SMOOTHLY SYMMETRIZABLE SYSTEMS AND THE REDUCED DIMENSIONS II

By

Tatsuo Nishitani* and Jean Vaillant[†]

1. Introduction

Let L be a first order system

$$L(x,D) = \sum_{j=1}^{n} A_j(x)D_j$$

where $A_1 = I$ is the identity matrix of order m and $A_j(x)$ are $m \times m$ matrix valued smooth functions. In this note we continue the study [1] on the question when we can symmetrize L(x, D) smoothly. In particular we discuss some connections between the symmetrizability of L(x, D) at every frozen x and the smooth symmetrizability. Let $L(x, \xi)$ be the symbol of L(x, D):

$$L(x,\xi) = \sum_{i=1}^{n} A_j(x)\xi_j = (\phi_j^i(x,\xi))_{i,j=1}^{m}$$

where $\phi_j^i(x,\xi)$ stands for the (i,j)-th entry of $L(x,\xi)$ which is linear form in ξ . Recall that

$$d(L(x,\cdot)) = \dim \operatorname{span}\{\phi_i^i(x,\cdot)\}$$

is called the reduced dimension of L at x. This is nothing but the dimension of the linear subspace of $M(m; \mathbf{R})$, the space of all real $m \times m$ matrices, spanned by $A_1(x), \ldots, A_n(x)$.

Our aim in this note is to prove

THEOREM 1.1. Assume that $L(x,\xi)$ is symmetrizable at every x near \bar{x} , that is there exists a non singular matrix S(x) which is possibly non smooth in x such that

^{*}Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-16, Toyonaka Osaka 560-0043, Japan.

[†] Université Pierre et Marie Curie, Mathématiques, BC 172, 4, Place Jussieu 75252 Paris, France. Received March 20, 2002. Revised September 5, 2002.

 $S(x)^{-1}L(x,\xi)S(x)$ is symmetric for every ξ and the reduced dimension of $L(\bar{x},\cdot) \ge m(m+1)/2 - [m/2]$ and $m \ge 3$. Then $L(x,\xi)$ is smoothly symmetrizable near \bar{x} , that is there is a smooth non singular matrix T(x) defined near \bar{x} such that

$$T(x)^{-1}L(x,\xi)T(x)$$

is symmetric for any ξ and any x near \bar{x} .

In the series of papers [2], [3], [4] and [5] the second author proved that if L(D) is strongly hyperbolic and the reduced dimension of $L(\cdot) \ge m(m+1)/2 - 2$ then there exists a constant matrix S such that $S^{-1}L(\xi)S$ is symmetric for every ξ . Combining with the above theorem we conclude that the strong hyperbolicity of L(x,D) at every frozen x implies the strong hyperbolicity of L(x,D) if the reduced dimension of $L(x,\cdot) \ge m(m+1)/2 - 2$. This result, when the reduced dimension of $L(x,\cdot) \ge m(m+1)/2 - 1$, was proved in our previous paper [1].

2. A Lemma

Recall that $L(x,\xi) = (\phi_j^i(x,\xi))_{i,j=1}^m$ where i and j denotes i-th row and j-th column respectively.

Lemma 2.1. Assume that there exist two rows, say p-th and q-th rows such that $\phi_j^p(\bar{x},\cdot)$, $1 \le j \le m$, $\phi_i^q(\bar{x},\cdot)$, $1 \le i \le m$, $i \ne p$ are linearly independent and for every x we can find a positive definite H(x) such that

(2.1)
$$L(x,\xi)H(x) = H(x)^{t}L(x,\xi).$$

Then $H(x)/h_p^p(x)$ is smooth near \bar{x} where we have denoted $H(x)=(h_i^i(x))$.

PROOF. Since $h_p^p(x) > 0$ then $H(x)/h_p^p(x)$ is again positive definite and verifies (2.1). We denote $H(x)/h_p^p(x)$ by H(x) again. Let us consider the (p,j)-th entry of the equation (2.1):

(2.2)
$$\sum_{k=1}^{m} \phi_k^p(x,\xi) h_j^k(x) - \sum_{k=1}^{m} \phi_k^j(x,\xi) h_k^p(x) = 0.$$

Take j = q then we get

$$\sum_{k=1}^{m} \phi_k^p(x,\xi) h_q^k(x) - \sum_{k=1, k \neq p}^{m} \phi_k^q(x,\xi) h_k^p(x) = \phi_p^q(x,\xi)$$

because $h_p^p(x) = 1$. To simplify notations let us write

$$\{\phi_k^p, 1 \le k \le m, \phi_j^q, 1 \le j \le m, j \ne p\} = \{\theta_j \mid 1 \le j \le 2m - 1\}$$
$$\{h_a^k, 1 \le k \le m, h_i^p, 1 \le j \le m, j \ne p\} = \{y_j \mid 1 \le j \le 2m - 1\}.$$

Since $\theta_i(\bar{x},\cdot)$ are linearly independent, with

$$\theta_i(x,\xi) = \sum_{k=1}^n C_k^i(x)\xi_k$$

one can find $j_1 < \cdots < j_{2m-1}$ so that

$$\det(C_{j_k}^i(x))_{i,k=1}^{2m-1} \neq 0$$

which holds near \bar{x} . Then solving the equation

$$\sum_{i=1}^{m-1} C_{j_k}^i(x) y_i(x) = \text{smooth}, \quad k = 1, 2, \dots, 2m-1$$

we conclude that $y_i(x)$ are smooth near \bar{x} .

We next study (2.2) with $j \neq q$:

$$\sum_{k=1}^{m} \phi_k^p(x,\xi) h_j^k(x) = \sum_{k=1}^{m} \phi_k^j(x,\xi) h_k^p(x).$$

Since $h_k^p(x)$, $1 \le k \le m$ are smooth near \bar{x} , applying the same arguments as above we conclude that $h_j^1(x), \ldots, h_j^m(x)$ are smooth near \bar{x} because $\phi_k^p(\bar{x}, \cdot)$, $1 \le k \le m$ are linearly independent. This shows that H(x) is smooth near \bar{x} and hence the result.

3. A Special Case

Let us denote $J = \{(i, j) | i > j\}$ and $\overline{J} = \{(i, j) | i \ge j\}$. We show

PROPOSITION 3.1. Let m=4 and $d(L(\bar{x},\cdot))=8$. Assume that $L(\bar{x},\xi)$ is symmetric and for every x near \bar{x} there is a positive definite H(x) such that

$$L(x,\xi)H(x) = H(x)^{t}L(x,\xi).$$

Then there is p such that $H(x)/h_p^p(x)$ is smooth near \bar{x} .

PROOF. We first note that for any permutation matrix P, $P^{-1}L(x,\xi)P$ verifies the hypothesis with H(x) replaced by $P^{-1}H(x)P$ and if the statement holds for $P^{-1}H(x)P$ then so does for H(x). Let us denote by E(i,j) the matrix

obtained from the zero matrix by replacing the (i, j) entry by 1. Then for a permutation matrix P we define the index $(i, j)^P$ by

$$P^{-1}E(i,j)P = E((i,j)^{P}).$$

Let K be a subset of indices (i, j) then we denote

$$K_P = \{(i, j)^P \mid (i, j) \in K\}.$$

We devide the cases into three according to the dimension of E:

$$E = \operatorname{span}\{\phi_i^i(\bar{x},\cdot) \mid i > j\}.$$

Note that $4 \le \dim E \le 6$ by our assumption.

- I) dim E=6. This shows that there are two μ, ν such that $\phi^{\mu}_{\mu}(\bar{x}, \cdot)$ and $\phi^{\nu}_{\nu}(\bar{x}, \cdot)$ are linear combinations of the other $\phi^{i}_{j}(\bar{x}, \cdot)$, $(i, j) \in \bar{J} \setminus \{(\mu, \mu), (\nu, \nu)\}$ which are linearly independent. The two rows which contains neither ϕ^{μ}_{μ} nor ϕ^{ν}_{ν} verify the hypothesis of Lemma 2.1 and hence we have the assertion thanks to Lemma 2.1.
- II) dim E=4. By the assumption there are $(p,q), (\tilde{p},\tilde{q}) \in J$ such that $\phi_q^p(\bar{x},\cdot)$ and $\phi_{\tilde{q}}^{\tilde{p}}(\bar{x},\cdot)$ are linear combinations of $\phi_j^i(\bar{x},\cdot), \ (i,j) \in J \setminus \{(p,q), (\tilde{p},\tilde{q})\} = J \setminus K$ where we have set

$$K = \{(p,q), (\tilde{p}, \tilde{q})\}.$$

Taking a suitable permutation matrix P we may assume that $(2,1) \in K_P$. We drop the suffix P in K_P . We still devide the cases into two:

- $II)_a$ the other entry of K is on the third row
- II) $_b$ the other entry of K is on the last row.

Assume II)_a. Then either $K = \{(2, 1), (3, 1)\}$ or $\{(2, 1), (3, 2)\}$. Recall that

(3.1)
$$L(x,\xi)H(x) = H(x)^{t}L(x,\xi).$$

Dividing H(x) by $h_4^4(x)$ which is positive we may suppose that $h_4^4(x) = 1$ in (3.1). Let us put

$$\hat{H}(x) = {}^{t}(h_{1}^{1}(x), h_{2}^{2}(x), h_{3}^{3}(x), h_{2}^{1}(x), h_{3}^{1}(x), h_{4}^{1}(x), h_{3}^{2}(x), h_{4}^{2}(x), h_{4}^{3}(x)).$$

Equating the (1,2), (1,3), (1,4), (2,3), (2,4), (3,4)-th entries in both sides of (3.1) in this order, we get

(3.2)
$$\hat{L}(x,\xi)\hat{H}(x) = \hat{F}(x,\xi)$$

where $\hat{L}(x,\xi)$ is a 6×9 matrix and

$$\hat{F}(x,\xi) = {}^{t}(0,0,-\phi_4^1(x,\xi),0,-\phi_4^2(x,\xi),-\phi_4^3(x,\xi)).$$

We choose $\xi^{(1)}$ so that

$$\phi_1^{1}(\bar{x}, \xi^{(1)}) = 1, \quad \phi_j^{i}(\bar{x}, \xi^{(1)}) = 0, \quad \forall (i, j) \notin K, \ (i, j) \neq (1, 1), \ i \geq j.$$

Note that we have

(3.3)
$$\phi_j^i(\bar{x}, \xi^{(1)}) = 0, \quad \forall (i, j) \neq (1, 1)$$

because for $(i,j) \in K$, $\phi^i_j(\bar{x},\cdot)$ is a linear combination of $\phi^i_j(\bar{x},\cdot)$, i>j, $(i,j) \notin K$ and $L(\bar{x},\cdot)$ is symmetric. We take the first three equations in (3.2) with $\xi=\xi^{(1)}$. We next choose $\xi^{(2)}$ so that

$$\phi_2^2(\bar{x},\xi^{(2)}) = 1, \quad \phi_i^i(\bar{x},\xi^{(2)}) = 0, \quad \forall (i,j) \notin K, \ i \ge j, \ (i,j) \ne (2,2)$$

and take 4-th and 5-th equations of (3.2) with $\xi = \xi^{(2)}$. Choose $\xi^{(3)}$ so that

$$\phi_3^3(\bar{x},\xi^{(3)}) = 1, \quad \phi_i^i(\bar{x},\xi^{(3)}) = 0, \quad \forall (i,j) \notin K, \ i \geq j, \ (i,j) \neq (3,3)$$

and take the 6-th equation of (3.2) with $\xi = \xi^{(3)}$. We choose $\xi^{(4)}, \xi^{(5)}, \xi^{(6)}$ so that

$$\phi_{j}^{4}(\bar{x}, \xi^{(3+j)}) = 1, \quad \phi_{v}^{\mu}(\bar{x}, \xi^{(3+j)}) = 0, \quad \forall (\mu, v) \notin K, \, \mu > v$$

where j=1,2,3 and take 3-rd, 5-th and 6-th equations of (3.2) with $\xi=\xi^{(4)}$, $\xi^{(5)},\xi^{(6)}$ respectively. Collecting these nine equations we get

$$(3.4) M(x)\hat{H}(x) = G(x)$$

where

$$G(x) = -{}^{t}(0, 0, \phi_{4}^{1}(x, \xi^{(1)}), 0, \phi_{4}^{2}(x, \xi^{(2)}), \phi_{4}^{3}(x, \xi^{(3)}), \phi_{4}^{1}(x, \xi^{(4)}), \phi_{4}^{2}(x, \xi^{(5)}), \phi_{4}^{3}(x, \xi^{(6)}))$$

and M(x) is a 9×9 matrix. It is easy to see that

Then $M(\bar{x})$ is non singular and hence near \bar{x} there is a smooth inverse of M(x) and hence

$$\hat{H}(x) = M(x)^{-1}G(x)$$

which proves the assertion.

We turn to the case II)_b. If the entry on the last row is $(4, j) \neq (4, 3)$ then by $P^{-1}L(x, \xi)P$ with a suitable permutation matrix this case is reduced to the case II)_a. Thus we may assume that the reference entry of K is (4,3). We choose the same $\xi^{(1)}, \ldots, \xi^{(5)}$ and the same eight equations of (3.2) with $\xi = \xi^{(1)}, \ldots, \xi^{(5)}$ as in the case II)_a. Choose $\xi^{(6)}$ so that

$$\phi_1^3(\bar{x},\xi^{(6)}) = 1, \quad \phi_i^i(\bar{x},\xi^{(6)}) = 0, \quad \forall (i,j) \notin K, \ (i,j) \neq (3,1), \ i > j$$

and take the 2-nd equation of (3.2) with $\xi = \xi^{(6)}$. Then M(x) in (3.4) at \bar{x} yields

$$M(\bar{x}) = \begin{pmatrix} \vdots & 1 & & & 0 \\ O & \vdots & 0 & 1 & & \\ & & \vdots & & \ddots & \\ & & \vdots & 0 & & 1 \\ \vdots & & & \ddots & \\ & & & \vdots & 0 & & 1 \\ \vdots & & & & \ddots & \\ & & & \vdots & 0 & & 1 \\ \vdots & & & & & \ddots & \\ & & & \vdots & 0 & & & 1 \\ \vdots & & & & & \ddots & \\ & & & & \ddots & & \\ -1 & 0 & 0 & \vdots & & * & \\ & & & & & \ddots & & \\ -1 & 0 & 1 & \vdots & & * & \\ \end{pmatrix}.$$

This is invertible and we get the desired assertion.

III) dim E=5. By the assumption there is (i_0,j_0) , $i_0>j_0$ such that $\phi_{j_0}^{i_0}(\bar{x},\cdot)$ is a linear combination of $\phi_j^i(\bar{x},\cdot)$, $(i,j)\neq (i_0,j_0)$, i>j and there is s such that $\phi_s^s(\bar{x},\cdot)$ is a linear combination of $\phi_j^i(\bar{x},\cdot)$, $i\geq j$, $(i,j)\neq (s,s), (i_0,j_0)$. Let us set

$$K = \{(s, s), (i_0, j_0)\}.$$

Considering $P^{-1}L(x,\xi)P$ with a suitable permutation matrix we may assume that $(1,1) \in K$. Again taking $P^{-1}L(x,\xi)P$ we may suppose that either $K = \{(1,1), (2,1)\}$ or $K = \{(1,1), (3,2)\}$. Note that at least two of

$$(\phi_1^1 - \phi_2^2)(\bar{x}, \cdot), \quad (\phi_1^1 - \phi_3^3)(\bar{x}, \cdot), \quad (\phi_1^1 - \phi_4^4)(\bar{x}, \cdot)$$

are linearly independent when $\phi_j^i(\bar{x},\cdot)=0,\ i>j,\ (i,j)\notin K$ by the assumption. Let us assume that $(\phi_1^1-\phi_3^3)(\bar{x},\cdot),\ (\phi_1^1-\phi_4^4)(\bar{x},\cdot),\ \phi_j^i(\bar{x},\cdot),\ i>j,\ (i,j)\notin K$ are linearly independent. We choose $\xi^{(8)},\xi^{(9)}$ so that

$$\begin{split} (\phi_1^1 - \phi_3^3)(\bar{x}, \xi^{(8)}) &= 1, \quad \phi_j^i(\bar{x}, \xi^{(8)}) = 0, \quad \forall (i, j) \notin K, \, i > j \\ (\phi_1^1 - \phi_4^4)(\bar{x}, \xi^{(9)}) &= 1, \quad \phi_i^i(\bar{x}, \xi^{(9)}) = 0, \quad \forall (i, j) \notin K, \, i > j \end{split}$$

and take the second and third equations of (3.2) with $\xi=\xi^{(8)},\xi^{(9)}$. Choose the same $\xi^{(2)},\xi^{(3)},\xi^{(4)},\xi^{(5)},\xi^{(6)}$ and the same equations as before, that is 4-th, 5-th of (3.2) with $\xi=\xi^{(2)}$, 6-th of (3.2) with $\xi=\xi^{(3)}$, 3-rd, 5-th, 6-th of (3.2) with $\xi=\xi^{(4)},\xi^{(5)},\xi^{(6)}$ respectively. Finally we choose $\xi^{(7)}$ so that

$$\phi_2^4(\bar{x}, \xi^{(7)}) = 1, \quad \phi_i^i(\bar{x}, \xi^{(7)}) = 0, \quad \forall (i, j) \notin K, \ i > j, \ (i, j) \neq (4, 2)$$

and take the third equation of (3.2) with $\xi = \xi^{(7)}$. Then we get the equation

$$(3.5) M(x)\hat{H}(x) = G(x)$$

where G(x) is

$$-{}^{t}(0,\phi_{4}^{1}(x,\xi^{(9)}),0,\phi_{4}^{2}(x,\xi^{(2)}),\phi_{4}^{3}(x,\xi^{(3)}),\phi_{4}^{1}(x,\xi^{(4)}),\phi_{4}^{2}(x,\xi^{(5)}),\phi_{4}^{3}(x,\xi^{(6)}),\phi_{4}^{1}(x,\xi^{(7)})).$$

It is easy to see that

which is non singular. Thus we get the desired assertion. The remaining case can be proved by the same arguments. \Box

4. Proof of Theorem

We first show the next lemma.

Lemma 4.1. Let $m \ge 3$. Assume that $L(\bar{x}, \xi)$ is symmetric $m \times m$ matrix with

$$d(L(\bar{x},\cdot)) \geq \frac{m(m+1)}{2} - \left\lceil \frac{m}{2} \right\rceil$$

and for every x near \bar{x} there is a positive definite H(x) such that

(4.1)
$$L(x,\xi)H(x) = H(x)^{t}L(x,\xi).$$

Then there is a $1 \le p \le m$ such that $H(x)/h_p^p(x)$ is smooth near \bar{x} .

PROOF. We prove this lemma by induction on the size of the matrix $L(x, \xi)$. When m=3 or m=4 with $d(\bar{x},\cdot) \geq 9$, the assertion was proved in our previous paper [1] (see the proof of Theorem 1.1 in [1]) and the case m=4 with $d(\bar{x},\cdot)=8$ is just Proposition 3.1. Suppose that the assertion holds for $L(x,\xi)$ of size at most m-1 with $m \geq 5$. Let

$$\left\lceil \frac{m}{2} \right\rceil = k$$

so that m = 2k or m = 2k + 1. We devide the cases into two.

Case I:

$$\dim \operatorname{span}\{\phi^i_j(\bar{x},\cdot)\,|\,i>j\}=\frac{m(m+1)}{2}-m-k,$$

and

Case II:

$$\dim \operatorname{span}\{\phi^i_j(\bar{x},\cdot)\,|\,i>j\}\geq \frac{m(m+1)}{2}-m-k+1.$$

We first treat Case I. We denote by K the set of indices (i,j), i>j such that $\phi_j^i(\bar{x},\cdot)$, $(i,j)\in K$ are linear combinations of the other m(m+1)/2-m-k entries $\phi_j^i(\bar{x},\cdot)$, i>j which are linearly independent. By the assumption, $\phi_j^i(\bar{x},\cdot)$, $i\geq j$, $(i,j)\notin K$ are linearly independent. Considering $P^{-1}L(x,\xi)P$ with a suitable permutation matrix P, we may assume that $(2,1)\in K_P$. As before we drop the suffix P in K_P . We further devide Case I into two cases: we first assume that K contains no (i,j) with $i\geq 3$, j=1,2.

Write

(4.2)
$$L(x,\xi) = \begin{pmatrix} L_{11}(x,\xi) & L_{12}(x,\xi) \\ L_{21}(x,\xi) & L_{22}(x,\xi) \end{pmatrix}$$

where $L_{22}(x,\xi)$ is the $(m-2)\times (m-2)$ submatrix consisting of the last (m-2) rows and the last (m-2) columns of $L(x,\xi)$. Let

$$H(x) = \begin{pmatrix} H_{11}(x) & H_{12}(x) \\ H_{21}(x) & H_{22}(x) \end{pmatrix}$$

where the blocking corresponds to that of (4.2). Then (4.1) is written as

$$(4.3) L_{21}H_{12} + L_{22}H_{22} = H_{21}{}^{t}L_{21} + H_{22}{}^{t}L_{22}$$

$$(4.4) L_{21}H_{11} + L_{22}H_{21} = H_{21}{}^{t}L_{11} + H_{22}{}^{t}L_{12}.$$

Since $\phi_j^i(\bar{x},\cdot)$, $i \geq 3$, j=1,2 are linearly independent, near \bar{x} one can solve $L_{21}(x,\xi)=0$ so that $\xi_b=(\xi_{i_1},\ldots,\xi_{i_N})$, N=2(m-2) are linear combinations of the other $\xi_a=(\xi_{j_1},\ldots,\xi_{j_M})$ with coefficients which are smooth functions of x where $\xi=(\xi_a,\xi_b)$ is some partition of the variables ξ . Substituting these ξ_b into $L(x,\xi)$ the equation (4.3) becomes

(4.5)
$$L_{22}(x,\xi_a)H_{22}(x) = H_{22}(x)^t L_{22}(x,\xi_a).$$

Note that

$$d(L_{22}(\bar{x},\cdot)) \ge \frac{(m-2)(m-1)}{2} - (k-1)$$
$$\ge \frac{(m-2)(m-1)}{2} - \left[\frac{m-2}{2}\right]$$

and $H_{22}(x)$ is positive definite. By the induction hypothesis there is $h_i^i(x)$, $3 \le i \le m$ such that $H_{22}(x)/h_i^i(x)$ is smooth near \bar{x} . Then denoting $H(x)/h_i^i(x)$ by $\tilde{H}(x)$ we have (4.3) and (4.4) for $\tilde{H}(x)$ where $\tilde{H}_{22}(x)$ is smooth. Solve

$$\phi_j^i(x,\xi) = 0, \quad \forall (i,j) \notin K, i > j$$

which gives $\xi_b = f(x, \xi_a)$, with a partition of the ξ variables $\xi = (\xi_a, \xi_b)$ as above, where $f(x, \xi_a)$ is linear in ξ_a with smooth coefficients in x. Substituting this relation into (4.4) we get

(4.6)
$$L_{22}(x,\xi_a)\tilde{H}_{21}(x) - \tilde{H}_{21}(x)^t L_{11}(x,\xi_a) = (g_i^t(x,\xi_a))$$

where $g_i^i(x)$ are smooth. Note that

$$L_{22}(\bar{x},\xi_a)\tilde{H}_{21} - \tilde{H}_{21}{}^{t}L_{11}(\bar{x},\xi_a) = 0$$

implies that

$$[\phi_i^j(\bar{x}, \xi_a) - \phi_k^k(\bar{x}, \xi_a)]\tilde{h}_k^j = 0, \quad k = 1, 2, j \ge 3$$

because $\phi_j^i(\bar{x}, \xi_a) = 0$ if $i \neq j$ and hence $\tilde{H}_{21} = 0$. This proves that the coefficient

matrix of the linear equation (4.6) is non singular at \bar{x} . Thus (4.6) is smoothly invertible and we conclude that $\tilde{H}_{21}(x)$ is smooth near \bar{x} . We finally study $\tilde{H}_{11}(x)$. Considering (1,2)-th, (3,2)-th and (3,1)-th entries of (4.1) we get

(4.7)
$$\begin{pmatrix} -\phi_1^2 & \phi_2^1 & \phi_1^1 - \phi_2^2 \\ 0 & \phi_2^3 & \phi_1^3 \\ \phi_1^3 & 0 & \phi_2^3 \end{pmatrix} \begin{pmatrix} \tilde{h}_1^1 \\ \tilde{h}_2^1 \\ \tilde{h}_2^2 \end{pmatrix} = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \end{pmatrix}$$

where g_j are known to be smooth near \bar{x} . Take $\bar{\xi}$ so that $\phi_1^3(\bar{x}, \bar{\xi}) = \phi_2^3(\bar{x}, \bar{\xi}) \neq 0$ and $\phi_2^2(\bar{x}, \bar{\xi}) - \phi_1^1(\bar{x}, \bar{\xi}) \neq 0$ and consider the equation (4.7) with $\xi = \bar{\xi}$. Then one sees that the determinant of the coefficient matrix at \bar{x} is

$$[\phi_2^2(\bar{x},\bar{\xi}) - \phi_1^1(\bar{x},\bar{\xi})]\phi_1^3(\bar{x},\bar{\xi})^2 \neq 0$$

so that we can conclude that $\tilde{h}_1^1(x), \tilde{h}_2^1(x)$ and $\tilde{h}_2^2(x)$ are smooth near \bar{x} . This proves the assertion.

We turn to the second case that K contains (i, j) with $i \ge 3$, $1 \le j \le 2$. Let us consider the set

$$\check{K} = \{(i, j) \mid (i, j) \in K \text{ or } (j, i) \in K\}.$$

Assume that K contains more than two such entries then it is clear that

$$\#(\check{K} \cap \{\text{the first 2 rows}\}) \ge 4$$

and this implies that

$$\#(\check{K} \cap \{\text{the last } m-2 \text{ rows}\}) \le 2k-4 \le m-4.$$

Hence, among the last m-2 rows, we can choose two rows which verify the hypothesis of Lemma 2.1. Then one can apply Lemma 2.1 to conclude the assertion. Thus we may assume that K contains only one such (i, j).

Considering $P^{-1}L(x,\xi)P$ with a suitable permutation matrix P we may assume that either $K \supset \{(2,1),(3,1)\}$ or $K \supset \{(2,1),(3,2)\}$. We show that there is a p-th row with $p \ge 4$ such that

$$\check{K} \cap \{p\text{-th row}\} = \emptyset.$$

If not we would have

$$\#(\check{K}) \ge 4 + (m-3) = m+1 \ge 2k+1$$

since \check{K} has at least 4 entries in the first three rows. This is a contradiction because $\#(\check{K}) \leq 2k$. Again considering $P^{-1}L(x,\xi)P$ we may assume that $\check{K} \cap \{4\text{-th row}\} = \emptyset$. Denote

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}$$

where L_{22} is the $(m-3) \times (m-3)$ submatrix consisting of the last (m-3) rows and columns of $L(x,\xi)$. We may assume that K contains no (i,j) with $i \ge 4$, $1 \le j \le 3$. If not we have at least 5 entries of \check{K} on the first three rows and hence

$$\#(\check{K} \cap \{\text{the last } m-3 \text{ rows}\}) \le 2k-5 \le m-5.$$

Thus one can choose two rows among the last m-3 rows which verify the hypothesis of Lemma 2.1. Applying Lemma 2.1 we get the desired assertion.

Solving $L_{21}(x,\xi) = 0$ we apply the same arguments as above. Note that

$$d(L_{22}(\bar{x},\cdot)) \ge \frac{(m-3)(m-2)}{2} - (k-2)$$
$$\ge \frac{(m-3)(m-2)}{2} - \left[\frac{m-3}{2}\right]$$

since K contains 2 entries in lower diagonal part of $L_{11}(\bar{x},\cdot)$. If $m \ge 6$ then from the induction hypothesis we conclude that there is $i \ge 4$ such that $H_{22}/h_i^i(x)$ is smooth near \bar{x} . If m=5 and hence k=2 then the existence of such i follows from Theorem 1.1 in [1] or rather its proof. Denote $H(x)/h_i^i(x)$ by the same H(x). It remains to show that $H_{11}(x)$ and $H_{21}(x)$ are smooth near \bar{x} . Recall the equation

$$(4.8) L_{21}H_{11} + L_{22}H_{21} = H_{21}{}^{t}L_{11} + H_{22}{}^{t}L_{12}.$$

Solving again $\phi_j^i(x,\xi) = 0$, $\forall (i,j) \notin K$, i > j, the equation (4.8) becomes

$$L_{22}(x,\xi_a)H_{21}(x) - H_{21}(x)^t L_{11}(x,\xi_a) = (g_i^i(x,\xi_a))$$

where the right-hand side is known to be smooth in x near \bar{x} and $\xi = (\xi_a, \xi_b)$ is some partition of the variables ξ . Note that this equation turns out at $x = \bar{x}$

$$(4.9) \quad \begin{pmatrix} (\phi_j^j - \phi_1^1)(\bar{x}, \xi_a) & 0 & 0 \\ 0 & (\phi_j^j - \phi_2^2)(\bar{x}, \xi_a) & 0 \\ 0 & 0 & (\phi_j^j - \phi_3^3)(\bar{x}, \xi_a) \end{pmatrix} \begin{pmatrix} h_1^j \\ h_2^j \\ h_3^j \end{pmatrix} = \text{smooth}$$

because $\phi_1^2(\bar{x}, \xi_a) = 0$, $\phi_1^3(\bar{x}, \xi_a) = 0$, $\phi_2^3(\bar{x}, \xi_a) = 0$ and $L(\bar{x}, \cdot)$ is symmetric where $j \ge 4$. We choose $\bar{\xi}_a$ so that

$$(\phi_j^j - \phi_k^k)(\bar{x}, \bar{\xi}_a) \neq 0, \quad k = 1, 2, 3, j \ge 4$$

and study (4.8) with $\xi_a = \bar{\xi}_a$ fixed. Then (4.9) shows that the coefficient matrix of the equation at $x = \bar{x}$ is non singular and hence we conclude that $H_{21}(x)$ is smooth near \bar{x} . We turn to the equation for $H_{11}(x)$. These can be written as

$$(4.10) \, \begin{pmatrix} -\phi_1^2 & \phi_2^1 & 0 & \phi_1^1 - \phi_2^2 & -\phi_3^2 & \phi_3^1 \\ -\phi_1^3 & 0 & \phi_3^1 & -\phi_2^3 & \phi_1^1 - \phi_3^3 & \phi_2^1 \\ 0 & -\phi_2^3 & \phi_3^2 & -\phi_1^3 & \phi_1^2 & \phi_2^2 - \phi_3^3 \\ \phi_1^4 & 0 & 0 & \phi_2^4 & \phi_3^4 & 0 \\ 0 & \phi_2^4 & 0 & \phi_1^4 & 0 & \phi_3^4 \\ 0 & 0 & \phi_3^4 & 0 & \phi_1^4 & \phi_2^4 \end{pmatrix} \begin{pmatrix} h_1^1 \\ h_2^2 \\ h_3^3 \\ h_2^1 \\ h_3^1 \\ h_3^2 \end{pmatrix} = \mathrm{smooth}.$$

Here we have equated the (1,2),(1,3),(2,3),(1,4),(2,4),(3,4)-th entries in both sides of (4.8) in this order. Choose $\bar{\xi}$ so that $\phi_k^4(\bar{x},\bar{\xi})=1,\ k=1,2,3$ and

$$\phi_i^i(\bar{x}, \bar{\xi}) = 0, \quad (i, j) \notin K, \quad (i, j) \neq (4, k), \quad k = 1, 2, 3, i > j$$

and $(\phi_1^1 - \phi_2^2)(\bar{x}, \bar{\xi})$, $(\phi_1^1 - \phi_3^3)(\bar{x}, \bar{\xi})$, $(\phi_2^2 - \phi_3^3)(\bar{x}, \bar{\xi})$ are large enough. Let us study (4.10) with $\xi = \bar{\xi}$. Then it is clear that the coefficient matrix of the equation thus obtained is non singular at $x = \bar{x}$ and hence we conclude that $H_{11}(x)$ is smooth near \bar{x} .

We now study Case II. We show that we may assume that

(4.11)
$$\dim \operatorname{span}\{\phi_j^i(\bar{x},\cdot) \mid i > j\} = \frac{m(m+1)}{2} - m - k + 1.$$

Otherwise setting dim span $\{\phi_j^i(\bar{x},\cdot) \mid i>j\} = m(m+1)/2-m-\ell$, we have $\ell \le k-2$. Then one has $k-\ell \ge 2$ entries on the diagonal which are linear combinations of the other $m(m+1)/2-m-\ell$ entries. Hence

$$\#(\check{K}) \le 2\ell + (k - \ell) = k + \ell \le 2k - 2 \le m - 2.$$

Thus one can find two rows which verify the assumptions of Lemma 2.1. From Lemma 2.1 we conclude the assertion. Assume (4.11). There is a subset $K_1 \subset J$ with $\#(K_1) = k-1$ such that $\phi_j^i(\bar{x},\cdot)$, $(i,j) \in K_1$ are linear combinations of $\phi_j^i(\bar{x},\cdot)$, $(i,j) \in J \setminus K_1$ and there is s such that $\phi_s^s(\bar{x},\cdot)$ is a linear combination of

$$\phi_j^i(\bar{x},\cdot), \quad (i,j) \notin K = K_1 \cup \{(s,s)\}, \quad i \ge j.$$

Considering $P^{-1}L(x,\xi)P$ with a suitable permutation matrix P we may assume $(1,1) \in K$. Assume that K contains no (i,1) with $i \ge 2$. Write

$$L = \begin{pmatrix} \phi_1^1 & L_{12} \\ L_{21} & L_{22} \end{pmatrix}, \quad H = \begin{pmatrix} h_1^1 & H_{12} \\ h_1^2 & H_{22} \end{pmatrix}$$

where L_{22} is the $(m-1) \times (m-1)$ matrix consisting of the last (m-1) rows and columns of L. We repeat the same argument as in the proof of Case I choosing ξ so that $L_{21}(x,\xi) = 0$. Since

$$d(L_{22}(\bar{x},\cdot)) \ge \frac{(m-1)m}{2} - (k-1) \ge \frac{(m-1)m}{2} - \left\lceil \frac{m-1}{2} \right\rceil$$

we conclude from the induction hypothesis that there is i such that $H_{22}(x)/h_i^i(x)$ is smooth near \bar{x} . Denote $H(x)/h_i^i(x)$ by the same H(x) then H(x) still verifies (4.1). Let us consider (i,k)-th entry of $LH = H^iL$ with $i,k \ge 2$:

(4.12)
$$\phi_1^i h_k^1 + \sum_{j=2}^m \phi_j^i h_k^j = h_1^i \phi_1^k + \sum_{j=2}^m h_j^i \phi_j^k.$$

Since $\phi_1^i(\bar{x},\cdot)$ and $\phi_1^k(\bar{x},\cdot)$ are linearly independent if $i \neq k$, $i,k \geq 2$ and $h_j^i(x)$ are smooth for $i,j \geq 2$ it follows that $H_{12}(x)$ is smooth near \bar{x} . We next take (i,1)-th entry of $LH = H^iL$ with some $i \geq 2$:

(4.13)
$$\phi_1^i h_1^1 + \sum_{j=2}^m \phi_j^i h_1^j = \sum_{j=1}^m h_j^i \phi_j^1.$$

Since $\phi_1^i(\bar{x},\cdot) \neq 0$ it follows from (4.13) that $h_1^1(x)$ is smooth near \bar{x} .

We now assume that K contains a (i,1) with $i \ge 2$. Considering $P^{-1}L(x,\xi)P$ we may assume that $(2,1) \in K$. Then there is a p-th row with $p \ge 3$ such that

$$\check{K} \cap \{p\text{-th row}\} = \emptyset.$$

In fact otherwise we have

$$\#(\check{K}) \ge 3 + m - 2 \ge 2k + 1$$

which contradicts $\#(\check{K}) \le 2k$. Then considering $P^{-1}L(x,\xi)P$ again we may assume that the third row contains no entry of \check{K} . Let us write

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix}, \quad H = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$$

where L_{22} is the $(m-3) \times (m-3)$ submatrix consisting of the last (m-3) rows and columns of $L(x,\xi)$. We may assume that K contains no entry (i,j) with $i \ge 4$, j = 1,2,3. If not we have

$$\#(\check{K} \cap \{\text{the last } m-2 \text{ rows}\}) \le 2k-4 \le m-4.$$

Then one can choose two rows among the last m-2 rows which verify the

hypothesis of Lemma 2.1 and hence the result. Repeating the same argument as in Case I we conclude that there is $i \ge 4$ such that $H_{22}/h_i^i(x)$ is smooth near \bar{x} . Again we denote $H(x)/h_i^i(x)$ by H(x). Solving $\phi_j^i(x,\xi) = 0$, $\forall (i,j) \notin K$, i > j, $(i,j) \ne (3,1)$ and substituting the relation thus obtained into (4.4) one gets

(4.14)
$$L_{22}(x,\xi_a)H_{21}(x) - H_{21}(x)^t L_{11}(x,\xi_a) = G(x,\xi_a)$$

where the right-hand side is smooth in x. Fix ξ_a and study the linear equation (4.14) with unknowns H_{21} at $x = \bar{x}$. Then it is easy to see that the coefficient matrix at $x = \bar{x}$ is the direct sum of

(4.15)
$$\begin{pmatrix} (\phi_j^j - \phi_1^1)(\bar{x}, \xi_a) & -\phi_2^1(\bar{x}, \xi_a) & -\phi_3^1(\bar{x}, \xi_a) \\ -\phi_1^2(\bar{x}, \xi_a) & (\phi_j^j - \phi_2^2)(\bar{x}, \xi_a) & 0 \\ -\phi_1^3(\bar{x}, \xi_a) & 0 & (\phi_j^j - \phi_3^3)(\bar{x}, \xi_a) \end{pmatrix}$$

for j = 4, ..., m. Since we can choose ξ_a so that

$$\phi_1^3(\bar{x}, \xi_a) \neq 0, \quad (\phi_j^j - \phi_2^2)(\bar{x}, \xi_a) \neq 0, \quad (\phi_j^j - \phi_3^3)(\bar{x}, \xi_a) = 0, \quad j = 4, \dots, m$$

the coefficient matrix is non singular and we conclude that $H_{12}(x)$ is smooth near \bar{x} . Finally we study $H_{11}(x)$. Recall that $H_{11}(x)$ satisfies the equation (4.10). In (4.10) we choose $\bar{\xi}$ so that

$$\phi_1^4(\bar{x},\bar{\xi}) \neq 0, \quad \phi_3^4(\bar{x},\bar{\xi}) = \phi_2^4(\bar{x},\bar{\xi}) = 0, \quad \phi_1^3(\bar{x},\bar{\xi}) = 1, \quad \phi_2^3(\bar{x},\bar{\xi}) = 1$$

and

$$1 - \phi_2^1(\bar{x}, \bar{\xi})^2 + \phi_2^1(\bar{x}, \bar{\xi})[\phi_3^3(\bar{x}, \bar{\xi}) - \phi_2^2(\bar{x}, \bar{\xi})] \neq 0.$$

This is possible because $\phi_2^1(\bar{x},\cdot)$ does not depend on $\phi_i^i(\bar{x},\cdot)$. This shows that the coefficient matrix of the equation (4.10) is non singular at $(\bar{x},\bar{\xi})$ and hence $H_{11}(x)$ is smooth near \bar{x} .

PROOF OF THEOREM 1.1. By the assumption for any x there is a S(x) such that

$$S(x)^{-1}L(x,\xi)S(x)$$

is symmetric for every ξ . Taking $S(\bar{x})^{-1}L(x,\xi)S(\bar{x})$ instead of $L(x,\xi)$ we may assume that $L(\bar{x},\xi)$ is symmetric. Let us set

$$H(x) = S(x)^t S(x)$$

which is of course positive definite and satisfies $L(x,\xi)H(x) = H(x)^t L(x,\xi)$. Since the reduced dimension is invariant one can apply Lemma 4.1 to conclude

that $\tilde{H}(x) = H(x)/h_p^p(x)$ is smooth near \bar{x} with some p. Then $T(x) = \tilde{H}(x)^{1/2}$ is a desired one. \square

References

- [1] T. Nishitani and J. Vaillant: Smoothly symmetrizable systems and the reduced dimensions, Tsukuba J. Math. 25 (2001), 165–177.
- [2] J. Vaillant: Système fortement hyperbolique 4 x 4, dimension réduite et symétrie, Ann. Scuola Norm Sup. Pisa 29 (2000), 839–890.
- [3] J. Vaillant: Uniformly diagonalizabe real systems, reduced dimension and symmetry, to appear in the Proceedings of 3rd International ISSAC Congress, Berlin, 2001.
- [4] J. Vaillant: Systèmes uniformément diagonalisables, dimension reduite et symétrie I, to appear in Bulltin Societé Royale des Sciences de LIEGE.
- [5] J. Vaillant: Systèmes uniformément diagonalisables, dimension réduite et symétrie, II, Partial Differential Equations and Mathematical Physics, pp. 195–223, Birkhäuser, 2003.