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ON A DECOMPOSITION OF BRUHAT TYPE

FOR A CERTAIN FINITE GROUP
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Koji Tsushima

1. Introduction

B. Runge studied a connection between the invariant ring of a certain

finite group and the ring of Siegel modular forms in [3]. The generators of this

finite group are defined to be based on the action of Siegel modular group

on the theta constant. This finite group is the subgroup of the general linear

group Glð2g;CÞ. This group has been studied on several papers, for example,

see [2].

Also, he studied a generalization of the above observation for Siegel-Jacobi

forms in [5]. A certain finite group related to [5] is able to be defined in the

same way of the case of [3] (see also [1]). This finite group is sometimes called

metaplectic group.

On the other hand, in [4], he discribed that the finite group in [3] relates

to the theory of Fourier transformations. Particularly, he proved that the finite

group has a decomposition of Bruhat type (p. 183, theorem 2.2). This decom-

position theorem was e‰ciently used for the computation of dimension formula

(or Poincaré series) of ring of modular forms in [4].

Furthermore, in [6], he studied a invariant ring of weight polynomials for

a binary linear code. Each of weight polynomials is homogeneous polynomial

which is invariant of action of above finite group. And, he discribed that his

theory in [6] can be generalized for the other codes.

When we consider a generalization of Runge’s theory, as one step, we may

take up the above metaplectic group. In addition, the study of the structure of

this metaplectic group interests in the viewpoint of not only the generalization of

Runge’s theory but also group theory.

The purpose of this paper is to show a decomposition theorem of Bruhat type

for a certain metaplectic group.
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2. Notations and Some Properties of the Finite Group

Throughout in this paper, Z=mZ denotes the ring of integers modulo m.

In accordance with [5], we denote by Hg the Siegel upper half space of genus

g defined by

Hg :¼ fZ A Mðg;CÞ jZ: symmetric; ImðZÞ > 0g:

Moreover we introduce for any positive integer m and a A ðZ=2mZÞg the fol-

lowing theta functions

f ðmÞ
a ðt; zÞ ¼

X
x AZg

e mt xþ a

2m

� �
þ xþ a

2m
; 2mz

� �� �

for ðt; zÞ A Hg � Cg, where eð�Þ ¼ exp 2piðTraceð�ÞÞ for matrices and numbers,

t½x� ¼ txtx and h ; i denotes the standard scalar product. The functions

f ðmÞ
a :¼ f ðmÞ

a ðt; 0Þ ¼
X
x AZ g

e mt xþ a

2m

� �� �

are the corresponding theta constants.

It is well known that the symplectic group (Siegel modular group) Spð2g;ZÞ
is generated by

J ¼
0 1g

�1g 0

� �
;

1g S

0 1g

� �
; tS ¼ S A Mðg;ZÞ:

These generators of Spð2g;ZÞ acts theta constants f
ðmÞ
a as follows:

For J ¼
0 1g

�1g 0

� �
, we define

Tg :¼ e
1

8

� �g
1ffiffiffiffiffiffiffi
2m

p
� �g

e
ha; bi

2m

� �� �
a;b A ðZ=2mZÞ g

;

then

Jð f ðmÞ
a Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð�tÞ

p X
b A ðZ=2mZÞg

ðTgÞa;b f
ðmÞ
b

for all a A ðZ=2mZÞg.

For
1g S

0 1g

� �
we have
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1g S

0 1g

� �
ð f ðmÞ

a ÞðtÞ ¼ f ðmÞ
a ðtþ SÞ ¼ e

S½a�
4m

� �
f ðmÞ
a ðtÞ;

where S½a� ¼ taSa.

So, in accordance with [1] and [5], we shall take following ð2mÞg � ð2mÞg-
matrices Tg and DS:

Tg :¼
1 þ iffiffiffi

2
p

� �g 1ffiffiffiffiffiffiffi
2m

p
� �g

ðxha;biÞa;b A ðZ=2mZÞg

where x denotes the 2m-th root of unity, h ; i denotes the standard scalar product

and i denotes
ffiffiffiffiffiffiffi
�1

p
,

DS :¼ diagðhS½a� for a A ðZ=2mZÞgÞ

for S runs over all integral symmetric g� g-matrices, h denotes the 4m-th root of

unity, and S½a� ¼ taSa. Let

Gg;m :¼ hTg;DSi

be the subgroup of the unitary group Uðð2mÞg;CÞHGlðð2mÞg;CÞ generated by

Tg and DS. This finite group is sometimes called metaplectic group of index m,

genus g. As show in [1], this group Gg;m is a finite group.

Based on the argument of [5], we define a mapping j from the above finite

group to symplectic group

j : Gg;m ! Spð2g;Z=2mZÞ:

This mapping j is a surjective group homomorphism, which corresponds to

Tg 7!
0 1g

�1g 0

� �
and DS 7!

1g S

0 1g

� �
. Further, there is a following diagram

among the group and symplectic group:

Spð2g;ZÞ !c Gg;m=fG1g !j Spð2g;Z=2mZÞ:

The mapping c is a natural homomorphism. A mapping Spð2g;ZÞ ! Gg;m is not

homomorphism in general, so we consider Gg;m=fG1g instead of Gg;m.

In this paper, we shall restrict the m is a prime p and g ¼ 1 on the above

definition. That is,

G :¼ G1;p ¼ hT ;Di

where

T :¼ T1 ¼ 1 þ i

2
ffiffiffi
p

p ðxabÞa;b AZ=2pZ
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and

D :¼ Dð1Þ ¼ diagðha2

for a A Z=2pZÞ:

The center ZðGÞ of the above group G is generated by i p ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þp and T 2, i.e.

ZðGÞ ¼ hi p;T 2i:

In addition, we shall define the element Qs as following product of T and Ds:

Qs :¼ T 4Ds�1TDsTDs�1T

where

Ds :¼ diagðhsa2

for a A Z=2pZÞ

for s A ðZ=4pZÞ�. These elements T ;D and Qs have the following relations:

T 8 ¼ D4p ¼ Q1 ¼ 1; T 4 ¼ DTDTDT ¼ �1;

TQs ¼ Qs�1T up to scalar multiple Gi:

If s ¼ s�1 then Qs and T are always commutative.

Here, we shall consider the following Borel subgroup B of G:

B :¼ hi p;T 2;T�1D2pT ;D;Qsi ¼ hi p;DihT 2;T�1D2pTihQsi:

All elements of the Borel subgroup B are monomial matrix. The Borel subgroup

B is a generalization of monomial group Hg;4 in [3] or [4].

3. The main results

In this section, let p be odd prime.

We shall recall that the Borel subgroup B ¼ hi p;T 2;T�1D2pT ;D;Qsi and

the center ZðGÞ ¼ hi p;T 2i. We shall prove following theorem.

Theorem 1. There is a decomposition

G ¼ hB;Ti ¼ BUBTB:

Proof. Since T 2 A B, we may prove that TBT HBUBTB. We take an

element b of B, and its express by

b ¼ xe1

1 � � � x er
r

where xk A B and ek ¼G1 ðk ¼ 1; . . . ; rÞ.
We shall consider the following two statements (S1) and (S2):

TbT A BUBTB for any b A B:ðS1Þ
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TbT ¼ z or TbT ¼ zTx e for some z A B and x A B; e ¼G1:ðS2Þ

At first, we shall show that the statement (S2) hold on r ¼ 0; 1 and 2 for each

generators of B.

(In the case of r ¼ 0)

We see that TT ¼ T 2 A B.

(In the case of r ¼ 1)

About the generator i p, we see that Tði pÞe1T ¼ T 2ði pÞe1 A B.

About the generator T 2, we shall remark that T 4 ¼ �1. Then we have

TðT 2Þe1T ¼ T 2ðT 2Þe1 ¼G1 A B.

About the generator T�1D2pT , we see that

TðT�1D2pTÞe1T ¼ ðD2pÞe1T 2 A B.

About the generator D, we shall remark that DTDTDT ¼ �1.

For the case of e1 ¼ 1, it follows that TDT ¼ �D�1T�1D�1 ¼ �D�1T�2TD�1.

Since �D�1T�2 A B and D�1 A B, we obtain (S2).

For the case of e1 ¼�1, we have TD�1T ¼ T 2ðT�1D�1T�1ÞT 2 ¼�T 4DTD¼
DTD.

About the generator Qs, we shall remark that TQs ¼ Qs�1T up to scalar

multiple Gi, and Gi A B. Then we have TðQsÞe1T ¼ Qe1

s�1T
2 A B.

(In the case of r ¼ 2)

First, as element b in (S2), we take the product of the generator i p and all

generators of B.

Tði pÞe1ði pÞe2T ¼ T 2ði pÞe1þe2 A B.

Tði pÞe1ðT 2Þe2T ¼ ði pÞe1T 2ðT 2Þe2 ¼Gði pÞe1 A B.

Tði pÞe1ðT�1D2pTÞe2T ¼ ði pÞe1TðT�1D2pTÞe2T ¼ ði pÞe1ðD2pÞe2T 2 A B.

Tði pÞe1De2T ¼ ði pÞe1TDe2T A B.

Tði pÞe1Qe2
s T ¼ ði pÞe1TQe2

s T A B.

Next, as element b in (S2), we take the product of the generator T 2 and all

generators of B.

TðT 2Þe1ði pÞe2T ¼Gði pÞe2 A B.

TðT 2Þe1ðT 2Þe2T ¼GT 2 A B.

TðT 2Þe1ðT�1D2pTÞe2T ¼ ðT 2Þe1TðT�1D2pTÞe2T A B.

TðT 2Þe1De2T ¼ ðT 2Þe1TDe2T A B.

TðT 2Þe1Qe2
s T ¼ ðT 2Þe1TQe2

s T A B.

Next, as element b in (S2), we take the product of the generator T�1D2pT

and all generators of B.
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TðT�1D2pTÞe1ði pÞe2T ¼ ði pÞe2ðD2pÞe1T A B.

TðT�1D2pTÞe1ðT 2Þe2T ¼ ðT 2Þe2ðD2pÞe1T A B.

TðT�1D2pTÞe1ðT�1D2pTÞe2T ¼ ðD2pÞe1TT�1TT�1ðD2pÞe2 ¼ ðD2pÞe1þe2 .

Since D4p ¼ 1, we obtain (S2).

TðT�1D2pTÞe1De2T ¼ ðD2pÞe1TDe2T A B.

TðT�1D2pTÞe1Qe2
s T ¼ ðD2pÞe1TQe2

s T A B.

Next, as element b in (S2), we take the product of the generator D and all

generators of B.

TDe1ði pÞe2T ¼ ði pÞe2TDe1T A B.

TDe1ðT 2Þe2T ¼ ðT 2Þe2TD e1T A B.

TDe1ðT�1D2pTÞe2T ¼ TD e1TT�1ðT�1D2pTÞe2T A B.

TDe1De2T ¼ TD e1TT�1De2T A B.

TDe1Qe2
s T ¼ TD e1TT�1Qe2

s T A B.

Next, as element b in (S2), we take the product of the generator Qs and all

generators of B.

TQe1
s ði pÞ

e2T ¼ ði pÞe2TQe1
s T A B.

TQe1
s ðT 2Þe2T ¼ ðT 2Þe2TQ e1

s T A B.

About the TQ e1
s ðT�1D2pTÞe2T .

If e1 ¼ e2 ¼ 1, then TQsT
�1D2pT 2 ¼ Qs�1D2pT 2 A B.

If e1 ¼ 1 and e2 ¼ �1, then TQe1
s T

�1ðD2pÞ�1
T 2 ¼ TQsTðD2pÞ�1 A B.

In the case of e1 ¼ �1, we take TQ�1
s ¼ T 2T�1Q�1

s .

TQe1
s D

e2T ¼ TQ e1
s TT

�1De2T A B.

TQe1
s Q

e2
s T ¼ TQ e1

s TT
�1Qe2

s T A B.

Further, we shall show that the statement (S1). We use induction on r

ðrb 2Þ. Since T 2 A ZðGÞ,

TbT ¼ Tðx e1

1 � � � xer
r ÞT

¼ T�2Tðx e1

1 x e2

2 ÞTTðx e3

3 � � � xer
r ÞT :

If Tðxe1

1 xe2

2 ÞT ¼ z, then

TbT ¼ T�2zTðx e3

3 � � � xer
r ÞT A BUBTB:

If Tðxe1

1 x e2

2 ÞT ¼ zTx e, then we shall put Tx eT ¼ z 0Tx 0e 0 for some z 0 A B and

x 0 A B, e 0 ¼G1. So,

TbT ¼ T�2zz 0Tx 0e 0 ðxe3

3 � � � x er
r ÞT A BUBTB:

This completes the proof of theorem 1. r
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Moreover, the group G is decomposed as the following Theorem 2. This is

the main theorem of this paper.

Theorem 2. The group G has the following decomposition:

G ¼ B
G2p�1

a¼0

DaTB
Gp�1

b¼0

DbTD2B
G

g¼0;1

DgTDpTB ðdisjoint unionÞ

where B ¼ hi p;DihT 2;T�1D2pTihQsi.

Proof. From the mention of § 2, there exists the surjective group homo-

morphism

j : G ! Spð2;Z=2pZÞ

which corresponds to T 7! 0 1

�1 0

� �
and D 7! 1 1

0 1

� �
. We shall remark

that the symplectic group Spð2;Z=2pZÞ equals to the special linear group

Slð2;Z=2pZÞ, and Slð2;Z=2pZÞ ¼ Slð2;Z=2ZÞ � Slð2;Z=pZÞ.
Now, we put jðBÞ :¼N. Since

NHSlð2;Z=2pZÞ ¼ Slð2;Z=2ZÞ�Slð2;Z=pZÞ;

there are N 0 HSlð2;Z=2ZÞ and N 00 HSlð2;Z=pZÞ such that N ¼ N 0 �N 00. From

the result of Theorem 1, we have

G ¼ BUBTB:

So, if we map T to
0 1

�1 0

� �
and B to N we get

Slð2;Z=2pZÞIN UN
0 1

�1 0

� �
N:

Here, we take h A ker j. If h A BTB, then jðhÞ A N
0 1

�1 0

� �
N and jðhÞ B N.

However, since jðhÞ ¼ 1, thus ker jHB.

On the other hand, the cardinal of representative elements of RHS of this

theorem is clearly 3ðpþ 1Þ. Therefore, the index

½G : B�a 3ðpþ 1Þ:

And since jðBÞHB, thus

½Slð2;Z=2pZÞ : jðBÞ�a 3ðpþ 1Þ:
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Moreover, we have

Slð2;Z=2pZÞ=NFSlð2;Z=2ZÞ=N 0 � Slð2;Z=pZÞ=N 00:

The Slð2;Z=2ZÞ=N 0 is isomorphic to the projective space P1ðZ=2ZÞ ¼ fy; 0; 1g
and the Slð2;Z=pZÞ=N 00 is isomorphic to the projective space P1ðZ=pZÞ ¼ fy;

0; 1; . . . ; p� 1g. Thus the index

½Slð2;Z=2pZÞ :N � ¼ #ðP1ðZ=2ZÞÞ �#ðP1ðZ=pZÞÞ ¼ 3ðpþ 1Þ:

Hence,

3ðpþ 1Þb ½Slð2;Z=2pZÞ : jðBÞ�

b ½Slð2;Z=2pZÞ : B� ¼ 3ðpþ 1Þ:

Next, we shall show that the RHS of this theorem is left invariant by the action

of T and D. We put t :¼ 0 1

�1 0

� �
and d u :¼ 1 u

0 1

� �
for u A ðZ=2pZÞ�. We use

the well known relations:

td ut�1 ¼ 0 1

�1 0

� �
1 u

0 1

� �
0 �1

1 0

� �

¼ 1 0

�u 1

� �

¼ 1 �u�1

0 1

� �
u�1 0

0 u

� �
0 1

�1 0

� �
1 �u�1

0 1

� �

and

td utN ¼ 0 1

�1 0

� �
1 u

0 1

� �
0 1

�1 0

� �
N

¼ 1 �u�1

0 1

� �
0 1

�1 0

� �
N:

From the above relation, for the action of T (we use the symbol �; this is the

product of matrix), we get

T � ðDlTBÞ ¼ D�l�1

TB

for l ¼ 1; 3; . . . ; p� 1; pþ 1; . . . ; 2p� 1, l�1 A ðZ=2pZÞ�,

T � ðDnTBÞ ¼ DmTD2TB

for n ¼ 2; . . . ; 2p� 2, m ¼ 2�1 � n�1 ðmod pÞ, and
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T � ðDTDpTBÞ ¼ Dðpþ1Þ=2TD2TB:

Since T 2 A ZðGÞ, so T � ðTBÞ ¼ B, T � ðTDpTBÞ ¼ DpTB is obvious.

On the other hand, for the action of D (as above, we use the symbol �), we

get

D � ðBÞ ¼ B;

D � ðDvTBÞ ¼ Dvþ1TB for v ¼ 0; . . . ; 2p� 2;

D � ðD2p�1TBÞ ¼ TB:

And

D � ðDwTD2TBÞ ¼ Dwþ1TD2TB for w ¼ 0; . . . ; p� 2;

D � ðDp�1TD2TBÞ ¼ TD2TB;

D � ðDTDpTBÞ ¼ TDpTB:

This completes the proof of theorem 2. r

4. Some Remarks

For p ¼ 2 case (i.e., a A Z=4Z), the group G is as follows:

G ¼ T ¼ 1 þ i

2
ffiffiffi
2

p

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

0
BBB@

1
CCCA;D ¼

1 0 0 0

0 h 0 0

0 0 �1 0

0 0 0 h

0
BBB@

1
CCCA

where i ¼
ffiffiffiffiffiffiffi
�1

p
and h8 ¼ 1. In this case, we have

ZðGÞ ¼ h�1;T 2i ¼ G1;G

i 0 0 0

0 0 0 i

0 0 i 0

0 i 0 0

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

¼ fQ1;Q3;Q5;Q7g;

B ¼ �1;T 2;T�1D4T ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA;D :

The order of G is 384, the order of Borel subgroup B of G is 64, and the index

½G : B� ¼ 6.
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For the action of T , we get

T � ðTBÞ ¼ B;

T � ðDTBÞ ¼ �D�1T�1D�1B ¼ D�1TB ¼ D3D4TB ¼ D3TT�1D4TB ¼ D3TB;

T � ðTD2TBÞ ¼ D2TB:

For the action of D, we calculate the commutator

½D4;T � ¼ ðD4Þ�1
T�1D4T ¼

0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

0
BBB@

1
CCCAA B:

Then,

D � ðD3TBÞ ¼ D4TB ¼ TD4½D4;T �B ¼ TB:

Further, D � ðBÞ ¼ B,

D � ðTD2TBÞ ¼ DTDDTB ¼ T�1D�1T�1T�1D�1T�1B

¼ TD6TB ¼ TD2TT�1D4TB ¼ TD2TB:

Hence, we get

G ¼ B
G3

a¼0

DaTB
G

TD2TB ðp ¼ 2 caseÞ:

In [5], B. Runge determined the kernel of theta representation. By using this

result, it is possible to determine the group structure more in detail, which has

been also indicated in [1]. So, we guess that the result of this paper can be gen-

eralized for the group defined with respect to Z=2mZ, more generally ðZ=2mZÞg.

However, there is no direct generalization for the group defined for Z=mZ,

because the action of Siegel modular group Spð2g;ZÞ on the theta constant (see

§ 2) is not well defind in the case that m is odd.

The result of the generalization for Z=2mZ may be more complicate than

the result of this paper. For example, the group G 0 for Z=16Z (m ¼ 8 case) is

given. In this case, the order of G 0 is 24576, the order of Borel subgroup B 0 of

G 0 is 1024, and the index ½G 0 : B 0� ¼ 24. In this case, we can take up 1, DaT

ða ¼ 0; . . . ; 15Þ, DbTD2T ðb ¼ 0; . . . ; 3Þ, TD4T ;TD8T ;TD12T , as representative

elements of the coset G 0=B 0. Here, the representative element TD12T is not

applied for the theorem of this paper. This fact is easily checked by using a

computer.
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