¢)P with a suitable permutation matrix P we may assume
(I,1) € K. Assume that K contains no (i,1) with i > 2. Write

b (fBR), (1 ey
Ly L»n hi  Hp



Smoothly symmetrizable systems II 401

where Ly is the (m — 1) x (m — 1) matrix consisting of the last (m — 1) rows and
columns of L. We repeat the same argument as in the proof of Case I choosing &
so that Lj(x,¢&) =0. Since

d(Lx(%,)) = @_ k—1) = (m —21)m _{mz— 1}

we conclude from the induction hypothesis that there is i such that Hay(x)/h!(x)
is smooth near X. Denote H(x)/h!(x) by the same H(x) then H(x) still verifies
(4.1). Let us consider (i,k)-th entry of LH = H'L with i,k > 2:

m

4.12) $ihi+ > pihl = higt + > higf.
=2 /=2

Since ¢!(%,-) and ¢ (%,-) are linearly independent if i # k, i,k > 2 and h} (x) are
smooth for i, j > 2 it follows that Hj»(x) is smooth near x. We next take (i, 1)-th
entry of LH = H'L with some i > 2:

(4.13) pihi+> il = hig).
j=2 j=1

Since ¢;(%,-) # 0 it follows from (4.13) that A} (x) is smooth near X.
We now assume that K contains a (i,1) with i > 2. Considering P! L(x, )P
we may assume that (2,1) € K. Then there is a p-th row with p > 3 such that

KN {p-th row} = &.
In fact otherwise we have
#K)=3+m—-2>2k+1

which contradicts #(K) < 2k. Then considering P~'L(x,¢)P again we may as-
sume that the third row contains no entry of K. Let us write

L L H, H
L:( 1 12), H:( 11 12)
Lz] L22 HZ] H22
where Ly, is the (m — 3) x (m — 3) submatrix consisting of the last (m — 3) rows

and columns of L(x,¢). We may assume that K contains no entry (i,j) with
i>4, j=1,2,3. If not we have

#(K N {the last m —2 rows}) <2k —4 <m —4.

Then one can choose two rows among the last m —2 rows which verify the



402 Tatsuo NiIsHITANI and Jean VAILLANT

hypothesis of Lemma 2.1 and hence the result. Repeating the same argument as
in Case I we conclude that there is i >4 such that H,,/h!(x) is smooth near
X. Again we denote H(x)/h/(x) by H(x). Solving ¢;(x,&) =0, V(i,j) ¢ K, i > J,
(i, j) # (3,1) and substituting the relation thus obtained into (4.4) one gets

(4.14) Lzz(x, fa)Hzl(x) — H21 (x) tLll(X, éa) = G(X7 fa)

where the right-hand side is smooth in x. Fix &, and study the linear equation
(4.14) with unknowns H>; at x = X. Then it is easy to see that the coeflicient
matrix at x = X is the direct sum of

(¢ —oD(FC)  —h(%&) ~43(%. &)
(4.15) —$1(%&) (¢ — )% &) 0
—$1(%,&,) 0 (¢ — $3)(%. <)
for j=4,...,m. Since we can choose £, so that

¢13()_Cvéu) 7é0a (¢jj_¢§)(xafa) 7é0a (¢]]_¢g)(x7£u) :07 j:47~~'7m

the coefficient matrix is non singular and we conclude that Hj,(x) is smooth
near x. Finally we study H,(x). Recall that H;;(x) satisfies the equation (4.10).
In (4.10) we choose & so that

$(%8) #0, §5(%8)=h(%H =0, #(FH=1, (%=1
and
1= (%) + 9 (%, D[P (%, ) — #3(x,E)] #0.
This is possible because ¢1(%,-) does not depend on ¢!(X,-). This shows that the

).
coefficient matrix of the equation (4.10) is non singular at (¥, &) and hence Hj;(x)
is smooth near X. O

ProOOF OF THEOREM 1.1. By the assumption for any x there is a S(x) such
that

S(x) ™' L(x,)S(x)

is symmetric for every &. Taking S(%)'L(x,&)S(x) instead of L(x,&) we may
assume that L(X,¢) is symmetric. Let us set

H(x) = S(x)'S(x)

which is of course positive definite and satisfies L(x,&)H(x) = H(x)'L(x,&).
Since the reduced dimension is invariant one can apply Lemma 4.1 to conclude
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that H(x) = H(x)/h(x) is smooth near X with some p. Then T(x) = lfl(x)l/2 is

a desired one. O
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