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KILLING VECTOR FIELDS ON TANGENT BUNDLES

WITH CHEEGER-GROMOLL METRIC

By

Mohamed Tahar Kadaoui Abbassi and Maâti Sarih

Abstract. This paper deals with properties of the Cheeger-Gromoll

metric g introduced in 1988 by Musso and Tricerri on the tangent

bundle TM associated to a given Riemannian metric ðM; gÞ.
One can find here essentially the two following results:

1. A classification of Killing vector fields on ðTM; gÞ
2. A generalization of a result of M. Sekizawa concerning the

non rigidity of the Cheeger-Gromoll metric.

1. Introduction

Let ðM; gÞ be a Riemannian manifold and TM its tangent bundle with the

natural projection p : TM ! M.

Although the Sasaki metric Tg on TM [9] is a ‘‘naturally defined’’ Rie-

mannian metric, it is ‘‘extremely rigid’’ [8]. O. Kowalski [6] has shown that it is

never locally symmetric unless the base metric is locally Euclidean. E. Musso and

F. Tricerri [8] have generalized this fact: they have shown that it has constant

scalar curvature if and only if the base metric is flat. To surmount this hindrance

E. Musso and F. Tricerri have suggested the Cheeger-Gromoll metric g on TM

[3] as an alternative. Indeed, M. Sekizawa [10] has shown that its scalar curvature

is never constant if the original metric on the base manifold has constant cur-

vature. The authors have also studied some other properties of this metric [1],

many of which will be used here.

Throughout this work, TM will be endowed with the Cheeger-Gromoll metric

g. We give, firstly, a theorem on general forms of all Killing vector fields on
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ðTM; gÞ (Theorem 3.6). If some assumptions are imposed, then the forms of

Killing vector fields become simpler ones (Theorems 4.1, 4.2 and 4.3); some ideas

of these results are inspired from similar ones for the case of the Sasaki metric

[12]. In § 5, we give a generalization of a result of M. Sekizawa [10] concerning

the non rigidity of the Cheeger-Gromoll metric on the tangent bundle (Theorem

5.7).

In this paper, manifolds are assumed to be connected and smooth and the

so-called ‘‘Einstein’s summation’’ will be used everywhere.

The authors would like to thank Professor M. Sekizawa for his helpful

comments on this work.

2. Preliminaries

A local coordinate neighborhood fðU ; xi; i ¼ 1; . . . ; nÞg in M induces on

TM a local coordinate neighborhood fp�1ðUÞ; xi; vi; i ¼ 1; . . . ; nÞg. Let X ¼ ðX iÞ
be a vector field on M. Then the complete lift X c, the vertical lift X v and

the horizontal lift X h of X are given, with respect to the induced coordinates,

by: X c ¼ ðX i; v jðqX i=qx jÞÞ, X v ¼ ð0;X iÞ and X h ¼ ðX i;�G i
jkv jX kÞ respectively,

where ðG i
jkÞ denote the Christo¤el’s symbols of g. (cf. [9], [15])

On the other hand, to any ð1; 1Þ-tensor field P on M, one can associate two

vector fields iP and �P defined on TM by:

iP ¼ ð0;Pi
j v jÞ and �P ¼ ðPi

j v j;�G i
lkPl

j v jvkÞ:

Then iP is a vertical vector field and �P is a horizontal one, and we have

X c ¼ X h þ ið‘XÞ, where ‘X ¼ ð‘jX
iÞ and ‘ denotes the covariant di¤erentia-

tion with respect to the Levi-Civita connection of g.

In this paper, we need new lifts of vector fields on M. For any vector field X

on M, let XA and XB be vector fields on TM defined at any point ðx; uÞ A TM by

XAðx; uÞ ¼ ð1 � r2ÞX vðx; uÞ þ gxðu;XðxÞÞUðx; uÞ;

XBðx; uÞ ¼ ð1 � r2ÞX vðx; uÞ þ gxðu;XðxÞÞUðx; uÞ þ �ðCðX ÞÞðx; uÞ;

where r2 ¼ gxðu; uÞ, U is the canonical vertical vector field defined, locally, by

U ¼ ð0; viÞ, i.e., Uðx; uÞ ¼ ð0; uiÞ, and CðX Þ is ð1; 1Þ-tensor field on M defined by

gðCðXÞY ;ZÞ ¼ �gðY ;‘ZXÞ for all vector fields Y and Z on M. The components

of CðXÞ with respect to the local coordinates are ð�gikgjl‘kX lÞ. Clearly the lifts

XA and XB are smooth vector fields on TM.

Remark that XB is a vertical field; it is the vertical part of XA.

The Cheeger-Gromoll metric g on TM has components [1]:
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gij ¼ gij þ vlvtGk
ilG

l
jtGkl

ginþj ¼ vtGk
itGkj

gnþinþj ¼ Gij

8><
>: i; j ¼ 1; . . . ; n;

where Gij is the function on p�1ðUÞ defined by:

Gij ¼ 1=ð1 þ r2Þðgij þ gikgjlv
kvlÞ:

3. Classification of Killing Vector Fields on ðTM; gÞ

The general forms of Killing vector fields on ðTM; gÞ are given by

Theorem 3.1. Let ðTM; gÞ be the tangent bundle with the Cheeger-Gromoll

metric of a Riemannian manifold ðM; gÞ. Let

(i) X be a Killing vector field on ðM; gÞ;
(ii) P be a ð1; 1Þ-tensor field on ðM; gÞ which is

(P1) Parallel with respect to g and

(P2) skew-symmetric with respect to g, when considered as a vector field valued

linear mapping on the space of vector fields on M;

(iii) Y be a vector field on ðM; gÞ which satisfies

(Y1) the second covariant derivation ‘2Y of Y is skew-symmetric, when con-

sidered as a vector field valued bilinear mapping on the space of vector fields on M;

ðY2Þ �RðX ;CðY ÞðWÞÞV � RðX ;CðYÞðVÞÞW

¼ 2½gð‘X Y ;VÞW þ gð‘X Y ;WÞV � 2gðV ;WÞ‘X Y �

for all vector fields X, V and W on M.

Then the vector field Z on TM defined by

(TK) Z ¼ X c þ iP þ YB is a Killing vector field on ðTM; gÞ.
Conversely, every Killing vector field on ðTM; gÞ is of the form ðTKÞ.

Proof. The proof will be devided into a series of propositions and lemmas.

We have shown in [1] (Theorem 5.11), that the vertical lift to TM of a non-

zero vector field on M is never a Killing vector on ðTM; gÞ contrary to the Sasaki

metric case where the vertical lift to TM of a parallel vector field on M is a

Killing vector field on ðTM;TgÞ [9]. This fact for the Sasaki metric was a fun-

damental tool on which S. Tanno had based to give general forms of all Killing

vector fields on ðTM;TgÞ [12]. Now, we will give an analogous of Tanno’s the-
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orem (Theorem A. [12]) on the classification of Killing vector fields, in the case of

Cheeger-Gromoll metric.

Recall that a vector field Z ¼ ðZ I Þ is a Killing vector or an infinitesimal

isometry with respect to the metric g ¼ ðgIJÞ if and only if LZg ¼ 0, where LZ

denotes the Lie derivative with respect to Z, i.e.,

Z KqK gIJ þ qI Z K gKJ þ qJZ K gKI ¼ 0; I ; J ¼ 1; . . . ; 2n:

Putting ðI ; JÞ ¼ ði; jÞ, ði; n þ jÞ and ðn þ i; n þ jÞ, the last equation is trans-

formed to the system:

ðKÞ

ðK1Þ Z gq=qxgðgij þ vlvtGk
ilG

l
jtGlkÞ þ Z nþgq=qvgðgij þ vlvtGk

ilG
l

jtGklÞ

þ qZ g=qxiðggj þ vlvmGk
glG

l
jmGklÞ þ qZ nþg=qxivmGk

jmGkg

þ qZ g=qx jðggi þ vlvmGk
glG

l
imGklÞ þ qZ nþg=qx jvlGk

ilGkg ¼ 0;

ðK2Þ Z gq=qxgðvlGk
ilGkjÞ þ Z nþgq=qvgðvlGk

ilGkjÞ þ qZ g=qxivlGk
glGkj

þ qZ nþg=qxiGgj þ qZ g=qv jðggi þ vlvtGk
ilG

l
gtGklÞ

þ qZ nþg=qv jvlGk
ilGkg ¼ 0;

ðK3Þ Z gqGij=qxg þ Z nþgqGij=qvg þ qZ g=qvivlGk
glGkj þ qZ nþg=qviGgj

þ qZ g=qv jvlGk
glGki þ qZ nþg=qv jGgi ¼ 0:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

First of all, we shall study the particular cases X c, iP and XB.

Proposition 3.2 [1]. In order that a complete lift X c to TM of a vector field

X on M be a Killing vector field of ðTM; gÞ, it is necessary and su‰cient that X

itself is a Killing vector field of ðM; gÞ.

The following lemma is immediate from ðKÞ:

Lemma 3.3.

1- If P ¼ ðPi
j Þ is a ð1; 1Þ-tensor field on M, then:

LiPg ¼
0 Ggi‘jP

g
r vr

Ggj‘iP
g

r vr 1
1þr2 ðAij þ Bij � CijÞ

� �
;

where
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Aij ¼ ðggjP
g
i þ ggiP

g
j Þ þ ðggiP

g
r þ ggrP

g
i Þvrvj ;

Bij ¼ ðggjP
g
r þ ggrP

g
j Þvrvi;

Cij ¼ ðggsP
g

r þ ggrP
g

s ÞvrvsGij:

2- If Y is a vector field on M, then

LYB
g ¼ �ð‘i‘jY

k þ ‘j‘iY
kÞvk Dij

Dji 0

� �
;

where Dxz ¼ �glkGkxv
rvs½Rlszg‘

gYr � ‘zY
gðglrggs þ glsggr � 2glggrsÞ�, x; z ¼ 1; . . . ; n.

As corollaries of lemma 3.3, we obtain

Proposition 3.4. Let P be a ð1; 1Þ-tensor field on ðM; gÞ satisfying the con-

ditions ðP1Þ and ðP2Þ in Theorem 3.1. Then iP is a Killing vector field on ðTM; gÞ.

Proposition 3.5. Let Y be a vector field on ðM; gÞ satisfying the conditions

ðY1Þ and ðY2Þ in Theorem 3.1. Then YB is a Killing vector field on ðTM; gÞ.

Now, we consider the 0-section ðvi ¼ 0Þ in the coordinate neighborhood

ðp�1ðUÞ; xi; vi; i ¼ 1; . . . ; nÞ in TM induced from ðU ; xi; i ¼ 1; . . . ; nÞ in M, and

its neighborhood W . For a vector field Z on TM, and ðx; vÞ ¼ ðxi; viÞ in W , we

can write, by Taylor’s theorem,

Z iðx; vÞ ¼ Z iðx; 0Þ þ qZ=qvrðx; 0Þvr þ 1
2 ðq=qvrðqZ i=qvsÞÞðx; 0Þvrvs þ � � � ½��il;

Z nþiðx; vÞ ¼ Z nþiðx; 0Þ þ qZ nþi=qvrðx; 0Þvr

þ 1
2 ðq=qvrðqZ nþi=qvsÞÞðx; 0Þvrvs þ � � � ½��nþi

l ;

where ½��Il ðI ¼ 1; . . . ; 2nÞ is of the form: ½��Il ¼ 1
l! ðq

lZ I=qvi1qvi2 � � � qvilÞ �
ðxa; yðx; vÞvbÞvi1 vi2 � � � vil ; 1a i1; . . . ; il a n.

The following lemma is valid.

Lemma 3.6 [12]. In the above situation, the following

X ¼ ðX iðxÞÞ ¼ ðZ iðx; 0ÞÞ; Y ¼ ðY iðxÞÞ ¼ ðZ nþiðx; 0ÞÞ;

K ¼ ðK i
r ðxÞÞ ¼ ðqZ i=qvrðx; 0ÞÞ;

E ¼ ðE i
rsðxÞÞ ¼ ðq=qvrðqZ i=qvsÞðx; 0ÞÞ;

P ¼ ðPi
r ðxÞÞ ¼ ððqZ nþi=qvrÞðx; 0Þ � qZ i=qxrðx; 0ÞÞ

are tensor fields on M.
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With the notations of lemma 3.6, we can write:

ðT1Þ Z iðx; vÞ ¼ X i þ K i
r vr þ 1

2 E i
rsv

rvs þ � � � ½��il,

ðT2Þ Z nþiðx; vÞ ¼ Y i þ ~PPi
r vr þ 1

2 Qi
rsv

rvs þ � � � þ ½��nþi
l ,

where ~PPi
r and Qi

rs are given by

~PPi
r ðxÞ ¼ qZ nþi=qvrðx; 0Þ and Qi

rs ¼ q2Z nþi=qvrqvsðx; 0Þ;

and we have:

ðT3Þ qZ i=qv jðx; vÞ ¼ K i
j þ E i

rjv
r þ � � � þ h�ii

l�1,

ðT4Þ qZ nþi=qv jðx; vÞ ¼ ~PPi
j þ Qi

rjv
r þ � � � þ h�inþi

l�1; . . . etc.

When we apply Taylor’s theorem to the left hand sides of ðKÞ to some order

l, the results are the same as one obtains by substituting ðT1Þ, ðT2Þ, ðT3Þ, ðT4Þ . . .
into ðKÞ up to order l� 1. Furthermore the vanishing of the right hand sides of

the equations of ðKÞ implies the vanishing of each coe‰cient (up to order l� 1).

Substituting ðT1Þ and ðT2Þ into ðK1Þ and taking the part which does not

contain vr, we have

X gqgij=qxg þ qX g=qxiggj þ qX g=qx jggi ¼ 0:

Hence, X ¼ ðX iÞ is a Killing vector field on ðM; gÞ. Since, by proposition 3.2, X c

is a Killing vector field on ðTM; gÞ, Z � X c is also a Killing vector field. There-

fore, in the following, denoting Z � X c by the same letter Z, one may assume

that X i ¼ 0 in ðT1Þ. Then ð ~PPi
r Þ ¼ ðPi

r Þ is a tensor field on M by lemma 3.6.

Putting ðT1Þ and ðT2Þ into ðK2Þ (from now on, we omit this statement)

and taking the part which does not contain vr, we get: Y gGk
iggkj þ qY g=qxiggj þ

K
g
j ggi ¼ 0; that is

ðD1Þ K
g
j gig ¼ �ggj‘iY

g ¼ �‘iYj, i.e.,

ðD 0
1Þ K i

j ¼ �‘ iYj.

Taking the coe‰cient of vs in ðK1Þ, we get

K g
s qgij=qxg þ Y gðGk

is G
l

jgglk þ Gk
igG

l
jsglkÞ þ qK g

s =qxiggj

þ qY g=qxiGk
js gkg þ qK g

s =qxjggi þ qY g=qx jGk
is gkg ¼ 0:

Using the equality qgij=qxg ¼ G t
gigtj þ G t

gjgti and ðD1Þ, we see that the above

equation can be simplified to

ðD2Þ ‘i‘jYs þ ‘j‘iYs ¼ 0.

Taking the part which does not contain vr, in ðK3Þ, we get

ðD3Þ P
g
i ggj þ P

g
j ggi ¼ 0.

Taking the coe‰cient of vs in ðK2Þ, we get

Pg
s G

k
iggkj þ qPg

s =qxiggj þ E
g
sjggi þ P

g
j G

k
is gkg ¼ 0;
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or equivalently

gigE
g
js þ ‘iP

g
s gjg ¼ 0; i:e: gigE

g
js þ ‘iPsj ¼ 0;

where Psj ¼ Pg
s ggj.

Since E
g
js is symmetric in j and s, and ð‘iP

g
s Þggj ¼ ‘iPsj is skew-symmetric

in j and s by ðD3Þ, we have

ðD4Þ E
g
js ¼ 0 and ‘iP

g
s ¼ 0.

Taking the coe‰cient of vs in ðK3Þ, we get

ðD5Þ K g
s qgij=qxg þ Y gðgisgjg þ giggjs � 2ggsgijÞ þ K

g
i G

k
gsgkj

þ Q
g
siggj þ K

g
j G

k
gsgki þ Q

g
sjggi ¼ 0:

We put Qi
rs ¼ �ðG i

krK
k
s þ G i

ksK
k
r Þ � 2Y igrs þ ðY kgkrd

i
s þ Y kgksd

i
rÞ þ T i

rs.

By simple calculation using ðD5Þ, we can verify that

T r
isgrj þ T r

jsgri ¼ 0:

If we put Tisj ¼ T r
isgrj , then Tisj is symmetric in i and s, and skew-symmetric

in i and j. Hence Tisj ¼ 0. That is

ðD6Þ Qi
sr ¼ �ðG i

krK
k
s þ G i

ksK
k
r Þ � 2Y igrs þ ðY kgkrd

i
s þ Y kgksd

i
rÞ.

Taking the coe‰cient of vsvt in ðK2Þ, we get by virtue of ðD6Þ

ðD7Þ ðK g
s Rk

itg þ K
g
t Rt

isgÞgkj þ 2‘iY
gðggsgjt þ ggtgjs � 2ggjgstÞ

þ q=qvsðq=qvtðqZ g=qv jÞÞðx; 0Þggi ¼ 0:

Taking the skew-symmetric part in s and j of ðD7Þ, we get

ðD8Þ 2RjsigK
g
t þ RjtigK

g
s � RstigK

g
j þ 2‘iY

gð3ggsgjt � 3ggjgstÞ ¼ 0.

Taking the symmetric part in s and t of ðD8Þ, we get

ðD9Þ RjsigK
g
t þ RjtigK

g
s ¼ �2‘iY

gðggsgjt þ ggtgjs � 2ggjgstÞ.
Now, by ðD3Þ and ðD4Þ, we see that iP is a Killing vector on ðTM; gÞ by

Proposition 3.4. By ðD1Þ, ðD2Þ, ðD9Þ and Proposition 3.5, YB is a Killing vector

field on ðTM; gÞ.
We put ½Z� ¼ Z � iP � YB which is a Killing vector field on ðTM; gÞ. Using

the preceding arguments, we see that ð½Z�AÞðx; 0Þ ¼ ðq½Z�A=qxBÞðx; 0Þ ¼ 0, for

A ¼ i; n þ i and B ¼ j; n þ j at a point p ¼ ðx; 0Þ.
Since a Killing vector field ½Z� (or more generally an infinitesimal a‰ne

transformation) is determined by the values of its components and their first

partial derivatives at a point (cf. [5, p. 232]), we have ½Z� ¼ 0 on TM.

Finally, propositions 3.2, 3.4 and 3.5 and the facts that have already been

shown complete the proof of Theorem 3.1.

Killing vector fields on tangent bundles 301



4. Classification of Killing Vector Fields on ðTM; gÞ in Particular Cases

Let ðM; gÞ be a compact oriented Riemannian manifold with volume element

dv. We can define the global scalar product ha; big of two p-forms a and b as

follows: ha; big ¼
Ð

M
gða; bÞ dv, where gða; bÞ denotes the scalar product of a and

b, with respect to g, locally defined by gða; bÞ ¼ ai1���ipb
i1���ip .

The norm associated to the global product h ; ig is denoted by k kh;ig
:

Theorem 4.1. In theorem 3.1, if ðM; gÞ is compact, then Y satisfying ðY1Þ
and ðY2Þ is parallel. Hence ðTKÞ is Z ¼ X c þ iP þ YA.

Proof. By considering the double covering manifold if necessary, we can

assume that M is orientable. Let Y be a vector field on M satisfying ðY1Þ. We

can write, using ðY1Þ, ‘i‘
iYr ¼ ‘iðgij‘jYrÞ ¼ gij‘i‘jYr ¼ 0: In this case, we have

ðaÞ ‘iðYr‘
iyrÞ ¼ ‘iYr‘

iY r þ Yr‘i‘
iY r ¼ ‘iYr‘

iY r.

If we denote by Y � the 1-form on M obtained by contraction of Y with

respect to g, then the quantity Yr‘
iY r is the local expression of the vector field V

obtained by contraction of the ð2; 1Þ-tensor field Y � n‘�Y ; ‘�Y being defined

locally by, ð‘�YÞ ij ¼ ‘ iY j.

On the other hand, the quantity ‘iYr‘
iY r is nothing but gð‘Y �;‘Y �Þ. The

equality ðaÞ is then transformed to ‘iV
i ¼ ð‘Y �Þirð‘Y �Þ ir; that is

ðbÞ div V ¼ gð‘Y �;‘Y �Þ.
Integrating both sides of the last equation ðbÞ, we get

ðgÞ
Ð

M
div V dv ¼ k‘Y �k2

h;ig
.

Applying Green’s theorem (
Ð

M
div V dv ¼ 0 [5], I.p. 281), it follows from ðgÞ

that k‘Y �k2
h;ig

¼ 0.

Thus ‘Y � ¼ 0 i.e. ‘Y ¼ 0. Therefore YB ¼ YA, which gives the result.

Theorem 4.2. In theorem 3.1, if ðM; gÞ satisfies one of the following three

conditions:

(i) M is compact and orientable with vanishing first Betti number b1ðMÞ;
(ii) M is compact and orientable with strictly positive Ricci Curvature;

(iii) ðM; gÞ is an Einstein space with non-zero scalar curvature di¤erent from

2nð1 � nÞ, then Y satisfying ðY1Þ and ðY2Þ vanishes, in which case ðTKÞ becomes

Z ¼ X c þ iP.

Proof. (i) M being compact, Y satisfying ðY1Þ and ðY2Þ is parallel, by

theorem 4.1. Applying Hodge’s theorem ([13]), we have Y ¼ 0 by virtue of

b1ðMÞ ¼ 0.
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(ii) According to [2, theorem 1.76], b1ðMÞ ¼ 0. So, we can apply (i).

(iii) contracting ðY2Þ with respect to i and s, we obtain

Rsg‘
gYt þ Rtg‘

gYs ¼ 2ð‘tYs þ ‘sYt � 2‘rYrgstÞ;

where ðRijÞ denotes the Ricci curvature tensor.

By assumption, ðM; gÞ satisfies: Rsg ¼ S=ngsg, for non-zero scalar curvature S.

Hence, we have

ðS=n � 2Þð‘sYt þ ‘tYsÞ ¼ �4‘ rYrgst:

Multiplying by gst both sides of the last equation and summing over s and t,

we get ð2n2 � 2n þ SÞ‘sYs ¼ 0.

Since S 0 2nð1 � nÞ, we have ‘sYs ¼ 0, which means that ‘rY
r ¼ 0. Now,

using ðY1Þ and the Ricci identity,

‘i‘jY
r � ‘j‘iY

r ¼ Rr
tjiY

t;

we get

‘i‘jY
r ¼ 1

2 Rr
tjiY

t:

Contracting with respect to r and j, and applying ‘rY
r ¼ 0, we get RtiY

t ¼ 0,

that is S=ngtiY
t ¼ S=nYi ¼ 0. Therefore Y ¼ 0, since S 0 0.

Theorem 4.3. Let ðTM; gÞ be the tangent bundle with the Cheeger-Gromoll

metric g of a Riemannian manifold ðM; gÞ. If M is compact and orientable, and if

the first and the second Betti numbers vanish, then the Lie algebra of Killing vector

fields on ðM; gÞ and the Lie algebra of Killing vector fields on ðTM; gÞ are

isomorphic, via the correspondence X ! X c.

Proof. Applying theorem 4.2(i), it follows from b1ðMÞ ¼ 0 that Y ¼ 0. Fur-

thermore, if the ð1; 1Þ-tensor field P is parallel then, by b2ðMÞ ¼ 0 and Hodge’s

theorem, we have P ¼ 0. Therefore, every Killing vector field on ðTM; gÞ is of the

form X c for some Killing vector field X on ðM; gÞ. On the other hand, for any

vector fields X and X 0 on M, it is known that ½X ;X 0�c ¼ ½X c;X 0c�.

Remark 4.4. Let ðM; gÞ be a compact orientable Riemannian manifold

whose first and second Betti numbers vanish. The isomorphism stated in theorem

4.3 is also true in the case of the Sasaki metric [12, Theorem D]. Generally, one

can consider the following interesting questions: Consider on TM a Riemannian

metric G so that:
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(i) The projection p : ðTM;GÞ ! ðM; gÞ is a Riemannian submersion;

(ii) vertical and horizontal distributions are orthogonal,

1. Is the complete lift of any Killing vector field on ðM; gÞ a Killing vector

field on ðTM;GÞ?
2. If yes, are the Lie algebras of Killing vector fields of ðM; gÞ and ðTM;GÞ

isomorphic with the correspondence X ! X c?

5. The Non-Rigidity of the Cheeger-Gromoll Metric

Concerning the rigidity of the Cheeger-Gromoll metric, M. Sekizawa had

shown in [10, p. 417], the following result

Theorem 5.1 [10]. The scalar curvature of the tangent bundle ðTM; gÞ with

the Cheeger-Gromoll metric g of a Riemannian manifold of constant sectional cur-

vature ðM; gÞ is never constant. In particular, ðTM; gÞ is never a space of constant

sectional curvature if ðM; gÞ is of constant sectional curvature.

Our aim in this section is to generalize the particular situation of the pre-

vious theorem. We begin with a classical result concerning the characterization of

spaces of constant sectional curvature in terms of dimension of the Lie algebra of

Killing vector fields. Such a result is well known in literature (See for example

[5, I. p. 238]).

Theorem 5.2 [5, I]. The Lie algebra iðMÞ of infinitesimal isometries of a

connected Riemannian manifold M is of dimension at most nðn þ 1Þ=2, where

n ¼ dim M. If dim iðMÞ ¼ nðn þ 1Þ=2, then M is a space of constant curvature.

Now, we consider three subsets of iðTMÞ

icðTMÞ ¼ fX c jX A iðMÞg;

iiðTMÞ ¼ fiP jP is a ð1; 1Þ-tensor field on M satisfying ðP1Þ and ðP2Þg and

iBðTMÞ ¼ fYB jY is a vector field on M satisfying ðY1Þ and ðY2Þg.

Proposition 5.3.

1. icðTMÞ, iiðTMÞ and iBðTMÞ are R-vector subspaces of iðTMÞ. Further-

more, dim icðTMÞa ð1=2Þnðn þ 1Þ, dim iiðTMÞa ð1=2Þnðn � 1Þ, and dim iBðTMÞ
a n2 þ n.

2. iðTMÞ ¼ icðTMÞl iiðTMÞl iBðTMÞ.
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3. dim iðTMÞ is maximal if and only if the dimensions of icðTMÞ, iiðTMÞ
and iBðTMÞ are maximal equal, respectively, to ð1=2Þnðn þ 1Þ, ð1=2Þnðn � 1Þ and

n2 þ n.

Proof. 1. Using Theorem 5.2, it is clear that dim icðTMÞa ð1=2Þnðn þ 1Þ,
since dim iðMÞa ð1=2Þnðn þ 1Þ. On the other hand, since elements of iiðTMÞ
raise from skew-symmetric parallel ð1; 1Þ-tensor fields, we see that dim iiðTMÞa
ð1=2Þnðn � 1Þ. Finally, condition ðY1Þ on elements of iBðTMÞ let us assert that

dim iBðTMÞa n2 þ n. 2. Follows immediately from Theorem 3.1. 3. Follows from

1 and 2 [Remark that ð1=2Þnðn þ 1Þ þ ð1=2Þnðn � 1Þ þ n2 þ n ¼ nð2n þ 1Þ, which

is the maximal dimension of iðTMÞ].

Now, if ðM; gÞ is of constant sectional curvature which is assumed to be

di¤erent from �2 and 0, then we can easily verify that ðM; gÞ is an Einstein space

with scalar curvature di¤erent from 2nð1 � nÞ and 0; hence iBðTMÞ is reduced to

the 0-section of TM by virtue of Theorem 4.2.

Applying 3 of Proposition 5.3, we have dim iðTMÞ < nð2n þ 1Þ. This implies,

by Theorem 5.2, that ðTM; gÞ is of non constant sectional curvature.

Remark 5.4. The additional condition on the constant sectional curvature

of ðM; gÞ is not a geometrical constraint. It is nothing but a technical condi-

tion which comes from the analysis of equation ðY1Þ in Theorem 4.2. In fact,

by Theorem 5.1, we can say that ðTM; gÞ is never a space of constant sectional

curvature if ðM; gÞ is a space of constant sectional curvature.

On the other hand, if we suppose that ðM; gÞ is a space of non constant

sectional curvature, then by Theorem 5.2, dim iðMÞ < ð1=2Þnðn þ 1Þ and so

dim icðTMÞ < ð1=2Þnðn þ 1Þ. Therefore, dim iðTMÞ < nð2n þ 1Þ, by 3 of Prop-

osition 5.3.

Applying again Theorem 5.2 to the case of TM, we see that ðTM; gÞ is a

space of non constant sectional curvature. We have then proved the following

Theorem 5.5. The sectional curvature of the tangent bundle ðTM; gÞ with the

Cheeger-Gromoll metric g of a Riemannian manifold ðM; gÞ is never constant.

Remark 5.6. Using the same arguments as in the proof of [12, Theorem E],

one can state a similar result for the Cheeger-Gromoll metric. i.e., ðM; gÞ is of

constant curvature k > 1 if and only if the restriction of the geodesic flow vector

field to TrM ðr ¼ 1=
ffiffiffi
k

p
� 1Þ, is a Killing vector field with respect to the induced

metric of ðTM; gÞ.
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