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ALGEBRAIC INDEPENDENCE OF FIBONACCI
RECIPROCAL SUMS ASSOCIATED WITH
NEWTON’S METHOD

By

Taka-aki TANAKA

1. Introduction
Let {F,},-, be the sequence of Fibonacci numbers defined by
Fo=0, Fi=1, Fpo=FKag+F (nx=0) (1)
and {L,},., the sequence of Lucas numbers defined by
Ly=2, Li=1 Lyy=Lu+L, (n=0). (2)

There are many investigations on the arithmetic properties of reciprocal sums of
products of Fibonacci or Lucas numbers. André-Jeannin [1] proved that the sums

0 1 0 1
; FnE1+l and ; LnLnJrl

are expressed as explicit formulas, more precisely as linear combinations over
Q(V/5) of the values of the Lambert series > 2 z"/(1 —z") at numbers of
Q(V/5). It is well-known that

S 7 o0 (_l)n 7 1 _\/§
: =1 FnFn+1 2 ’

(For the proof see (9) in the next section.) Brousseau [2] proved that

+2

o0 (_1)11
SzngnFn —2 /5.

It is easily seen that
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8

1

S =
—1 FnFn+2

=1.

In this paper we consider a new type of reciprocal sums such as

o0

= (=1)"[log, n] =\ (=1)"[log, ] logd n
Z ’ Z FnFn+2 Z (3)

n=1 n n+1 n=1 n=1

where d is an integer greater than 1 and [x] denotes the largest integer not
exceeding the real number x. In the following sections it will be apparent for
the readers that the sums (3) are transcendental numbers in contrast with the
algebraic numbers Si,S>, and S3; mentioned above, due to the factor [log, 1]
in the numerators. In the next section we express such sums, using Newton’s
method, as the values of Lambert series of the form

=Y @
k

In the last section we prove the algebraic independence of reciprocal sums (3) of

a more general binary linear recurrence {R,},, in place of {F,},., for distinct

n>0
values of d by using Mahler’s method, in which the functional equation f(z) =

[z +z9/(1 — z%) plays an essential role.

RemaRrRk 1. The algebraic independence of the values of Lambert series simi-
lar to (4) implies the algebraic independence of reciprocal sums of Fibonacci
numbers with their subscripts appearing in a geometric progression. Let {b;},
be a periodic sequence of algebraic numbers not identically zero and ¢ a fixed
positive integer. Nishioka, Tanaka, and Toshimitsu [10] proved that if {b;},- is
not a constant sequence, the numbers

o0

Z G (deN\{1},1=0,meN) (5)

k:O cd" +l
are algebraically independent, and if {b;},. is a constant sequence, the numbers
(5) except the algebraic number Y, bx/F,« are algebraically independent; and
also the numbers

8

by

P (Legis))™ (deN\{1},/>0,meN)
—o \Fe

are algebraically independent for any {bx};-,.
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Recently, Duverney, Kanoko, and Tanaka [3] proved that the numbers

/ a / a
and _—
Z Fgc+h ;0 Lo+ h
where the sum ZI/CZO is taken over those k with F « +h#0, L.y +h #0 re-
spectively, @ is a nonzero algebraic number, and ¢,d, and / are integers with
¢>1 and d > 2, are transcendental except three algebraic numbers >/~ 1/F.x,

S04/ (Lax +2), and 370 (=2)" /(L — 1).

2. Newton’s Method and Algebraic Independence

We state a particular case, Theorem 1 below, related to Newton’s method
for approximating the roots of polynomials before stating the general theorem
including Theorem 1 (see Theorem 3 in Section 3), since a lemma used in the
proof of Theorem 1 induces the key formula (11) of the proof of Theorem 3. Let
{Uu},s0 be the binary linear recurrence defined by

U=0, U=1 Uur=4U+A4U, (n=0),
where A, A, are integers with 4; >0, A, #0, and A= A12+4A2 > (0. Then

{Un},>o 1s expressed as follows:

U, =

\/Z (l’lZO),

where o = (4; ++VA)/2 and = (4; —VA)/2 are the roots of ®(X)= X>—
A1 X — A4;, and it is easily seen that |x| > |f] > 0.

THEOREM 1. The numbers

zoc: AZ 10g2 I’l] (1 > 0)

— n+/ l]nJr/H

are algebraically independent.
REMARK 2. We note that
S

— Ui Un+l+1

€Q(VA) (1=0)

(see (9) in the proof of Lemma 4).
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ExampLE 1. Let {F,},., be the sequence of the Fibonacci numbers defined
by (1). Then the numbers

Z )"[log, n] (1>0)

—2 n+an+l+l

are algebraically independent.

ExamMpLE 2. The numbers

. 2"[log, n]
z; on+l _ 1 2)1+/+1 _ 1) (Z == 0)
n=.

are algebraically independent. This is the case of 4, =3 and 4, =-2 in
Theorem 1.

In what follows, let

Z )" [log, n] (1> 0)
n+1 Un+l+1
and let
o0 sz
filz)=) ————— (I>0).

parl (“_]ﬁ)lzﬂ

Theorem 1 is proved by using the following lemma.

LemMma 1.

0, = VA (7' p) (1> 0).

In order to prove Lemma 1 we prepare three lemmas below. We introduce
here the Newton’s method for approximating the root o of ®(X). Let {x¢},-, be
a sequence defined by

D(x,
Xk+] Xk (D/<(xk)) ( O)
or
2
X; + A
o1 =2 (k> 0).
Xie+1 2xp — A, ( 0) (6)

The sequence {xx},., converges to o for suitable choice of xo.
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LemMA 2. If xo = Ay, then 377 (xx — o) = VAfo(a ).

ProoF. If x; = o for some k, then x;_; = a by (6). Since x( # o, we see
that x; # o for any k > 0. Substituting x; = VAy,' + o in (6), we get

Ver +1= (e +1)° (k=0).

2k
Therefore yx +1=(yo+1)° (k>0) and so

VA
Xe—o=———7— (k20). (7)
(a=2) -
Xg— o
Since xg = A, = o+ f, we have
VA
Xk —OC:( ﬂil)zk 1 (k ZO))
o _

which implies the lemma.

U.
LemMmA 3. If xo = Ay, then x;, = lzjk“ for all k> 0.
2/\’

Proor. The lemma is proved by induction on k. The case of k = 0 is trivial.
Assume that x; = Uyiyy/ Uy for some k. Then

x,%+A2

X+l = 53—
T — A4

2 2
U, + AU

T 2Uy Uy — A U2

(2 = ) — (e — )
2o = N (2 = ) — (a4 f(a2 — )

(2 — B)(o2" 1 — g2y
(0= B2 = g2

. U2k+1+1
U2k+l ’

which implies the lemma.
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LEMmA 4.

Um+l L a= G (_AZ)n
l]m UnUn+1

n=m

Proor. Since

Unst _ Unz _ (=42)"
U, Un+l U, Ul1+1

(n=1),

we have

- (7‘42)” UZ Um+l

. 8
=1 U, Un+1 Ul Um ( )
As m — oo, this gives
. (-4))" U
Z( )" _ U )
U, Uiyt Uy

Subtracting (8) from (9), we get the lemma.

PrOOF OF LEMMA 1. The lemma is proved by induction on /. Let {x;},., be
defined by (6) with xo = A;. Then we have by Lemmas 3 and 4

) o) U2"+1 e ( Az) o [log, n] (—Az)n
Xr— o) = —_ = = - (9 .
kZ:;( , ) ; < U2k > kZ:; HZZZ:,( Un Un+1 nz:; kz:; Un Un+1 0

Therefore 0y = VAfy(«'f) by Lemma 2.
Next assume that 0; = VAo 2fi(«!f) for some /. We have

- "([log, n] — [log,(n —1)])
0, + A0 + )
S U1+2 U/+3 ; Uni1Uniis1
Since
1 (n=2KkeN)

1 — 1 —1)] = ’

[log, 7] = [log(n = 1)] {() (otherwise),
we get

o) 2K
(—4>)

0,4+ A20,41 = —_—
i ; Uski Uk i1
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Using off = —A,, we see that

i ()" & A(=42)"

— Usiy 1 Uiy qg N = (a2 752"+1)(a2k+l+1 7[)>2’f+1+1)

2K —1p2k+1
_ \/_ o lﬂ +
Z 2k+[ 2]‘+1 O(2k+l+l _ﬁzk+/+l

= VA (a7 B) + AV A2V (07 B).

Therefore 0,1 = vVAa2+Vfi, 1 (a7'f), and the lemma is proved.

Proor orF THeorReM 1. It suffices to prove the algebraic independency of
6; (0 <! < L) for any nonnegative integer L. By Lemma 1 it is enough to prove
the algebraic independency of fi(«~!f) (0 </ < L). We see that fj(z) satisfies

22

1— (a18)'22

By Nishioka’s lemmas [9, Lemma 2 and Lemma 6] the functions f;(z) (0 </ < L)
are linearly independent over C modulo the rational function field C(z), namely
S Eoeifi(z) € C(z) (¢ €C) holds only if ¢; =0 for all / (0 </< L). By Loxton
and van der Poorten’s theorem [5, Theorem 2] or by Kubota’s result [4, Corollary
9] the functions f;(z) (0 </ < L) are algebraically independent over C(z). Then
by Mahler’s theorem [6] (see also [7, Theorem 2]), f;(«!f) (0 </ < L) are alge-
braically independent, and the proof of the theorem is completed.

filz) = fi(z%) +

By (7) in the proof of Lemma 2 we see that, if 0 < |(xo — a)/(xo — )| < 1 or
equivalently

Xo > Xo # (10)

21
2 )
then

> = VaA(5=7),

k=1

whose transcendency is seen by the same way as in the above proof of Theorem
1 with L = 0. Therefore we have the following:

THEOREM 2. Let Ay, A, be real algebraic numbers with A12 +4A4, > 0. Let
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{Xk}rso be defined by (6) with xo an algebraic number satisfying (10). Then the
sum of errors > /_(x; — o) is transcendental.

3. General Case

Letting z = o~ ! in Lemma 1, we have

0 Znt I+ w 2R
;[IOgZ ] (1 _ontl 1 Zn+l+l> = ;m (7=0),

which is valid inside the unit circle |z| = 1. Let d be an integer greater than 1 and
y a complex number with |y] < 1. We have a more general equation

0 et i+ © Zd" -+
1 — = - <1,/ >0), 11
n:d[ 084 n] (1 + yzn+l 1+ yzn+/+1> k; 1+ yZdH-l (|Z| ) ( )
since
1 (n=d* keN)
log, n] — [log,(n—1)] = ! 12
oz ] = gy (n =] = {74 % (12)
and so
m Sn S+ (logy m] SR+l [log m]z”’”“
Z[IOgd ”]< VA +/+1> = dv ‘ I
— I+ yz" 1+ yz" = 14yz 1+ pzm

Using (11), we prove the following theorem, which is more general than The-
orem 1.

THEOREM 3. Let {R,},-, be the binary linear recurrence defined by

Rypo = A1Ry1 + AR, (n>0),

where Ay, A> are nonzero integers with A = A12 +4A4, > 0 and Ry, R, are integers
with RyRy # R} and A1Ro(A1Ry — 2Ry) < 0. Then the numbers

iM (deN\{1},/>0)

Rn+1Rn+/+1

n=d

are algebraically independent.

REMARK 3. The condition A;R¢(A1Ry —2R;) <0 assures R, /Ryii+1 # 0.
We can prove the theorem also in the case 41 Ro(A41Ry — 2R;) > 0 if we exclude
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the subscripts n with R, ;R,;+1 =0 from the sum; however we have omitted
such a case for the sake of simplicity.

CorOLLARY 1. Let {R,},- be as in Theorem 3. Then the numbers

~ (—42)"[log, 7]
AT2) OB g e N\{1},1> 0
—d Rn+an+l+2 ( \{ } )

are algebraically independent and the numbers

~ A3[log, n]
—==2 ° (deN\{1},/>0
—dd R11+1Rn+l+2 ( \{ } )

are also algebraically independent.

Proor. Let

041 = iw (deN\{1},/ > 0).

“~ RutiRnti1

Using R,2 — A2R, = A1R,11 (n>0), we have

zw: )"[log,; 1] -1 Z )"[log, 1] n (—Az)n+1 [log, n]
— n+an+l+2 n+an+/+1 Ryi41 Ruti42
= A7 N04) — A204.111)
and
i logd n _ A—l - (Ag[logd }1] _ AEhLl[lOgd n] ) ) (13)
— n+an+l+2 ! 4 Rn+an+l+1 Rn+l+1Rn+/+2

If d is even, [log,(2m)] = [log,;(2m + 1)] for any m € N by (12) and so the right-
hand side of (13) is equal to

a1 3 (Aosom) a3 o n 1)
il Rop 1 Ropt 141 Ropy i1 Romti40

«MHZCWM%WMAW%MMH%

paya \ Romi1 Rome 142 RomvivaRom 143

= A7 041+ A204141).



384 Taka-aki TANAKA

If d is odd, [log,;(2m — 1)] = [log,(2m)] for any m € N by (12) and so the right-
hand side of (13) is equal to

A i <A§’"‘l[logd(2m—1)]_A§"’[10gd(2fn)])

T2 Rom1-1Rom+1 Rom+1Rom 141
4oa! Zw: (Agm[logd@m — )4 [logd(Zm)]>
: Rom+1Rom+141 Romsi1Romii12

m=(d+1)/2
=—A7"(041+ 4204 111).

Therefore we have

o0

Ilog, n]
Z S = (=1)?A7 O + 4204 141).-

= n+an+l+2

By Theorem 3 the numbers A7 (04 — A204.141) (d e N\{1},/ > 0) are algebrai-
cally independent and the numbers (—1)?A; (04,4 A204.141) (d e N\{1},1 > 0)
are also algebraically independent, which implies the corollary.

ExampLE 3. Let {F,},., be the sequence of the Fibonacci numbers defined
by (1). Then the numbers

iw (d e N\{1},/>0)

n—d E1+1E1+l+1

are algebraically independent; moreover, so are the numbers

S CDog o102 0y

—d n+1Fn+/+2

furthermore, so are the numbers

- [lOg! n]
FoF o, @eN\{1},/>0)
= FyiFpvi2 ( \{1} )

ExampLE 4. Let {L,},., be the sequence of the Lucas numbers defined by
(2). Then the numbers

PR LU VIS YT

i—d n+an+l+1
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are algebraically independent; moreover, so are the numbers

ij )"llog, 1] (d e N\{1},/> 0):

—d n+1Ln+l+2

furthermore, so are the numbers

- [logi n]
T ([@eN\{l},/=0)
=i LoviLntii2 ( {1} )

PrOOF OF THEOREM 3. We can express {R,},., as follows:
R, =a0" +bp" (n=0),

where o, (|o| > ||) are the roots of ®(X) = X2 — A; X — A, and a,b € Q(V/A).
It is easily seen that || > |8 > 0. Since RgR, — R} = abA and 4,Ro(A1 Ry —2R;)
= (o — p*)(b* — a?), we see that |a| > |b| > 0. Letting

o0 dk

gai(z) = ;1 a1 (deN\{1},1>0)

and substituting y = a~'p and z =o' in (11), we have

i: ) "llog, 1] —aa (=) ga(e'B) (deN\{1},/=0). (14)

—d 11+1Rn+/+1

Noting that g4(z) satisfies

z d

ga(z) = ga(z9) + b i)l (15)

we apply Nishioka’s theorem [8, Theorem 1]. Define
D={deN|d#a" (a,neN,n>2)}.
Then we have

N\{1} = Y {d,d* ..}
deD
We note that if d,d’ € D are distinct, then log d/log d’' ¢ Q. It is enough by (14)
to prove the algebraic independency of the values ggui;(e~'f) (deD,1 < j<n,
0 </ <L) for any positive integer n and for any nonnegative integer L. Assume
on the contrary that the values gy;(«~'f) (deD,1 <j<n0<I[<L) are alge-
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braically dependent for some positive integer » and nonnegative integer L. Let-
ting N =n! and iterating (15), we have the functional equation

Ld*

1 +a'b(a 1ﬂ)lzd""“

dan(2) = gan(z"") + Z

(1<j<n0<I<L).

By Nishioka’s theorem [8, Theorem 1] the functions g,;(z) (1 <j<n0<I<L)
are algebraically dependent over C(z) for some d € D. Then by Loxton and van
der Poorten’s theorem [5, Theorem 2] or by Kubota’s result [4, Corollary 9] the
functions g4;(z) (1 < j<n0<I<L) are linearly dependent over C modulo

C(z). Thus there are complex numbers ¢; (1 <j<n,0</<L), not all zero,
such that

n L
E C//gdfl )
j=1 1=0

Letting { be a primitive N-th root of unity and letting

B 0 Cikzdk )
hi(z) = Z:l Ty (0<I<LO<i<N-1),

we see that

n o0

CﬂZ
chlgd/[ Z o 1 +a—1b _lﬂ I dik Z chhll 0 <l< L)?

j=1

where ¢;; (0</<L,0<i<N —1) are complex numbers not all zero (cf. Proof
of Theorem 1.1 in [10]). Therefore

=

-1

L
>N cihi(z) € C(z).

=0 i

Il
<)

Since hy;(z) satisfies
izd

ih[ d :hi _
¢ I(Z) I(Z) 1—|—a71b(0671ﬂ)12d

and 1,¢,...,¢V"! are distinct, again by the Loxton and van der Poorten’s theo-
rem or by the Kubota’s result, the functions /;(z) (0 </ <L) are linearly
dependent over C modulo C(z) for some i, which contradicts Nishioka’s lemmas
[9, Lemmas 2, 3, and 6]. This completes the proof of the theorem.
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