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ASYMPTOTIC ESTIMATES FOR DENSITIES OF
MULTI-DIMENSIONAL STABLE DISTRIBUTIONS

By

Seiji HIRABA

1. Introduction and Results

Let u(dx) be a stable distribution on R? with exponent 0 < o < 2. Its log-
characteristic function W(z) := log [ps €™ u(dx) (i =+/—1) is given by the fol-
lowing:

,J Kz 0" {1 — i(sgn{z, 0)) tan %] MdO) +iCzby (£ 1),
Y= 7 ,
- [ ka0 [1 +i2 (sendz,0)) log] ¢z 0>|]z<d0> Fiz by (a=1),
S{I—l

where {z,0> = Zf:] z;0; for z = (z1,...,z4), 0 = (61,...,04), “sgn x” is the sign
function, ie., sgnx=1 (x>0), =0 (x=0), =—1 (x<0), A(d0) is a finite
measure on SY! and b € RY. Moreover if x is non-degenerate, then u has a C*-
density function p(x) with respect to the Lebesgue measure dx, i.e., u(dx)=
p(x) dx and

(L.1) p(x) = J ) exp[—i{x,z) + ¥(z)] dz.

2n)? Jr
The non-degeneracy of x means SpanSptu=R? and it is equivalent to
Span Spt /. = R?, where Spt u (resp. Spt A) is a support of u (resp. A) and for a set
S <R’ Span S is a linear subspace of R spanned by S (cf. [3]).

In the present paper we would like to investigate the asymptotic behavior
of p(ro) as r — oo for each direction o € S~ under the following assumption.

ASSUMPTION 1. Let b =0. For some number m > 0,
Spt A= {a, 6@ ... ¢} =S and SpanSpt /=R

that is, the support of ) is only finitely many points which linearly spans RY.
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Note that we always denote vectors as o'/ = (a(l'j), . ..,a&i)).

In the one-dimensional case the asymptotic behavior of p(y) as y — +oo
is well-known as follows. If 4 has mass at {+1}, then p(y) ~ C(x)y~'"* as
y — +o0, with some constant C(a) > 0 which is determined by o and A({+1}).
Also if 1 does not have mass at {—1}, then p(y) =0 if and only if y <0 and

0 < a < 1. Moreover

a=1=p0) ~ 5= p[“'y;ep@i')] (y = —o0),

l<a<2= p(y) ~C@) |y * D expl—y| "] (y— —o0),

where constants C(a),c,y >0 are determined by o and A({—1}) (cf. [2]).
Note that for positive functions f(r),g(r) of r =1, f(r) ~g(r) (r — o) means
lim, .. £(r)/g(r) =1

In the two-dimensional case and in some special cases of three-dimension, we
gave the asymptotic behavior of p(rg) in [1].

In this paper we give the asymptotic behavior of p(ro) in the general di-
mension d > 1. For each n=1,2,...,d, let

= {ZaSO—(I\);aA' = Ovjs = 1323"'7d+m (S: 1,2,,,,,”)}“86{1
s=1

and
T(n):=Sm\Sn—-1) with S(0) :=&.

That is, o0 € T(n) means o can be expressed by a linear sum of just n-number
of independent vectors of 7(1) = S(1) = {a1), 6, ... ¢\@*™} with positive co-
efficients and it can not be by less than n-number of independent vectors with
positive coefficients (note that ¢ may be also expressed by more than n-number of
independent vectors with positive coefficients).

Let Int S(d) denote the interior of S(d) in SY! and for r > 1,

halr) = exp[%‘% e"p@ﬂ (x=1),

r(2fo<)/(2a72) exp[_ra/(ocfl)} (1 <o < 2)

THEOREM 1. Under Assumption 1, the following hold with some constants
C(a,0) >0, 0 < Cy < Gy, y; >, >0 which are independent of r > 1.

(i) Let 0<a< 1. If ce T(n)NInt S(d) for some n=1,...,d, then p(ro) ~
Cla,0)r 149 as r — oo, If o ¢ Int S(d), then p(ra) =0 for all r > 0.
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(i) Let 1<a<2. If oeT(n) for some n=1,....d, then p(ro)~
Cla,0)r 149 as r — oo, If ¢ S(d), then Cihy(y,r) < p(ra) < Cahy(y,r) for all
r>1

It is possible to determine the constant C(x, o) exactly. We shall give a more
detailed result at the end of the next section (see Theorem 2). From the above
result the following is immediately obtained.

CorROLLARY 1. If S(d)=S*"' and oe T(n) for some n=1,...,d, then
p(ra) ~ C(a,0)r ") as r — 0.

2. Further Results

Let ¢/ be the unit vector in xj-axis direction (j=1,...,d). Adding to
2 ...,6D} linearly spans R? and there is

a d x d-regular matrix Q such that ¢\/) = Qel/), by changing the order of {c(/);

Assumption 1, we may suppose {g(!), o'
j=1,2,...,d + m} if necessary, where we regard /), e(/) as column vectors (Q
is given by Q0 = (¢ --.¢@)). Let

po(x) := |det Q|p(Ox), or equivalently, p(x) = |det Q| 'po(0'x).

If we denote

) = W) = |

F({z,0)4(d0)
Sd—l

with a suitable function F, and let ‘Q be a transposed matrix of Q, then
the log-characteristic function Wy(z) of po(x) is given by W,('07'z) = ¥, (2),
where 1o(d0) = 2(Q d0) on Q'(S?"!). Thus Sptiy contains e/) = Q~'g(/)
(j=1,...,d). In fact,

(2n)dpQ(x) = |det Q| JRL, exp[—i{Qx,z) + W,(z)] dz
~ |det Q| J expl—i¢x,'025 + W, (2)] d=

= J exp[—ix,w) + ¥, (‘0" 'w)] dw.
Rt/

Moreover by ('O~ 'w,0> = (w,07'0> we have

(107 'w) = J

Sd—l

F(Gw, 0710%)3(d0) = jQI(SM) F(Gr,0)1(0 db) = 3, (w).
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This implies Wo ='¥;,. Therefore our results are invariant for regular linear
transformations Q by changing S9! to 9~ 1(S/1).
For each j=1,2,...,d+m and teR, let

—2({a D)1 [1 — i(sgn ¢) tan %} (o0 # 1),
¥(1) = 5
Aol [1+ 2 sen ) togl | (2= 1)

and let p;(y) be the one-dimensional a-stable density corresponding to ‘(7).
Then p;(y) is a C* function satisfying the following: p;(y) ~ Cj(a)y~'"* as y —
+o0. pj(y) =0 if and only if y <0, 0 < a < 1. Moreover

yl _2¢ mly
2,/ce exp[4cj e P 2¢; (y = —e0),

20—2)

a=1= pi(y) ~

1 <a<2= pi(y) ~ G) [y exp[—y, |y ] (v — —0).

Here constants Cj(oc),C}(oc)/,cj,yj > 0 are determined by « and A({g\/)}).
Let p'@(x) := pi(x1) -+ pa(xq) for x = (x1,...,x4). If m =0, then po(x) =
p9(x). If m > 1, then by ¥p(z) = ij{"‘l&((z, 0 '¢y) we have

(2.1) Po() :j dyy - j g 5 — 01D

-0 -0
—ymOQ e pui (91) - Parm (Vm)-

In fact, in general, if p(x) is a d-dimensional density with a log-characteristic
function ¥(z) := Wp(z) — ¥;(<z, 0" '), then

2n)'po(x) = " exp[—ix,z) + Yo(z)] dz

= | exp[—ix,z) +P(z)] exp|¥({z,, 0 ' aV)))] dz
Rd

o0

= | ewl-icnzy + ¥ ([ expliviz, 071l 0) dv) a:

R — 0
| | exploicr= 30002+ Hepi () a:
=0 [ -2 e () d,

Hence we have (2.1).
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When o € T(n), we define a family of indexes
n) = {{j1,....jnp = {l,....d + m}y;o =a;o0") + - + a,c\,
a;>0 (s=1,...,n),{a",...,6U)} are linearly independent}.

For each {ji,..., j,} € J(n), we always fix {aU»1) ... ¢(ad} such that {a ()]
g} is a basis of R and a d x d-matrix Q;,__, such that Q;, el =gl

(s=1,...,d), where (i,...,ig) is a permutation of (1,...,d). Moreover if n<d,
then let

‘I‘LJ( fnets <2 Ziy) = Yo, . Wiy .ooywg) with wi=z;, (i=i), w;=0 (i #I)

0

J dylp.l}m (yl) T J dy"7pjz/+nz(ym)

X Pl (xi,,+l Z Vs él:jlﬂ ) . < Z sl hm))

where {jsi1,. .. ,jd+m} =A{1,....d+mN\{ji,...,js} and V) .= Rglies) ¢ RY
with R = Q; I We also set p] ,(0,...,0) :=1. Now we state a more detailed

..........

result than Theorem 1 in case of o€ T(n).
THEOREM 2. Let o€ T(n) (and o eInt S(d) if 0 <a < 1). It holds that

plro) ~ Y |det Q...

{Jtseesin} €J ()

71pj1 (ray) - P (mn)pjl‘ Jn 0,...,0)

as r — oo, where each p]1 i (0,...,0) is positive and (ay, ..., a,) is determined
by a=>",a,c%) such that as >0 (s=1,...,n).

3. Proofs of Theorems

Adding Assumption 1, we may also assume (a1, ... @) = (D), ... @)
and m > 1. For simplicity, let /) := ¢\@*) (j=1,...,m). Then by (2.1) with
0 = E; (the d x d-unit matrix) we have

p(x) = J dy) J dymp D (x =y = = yn™)

—o0 —o0
X par1(¥1) -+ Pasm(Ym)s
where p@(x) = p1(x1) - pa(xq) for x = (x1,...,xq).
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We first show the latter half of each result of (i) and (ii) in Theorem 1.

PrOPOSITION 1. Let S(d) #S97".

() If 0<a<1 and o ¢ Int S(d), then p(ra) =0 for r > 0.

(i) If 1<a<?2 and ¢ S(d), then Cihy(yr) < p(ra) < Cohy(y,r) for all
r=1, where 0 < C; < Cy < o0, y; >y, >0 are independent of r > 1.

Proor. Since elV), ... e e S(d) # S’ ! and ¢ ¢ Int S(d), there is a number
ip=1,...,d such that g;, <0 and we may assume that S(d) < {0 eS‘"";0, >0}
by using a regular linear transformation if necessary. For simplicity, let iy = 1.
Hence ﬂ(l‘i) >0 (j=1,...,m). Moreover ¢ ¢ S(d) implies o, < 0.

(i) Let 0<a<1. If o¢IntS(d), then o; <0. By p;j(») =0 (y<0) for

every J,

) 0
p(}"U) = JO dyl . JO dymp(d)(ro_ B ylﬂ(dJrl) L ym”(dﬂn))

X Pd+1 (yl) T pd+m(ym)~

Thus ro| — y1p;’ — -+ — ymn(lm> <0 by ;7(1_1') > 0 for every j. Therefore p;(ro; —
ymgl) — = ymngm)) =0 and hence p(rg) = 0.

(i) Let 1 <o <2. If 0¢S(d), then g; <0. Let ¢ >0 be a sufficiently small
number such that —a; —&(7\" +--- +7") > &. By the definition of /,(r), there
exist constants Co,, > 0 such that p;(y) < Cohy(yp,r) Whenever y < —er, r>1

for every j=1,...,d + m. We have

m —

plro) = Z Z J 0 dyjlpd+jl(yjl) T

k=0 {ji,e i} © 7

o0

J dyjk Dd+ji, (yjk) J

— 0

‘dyj/(+1pd+jl(+l (yjk+1) e

—&r

o0
J vy, Pasn (13,) P\ (1o — yig — - =y,

—é&r
where {jii1,---,Jmt ={L,...,mN\{Ji,-..,jk}- In the right-hand side if k=0,
then the corresponding term satisfies

o0

o0 O
J dypasi(y1) -- J AV Pasm(Ym) 'V (ra — yig™ — - = 3, < Cihy(,r)

—&r —&r
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for some Cj> 0. In fact, if y; > —er for every j, then

ro| — ym&” i ymiy(lm) <r(o) + 8(7751) 4+t 775"7))) < —er.

Hence p(ro; — ylr](ll) — = ymngm)) < Cohy(y,r), which implies the above in-

equality. If £ > 1, then it is easy to see that

oo
J P<d)(r<7—y1'7(l) - ym’] )dy/
-0
is bounded in (yi,..., ¥j-1, Yj+1,--., Ym). Therefore for some constants C{ > 0,
J dyjlpd+j1 (yjl)p(d>(}’0 - y177<1) - yn777(m))
—0
o0
< Cohy(pyr) J ‘P(d>(r0- - y177(1> J’mﬂ ) dy]l

< Coha(yar).

Thus we have p(ro) < Cyh,(y,r). Finally, for the lower estimate, since p;(y) is
strictly positive and continuous, if 0 < y; <1 for every j, then

(d)(

P (ra— yigV — - = 3™ = C'hy(yr)

for all » > 1 with some constants C' > 0, y; > 0. Therefore

1 1
plro) > J dyipasi (1) - J Ay Pasm(Ym) P (ra — pigV — - — yn™)

> Cihy(y7). [ |

Next in order to show the first half of each (i), (ii) in Theorem 1, it suffices
to show Theorem 2. We always assume o € T'(n) for some n=1,...,d (and o €
Int S(d) if 0 <o < 1). Then by using a regular linear transformation, we may
also assume that ¢ = gjel) + - + g,e™ with a; >0,...,0, > 0.

ProoF oF THEOREM 2. Let ¢ >0 be a sufficiently small number such that

co = min {g; (| + -+ ")} > 0

and g =& dm max{|771(f")|;j . dys=1,....m}. We have
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m

plro) = Z Z Jy > dyjlpd+j1(yj1) T

k=0 {]1 ..... ]A}
={l1,....,m}

J | dyjkpﬂ”rjk(yjk) J dyjk+1pfl'+jk+1 (yjk+1) U
Vil =er

Ty [ <er

m_ ... _

J ] vy, Pav i (¥i) P\ (ro — yin V™),
}jm <eér

where {ijrla cee 7jm} = {17 e 7m}\{j17 L 7jk}-
In the following for positive functions f;(r), f(r) of r>1 (¢ >0), let

fo(r) ~ f(r) as r — o0, & 0 denote llgl }Ln;) f(n/f(r) =

For instance, if o;>0, then p;(ro; +e¢)~ pj(ro;) as r— o, |0 by
pi(r) ~ Ci(a)r™'=* as r — oo.
In the case k =0, the corresponding term satisfies

J dy1pa1(y1) - J Ay Paim(ym) P (ro — iy — - = yn™)
[y|<er | ym|<er
Npl(ral)"'pn(ro-n)pt“,n(or 50)
as r — o0, ¢ ] 0, where pl{wn(O,...,O) is given by
(3.1)
0 o0 m ( )
N
J dylpd+1(y1)~~J Ay Pam(Ym) Pus1 Zy sl | pal =D v
—© - s=1

if n<d, and p{ ,4(0,...,0)=1 if n=d. In fact, let 6:=(oy,...,0,) and

77() (17%”,...,77,9) (s=1,...,m). Foreach j=1,...,n, by p;(ro; + &) ~ p;(rg;)

.....

as r— oo, ¢ | 0, and

m 1 m
o <r<aj+e<|n;>|+---+|n; D)
=1 s r(o; — (

1 b3
e(lnt |+ + ™)) = reo,

we have p"(ré — yii") — - — y,7") ~ p"(rG) as r — oo and & ] 0. Hence
by
PO =y = = yuy™)

1 m 1 m
X pn+1(—y117,(1+)1 — = ymnf,+>1) .- -pd(—ymZ) — = ymng M,
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the above asymptotic is obtained if p1 ((), ...,0) > 0. We show that if n < d,

then

. = m !
J dy1pasi(y1)-- J AymPdsm(Ym pn+1< Zys;/]n+l> e pa <_ Z)’S”fj)> <0
e % s=1

(note that it is obvious pi ,(0,...,0) is given by the above formula). When

1 <a<2, pj(y) is strictly 'Bosr[ive and continuous. Hence it is evident. When
0 <o <1, we also assumed ¢ € Int S(d). By p;(y) =0 for y <0, pi- ,(0,...,0)

is equal to

o0

JO dylpd+l(yl) t JO dJ’mPch ym Pn+1 ( Z Vs }7n+l> © o Dd <_ Z y\ﬂy)> .
s=1

The following lemma ensure pl{_”’n(O, ...,0) >0 by p;j(y) >0 for y >0 and the

continuity of p;(y).

LemMA 1. Let 1<n<d—1 and o =c1eV) +-- - +a,e™ with ) >0,...,
o, > 0. If celnt S(d), then there exists a vector (yi,..., Ym) such that yy >0,...,
Y >0 and yig) + -y <0 for all k=n+1,....d.

Proor. For xeRY, we denote %:= (Xnt1s---,%q), and fceInt(R‘f’") if
x;y <0 for every k=n+1,...,d. We have to show that

v+ 4y ™ e Int(RY™") for some y; >0,...,p, > 0.

Let Sy = Con{6"t) ... @M} <RI be the convex cone subtended by
{etl) . gldtmy = felntD) o a0 aMY Noting that o e R” x {0}97",
if Sy is contained in a half space of RY™ then o e dS(d). Hence o € Int S(d)
implies Sy = RY™". Therefore there exists a basis {¢(),... gl-"} = {0t .
Gy of RY™ such that the cone S = Con{g,... gl} R satisfies
Int SNInt(R™") # . Thus we fix a point x € Int SNInt(R“™") such that X #
nY) (j=1,...,m). Then %=a;6") +---4ay ,6) with positive numbers
a; > 0. Now we can consider the following two cases.

[First case] {6, ... U} does not contain any é®) (k=n+1,...,d),
ie.,

{&(11 dn}_{n o /fln)}

Thus X:alﬁ(j‘)+~~+ad,nﬁ(f“*") with a; > 0. We would like to add other
7)) (#4U) i=1,...,d —n) with positive coefficients. In this case for some
{it, .. igy = {1,2,...,d —n} (0<g<d—n), V) can be expressed by 7)) =
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PO bm(m = Digti) ¢ with by >0, ¢; > 0. Note that if ¢ =0, then 4/ =
—(e1fU) + -+ 4 cq_nili=-)). Hence

%= ﬁ(]) + (a1 + Cl)ﬁ(m + o (g + Cdin)ﬁ(jd—n).

On the other hand, if ¢ > 1, then 3°7 , bili) = 740) + Di¢ iy €Ml 7(/) . Thus for a
sufficiently small ¢ > 0 such that a;, —eb, >0 (s=1,...,¢), we have

q
X:Z( _gb j'\ _’_Szbqﬂjn _’_Za”ﬁ
s=1 i¢{is}
q .
= (@, —eb)at") + i) + Y (@i + e
s=1 i {is}
Therefore x can be expressed by i + -+ 3,7 € Int(RT™) with ;> 0.
econd case] {6, ... U} contains some & =n+1,...,d), that is,
Second 5 (i) G ® (k l,...,d), th
{6'(” o Gl } - {e oo el e ’ﬁ(jd—n)}.

Then % = ajeV) 4 .- + aqé(f‘/> + b1ﬁ<fq+l> + ot byp—gnVin) with ag > 0, b, > 0.
In this case by the same way as above, we have

X = clé(.h) L cqé(./‘q) + )/177(1) 4 ymn("’) with ¢, > 0, y; > 0.
This implies 317" 4 - 4+ yi® = % — (c;eV) + -+ ¢,6U)) e Int(R™). W

REMARK 1. By this lemma, it can be also shown that p;-
Theorem 2. In fact, for each s = 1,...,d, Ro\s) = ¢(®) holds by Q], ,,,,, n€ ’S> = gl
(R=0;". ) Hence o =", asa(/‘ implies Ro=Y""  a,Re'») =" | azel®).
Therefore p]1 “““ ;,(0,...,0) is given by the same formula as in (3.1) with

{Ro') }S‘l:ﬂl 1nstead of {nm,

In the case k > 1, it is possible to show the following Claim 1. If £k <n and
{0, ... yl)} are linearly independent, then let

le’“_,jk = {{l.k_,_],...,in} (e {1,...,d};

J—Zanﬂ + Z bee'™ with a; > 0,b, > 0,

s=k+1

where {0, ... gU) eli) o)) are linearly independent}.
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Note that J(n) can be expressed by the following disjoint unioin:

J(n) = {{1,....n})

n
Ul U {d+j,d+jiieets - inks {iksts o oin} € 5 b

J | dyjl Pd+jy (le) T J dyjkpd+jk(yjk) J dyjk+1pd+jk+1 (yjk+l) s
Vil =er

[ vy | =er [ Vjy I<er

J | dyjrl1pd+jn1(yjm)p<d)(ro- - yln(l) - ymn(M))
}y/ll <ar

~

> Cirnisbasi (rar) -+ payj (rai) pi,, (rbig) -+ pi, (rb)

{ik+lv-~~,in}
S/

as r — o0, ¢ | 0. Otherwise the above term is o(r"1*%) as r — oo for any small
£¢>0. Here C;,,, ;=1 (n=d) and if n <d, then

o0

dy;, Pa+j, (Vi)

0 0 m ©
J dyj, - J dyj, H Di <— Z yiti, ) :
o0 o0 i=1,...,d; s=1
FF T 1 yeees I

o0
I = J dyj/c—lpd+_j/c+l (yj/c+l) e J
0

Note that C,., ., is positive. In fact, denote {i1,... i, lnt1,...,0a} =

{1,...,d\{ixs1,..., 0} and let O = Quij\. . dtjrixer,in D€ @ d X d-matrix such
that Qel’) = (i) = gld+i) (s=1,... k) and Qel®) =e®) (s=k+1,...,d). By

change of variables (y;,,...,»;) to (J,...,¥;) such that

m k m
_j}s = Z yjﬂz(sl) = Z yj,ﬂ,(‘s'/’) + Z yjz’?l(‘s./’) (S = 1; .. 'ak)a
j=1 =1

t=k+1

we have the following.
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Lemma 2. If n<d, then

Cik+17‘~~¢i;z |det Q| pd+]1 ..... A+, Tt 1 5oy I (07 ce 70) (> 0)

PrOOF. The positivity of py; 40, (0,...
Remark 1. For the equation, it is enough to show the case (ji,...,Jm) =

,0) was mentioned in

(1,...,m). By the definition, py ,(0,...,0) is given by

o0 0

dsmpasm ) J )| o

%
J Ay 1Pask+1 (V1) - - J

—® -

k m
Pivs (Z%(Re“‘")),-,,, -y yz(Rn(”),-n_l)
s=1 t=k+1

m

k
D <_ Z ~S(Re(zs))id _ Z yf(Rﬂ(t))id>

s=1 t=k+1
For simplicity, we consider the case (i,.. zd) =(1,...,d). Denote Q=
(Q‘Y‘I)lﬁs,tﬁd and R:(RYI‘)]<_§ I<d Then QVf:”Y ( Sk) an d ‘Y,l‘zéS,I (tZ
k+1), where 6, =1 (s=1), =0 (s # 1). Let Ok = (Qs.) 1y rer = 1)) <y 1k

and E; = (051),<,,<;- By R=07", we have

Q‘(Qk 0 > and R—(le 0 >
x  Eg g x  Eq

Let u=n+1,...,d. For t=1,... .k,

Z R, S;/l_g Z Ry, S;/l_g Z R, S;/l_g u, ']1(4) = _’71(4l)-

s=k+1

For s=1,....k and t=k+1,....m
. k
(Re(zs))iu — (Re(é'))u =R, and (Rn(t))i“ — (R”(I))u - ZR“A,S’?FY[) + ’7:(4t)‘

Therefore by change of variables (y,,..., ;) to (y1,..., %) such that

m k
=> Z S v (s=1,....k),
= P

t=k+1

we have dy,---dy, = |det Qx| dy;---dyx and for u >n—+1,
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m

k
- Z J?v(Re(l‘v))iu - Z yt(an)i,,

s=1 t=k+1
k k m
> (S i+ z) z(z o)
s=1 \ r=1 t=k+1 t=k+1 s=
k m
SO DT B SIS oD
=1 s=1 t=k+1
Hence pyyi  gikiit..n(0:---,0) = |det O] Cpyi,..n with
o0 o0
Citlon = J dyk+lpd+k+l(yk+l) e J dympd+m(ym)
—0 — 00
© © m ()
J dy; J dyx H pi —Z)/s’?ij . u
- — i=1,...,d, j=1
i#k+1,..n

We show Claim 1. If y; < —er, then py.;(y;) has an exponential decay and

o0

J P (ra—yinV — - = pn™) dy, <J P (ro — yin'V -
y<—er

_ym77 ) dyl

-0

is bounded in (yi,...,¥j-1, Yj41,---, Ym). Thus Claim 1 is reduced to the fol-
lowing. Let v:= —y;, pUt) — .. — p pln) - then |v] <eor by |y;.,| <er,...,
|y,| < er (recall ¢y =& dm max{|;7](‘y)\;j =1,....d,s=1,...,m}).

(Claim 2) If 1<k<n and J; __; # J, then

(32) J dyj pasj (9)) - J dvj.pasi, (7)) (ro — v
yjy =er Vi >er

~ Y Cii@pas(rar) - payj(rag) pi, (rbes) - pi,(rby)

{iks1yeesin}
S/

as r — oo, ¢ | 0, bounded and pointwise in |v| < gor. Otherwise, i.e., if kK >n or
i = &, then it is o(r™1*%)) as r — oo for any small &> 0. Here

0 0 k )
Cicorooniy (v) = J dyj, - J dy, I »i (— Sy + v> .
- % i=1,....d; s=1
[ R AR
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In the above, for positive functions f(r,e v),g(r) (r = 1, sufficiently small
¢>0 and veRY),
f(r,e,v) ~g(r) as r— o0, ¢ |0, bounded and pointwise in |v] < gor
means that
f(r,e,v) e <60y /g(r) is bounded in (r,e,v) and

16%1 Tim f(r,,0) 1<z} /9(r) = 1 for every ve R

For simplicity, we consider the case (ji,...,J k) =(l,...,k), that is,
@,y = (W, p W) and (.. 0i) = (01 ). Let

k
B:=Con{yV,... " = {z:ctw(”;a‘Y >0,5 = 1,2,...,k}
s=1

and ko := dim B (< k). Fix a basis {#(/V),... ,nU)} < {51 ... #®} of Span B.
We may set {n(/) ... yUk)} = {41 . yko},

In the following we always use the same notation C > 0 as constants which
are independent of r > 1. They may be different in each line.

Let ko > n. By using change of variables it is easy to see that

J dJ’1"'J dye,p“ (ro = yinV — - = yp'® +v) < C,
R R
where C is independent of r>1 and (yk,+1,..-,k). Hence we have, by

Pac1(01) + Parky (Vi) < Crkoll+a),

s=1

k
J dylpd+1(y1) e J dykderk(yk)p(d) <VO' — Z ys;//(s) + U)
yi=er Vi =er

< Cr—ko(lJra) JR Dd-+ko+1 (ka_H) dyk0+l cee JR Pd+k(yk) dyk J dyl
yi=er

k
: J dye,p“\ roe ="y +v
Ykg >er =1

< Cr ko) — (7 152)) a5 r — 0 by ko > n.

Next let ko <n. We first show the above term is O(r"0*+*) (k = k) or
o(r"19)) (k > ko) as r — oo for any small & > 0. If ko = n, then it is evident.
Let ky < n. We need the following lemma. For each r > 1, let
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k
H,(r) := {x:ra— Zysiy(‘g);ys >er (s= 1,...,k)}.

s=1
Moreover let

mn 2 (ko)

;7[1 nil ]7[1
(O IG) (ko)
;71, ;7], e ni
Iy =S {in, iy = {1, dydet| 7 T #0
.1 .2 . k
A o g

and denote {ij,... 0, == {1,...,d}\{i,. ., ik}

LemMaA 3. Let ko < n. There exists 6 > 0 such that for all r > 1,

d .
i= i

i) 5eees lk()}eI/\“ {’/{0+1-~~~,in

S UR
where 6 > 0 is independent of r = 1 and
Cf(r) = {xeR%x; < —or},
D{io+l ____ in(r) ={xe R“’;xik0+1 >0r,...,x; >0r}.

We shall give the proof in the next section. By this lemma we have

J dy1paii(y1) - J dyipa+i(Vi)p (VG - Z " >
yi=er Vi >er

SJ...Jdeyl~ (ZIC” - (ra—Zym )

S S S P G vl )

{ityesirg Y S Tky {ikgs1seeesin}
0 o Ukg
< {ityeeny i}

k
@ (m = Ty + U) Pa1 (V1) Pari(Vie)-
s=1

Here we may assume J > 80 > 0 by taking a sufficiently small ¢ > 0 from the

beginning. If ro — ZS L ysn® € C2(r), then by ro; — Zleym,(»s) > —or and |v]| <
gor we have



276 Seiji HIRABA

k
! (w =D v+ ) < (=Dl ol Pl 1pall
s=1
where §' =6 —¢ >0 and || - || = - ||, denotes the supremum norm. Hence the

corresponding term has an exponential decay. Next if

(xh'- xd —ra—Zyn ey ()QH()

for some {i,... ik, } €I, and {ixy11,--.,in} < {i1,..., ik}, then by using change
of variables,

J J dyl "'dykopil(xil)"'pi/co(xko) <C
R R

and by y,>eér, we have pyi1(y1)- - Park,(Vk,) < Cr-%U+%_ Furthermore by

P = pii Py Dig Pi Piey Pl and Picger (Xkg+1) -+ i (X3,) <
Cr~ (ko4 it holds

< Cr (n—Fko)( 1+1)J J dyl H.dykopil('xil)'“piko(xiko)
yi=er Mo>fr

S Crf(nfk(ﬂ(l#»ot) .

If k> kg, then

o0 o0
J AYio+1 J AVipaskort (Vkos1) - Pask (i) = O~ F=F0*y — 0

&r &r

as r — oo. Hence for k > ky,

k
J. B JR/ dyl B dyle': ey ()NH,(r) (VO’ - Z y‘Y”(S)>
k o1 i po

s=1

k
x p (VJ_ ZJ’M(‘Y) + U)PdH(J’l) -+ pa+k(Vk)

{g Cro1+) (k= ko)
= o(r 1) (k > ko).

Thus we also have p(re) < Cr"(%% for all r > 1.
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We show the asymptotic behavior (3.1). From the above estimate, it is
enough to consider the case 1 <k =ko <n and

k
x=(X1,...,Xq) :=r0 — Zym(‘” € H.(r)N{x; > —=dr,...,xq > —or}.

s=1

First consider the main term. Let {ixi1,...,i} € Ji__x (# &), that is, o can be
expressed by o = Zle asn® + S0 bel® with ag >0, by >0 and linearly in-
dependent vectors {51, ... y%) eli) el

n

k k
o=y =3 (ras = y)n + Y b,
s=1

s=1 s=k+1

We divide the integral area E,:={(yi,...,y);ys=¢r (s=1,...,k)} to E, =
F,UG, such that

F, = U Ek+l,<-~~,i)1(r) and G, := ﬂ Gik+l~,~-~7in (V),

{ikstyin} €01, {ikstrmin} €01,
where, noting that {aj,...,a;} is determined by {ixi1,...,in},
Fiorin () ={(31,-.., k) € E;;|ras — ys| < er for all s=1,...,k},
Gieorroin (1) :=={(¥1,--., k) € Es;|ra; — ys| = er for some s=1,... k}.

If ¢ > 0 is sufficiently small, then {F;

Kt 1seens in

(r)} are disjoint. If J; ;= &, then
F, = & and G, = E,. By change of variables y, = ra, — y;, Fj,, ..;,(r) is changed

geery

to
Fo o)=L, 7); 15| <er for all s=1,... k}

and we have
J dyipai1(y1) - J dyiPasik( VO, (V- Vi)
yi=eér Yi=er
x p(ra — yip'V — - = yn™ +v)

= J dy, - -dypasi(rar +3y) - payk(rax + i)

~ C(v)pati(rar) - - - pavi(rar) pi,, (rbis1) - - - pi, (rby)
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as r — oo, ¢ | 0, bounded and pointwise in v < gyr, where

0 0 k
C(v) =J dyi J dve ] m(—Zmﬁ” +v>.
’ s=1

—® —® i=1,..,d;
i i1y
Next on G,, in order to show the corresponding terms are o(r~"(!*%)), we need the
following result which is more detail than Lemma 3. For each {ij,...,ix} € I,
denote {ixy1,..., 00} == {ir,..., i}, ie, {yM, ... g0 el) e} is a basis
of RY. Let

I = {{i1,... ik} € Ir; there exists {ixt1,...,0} €J1 .k such that

{ice1 i} < {in, - i)}

and I, = I \Ii. »,. Note that {ij,...,ix} € I , means that o can be expressed by

k d

o= Zasn(s) + Z bye™  with a; > 0, by > 0,
s=1 s=k+1

where just (n — k)-number of {b,} are positive and {1, ... 5% elr)  eli)}

is a basis of RY.

LemMMa 4. Let 1 <k =ko <n. There exists 0 > 0 such that for all r > 1,

H.(r)N{x; > —dr,...,xq > —0r} < Ai (nu A% (r),

k,n

where 6 > 0 is independent of r > 1, and

ap,0:= U U Dy,
{itys ity €D n {ikstseensin}
C{il ,,,,, il\»}(‘

k
Af(' (r):= U U U ' Df,ikﬂ,n.,in(")u U Di(zﬂ,u.,iw(”)

{ityesicy €I\ s=1 {ikgr,ein} {iks 150y Ing1 }

={iteny i} ={i,..., i}

We give the proof in the next section. We may also assume ¢ > ¢y > 0 by
taking a sufficiently small ¢ > 0 from the beginning. Denote x = (xj,...,xg) :=
ro — Z‘f:l ysn®). We can consider the following two cases.

(Case 1) x=ro— y1l7(1) — = ykﬂ(k) € AZ_,,(”)-
There exist {i1,..., i} € lx,, and {ixi1,... 0} < {i1,..., ik} such that xe
D) . (r). Thus by [o] <& and > & >0, we have

(33) P (xfk+1 + Uik+1) © D (xid + vl}i) = Cr= (=)
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for all » > 1 with some C > 0. Moreover by {i,..., i} € Ix n,
k d 4
X=rc— Z yep¥ = Z rag — yx)n(s> + Z rbge™  with a; > 0, by > 0,
s=1 s=k+1

where just (n— k)-number of {b;} are positive. By change of variables j, =
ray — ys, let G, be changed to G, then G, c {|y, > er for some s>k -+ 1}.
Hence we have

J dy\pai(y1) -+ J dyipai(yi)le, (V1,5 yi)
yi=er Vi >er
X p(d) (}"O’ — yl;//(l) —_— e — yk;?(k) + v)1Di(,i+|...‘,in(r)mHﬂ(r) (X)

< Cr‘k“”)J dyy - dyi
G,

k n
x p@ (Z(mx — oY+ Y rbe™ + v) Ips  mnmm (X)-

s=1 s=k+1 et

O —

k k
< Cr711(1+a)J~ dy, - dyp;, (Z m +v,1> .. <ZJ7 ;, +vlk>

:O(r—n(l+o<))
as r — oo for any small ¢ >0 (by G, 1 ).
(Case 2) x=ro— yipl) —... — yylk )eA‘S ().
Fix {ii,....ix} eI, I xe D), . (r) for some s = 1,...,k and {ix,1,...,

iny = {i1,...,ir}, then (3.3) also holds, and by change of vanables (V1y--s Vi)
to (xj,...,%;) we have

J dy\pasi(y1) -+ J dyipasx (Vi)
yi=er Yie=eér

M—. yien™ + v)1po ()NH,(r) (x)

s 1 i

X p(d)(ra— yin
o0 o0
<Cr 7"(1+“)J dx;, J dxi, pi, (i, + i) -+ i (X, + i) L, oy (X5,)
—© —

< Ccr n(1+a) J Di, (X,’S + U,‘j) dx,‘s
or

_ Crfn(1+oc)rfoc _ 0(r7n(1+1))
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as r — oo for any small ¢ > 0. If xe D? (r) (n<d) for some {iyi,-..,

Ut lyeeey I n+1

inc1} = {i1,..., i}, then it immediately holds that

J dy\pas1(y1) - - J dyi pa+i( Vi)
Yy =eér Yie=er

e s I 1

X p(‘[)(ra -y

< ¢yt +9) — o(r—n(1+o:))
as r — oo for any small & > 0. -

4. Proofs of Key Lemmas

We give the proofs of Lemma 3 and Lemma 4. First we give a fundamental
result. The following result may be intuitively obvious at least for d < 3.

LEmMMA 5. If x= ZS van® with a;>0 (s=1,...,k), then there exist a
basis {n™,... 7%} = {yM ..., 4%} of Span B and ¢, >0 (s=1,... ko) such
that x = Zf:(’l s,

PROOF We use the induction on k(¢ and k > k. First if kg = 1, then k =1
(i.e., V) only) or k =2 (i.e., ) = —4®) and our claim clearly holds. Next let
£y > 2. We assume that the result holds in case of ko <4y — 1 and k > ky. We
have to show the case ko =7y and k > ky. If k = k¢, then the result is evident.
Let /> ko We again assume that the result holds for ko <k </. Let x=
Z;"ﬂla 7 with a; >0 (s=1,...,/+1). It suffices to show that it can be ex-
pressed by x =% ¢yl with ¢, >0 (s=1,...,ko), where {5\, ... 5t}
need not be a basis of Span B (because by the assumption of the induction, it can
be retaken as a basis). We have

xfzayn +ay Y chn +ayn™Y with ¢ >0,

s=1 s=1

where {#") ... )} is a basis of Span B. If some ¢, = 0, then the claim holds.
Let ¢, >0 for all s=1,...,ko. For simplicity, set #(*) := ¢;y®™ and #/*+V) .=

asnD. Then {#™, ... #l)} is also a basis of Span B. Hence

A Zbyn +Zby;7) (by = 0,0 < 1 < ky).

s=t+1
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It is enough to consider the case r > 1 and we may assume by > by, > --- > b; > 0
by changing the order of s=1,... ¢ if necessary. Thus

t ko
x= (1=b)g%™ + 3" (14 byt

s=1 s=t+1

When by < 1, the claim follows. When b > 1,

A1) — 1)
7 /+ Zb _|_ Z b

s=t+1
Set by := 1/by and by :=by/by (s=2,...,ko). Then by <1 (s=1,2,...,r) and
~ [ ~ . kO ~ .
x=(1=b)a" D 3" (1= b)g™ + 3 (1 + by
s=2 s=t+1
Therefore the claim holds for k =7/ + 1. |

ProorF oF LEmMMa 3. It is enough to show the case r=1 by consider-
ing (x/r, ys/r) instead of (x,y;). Moreover let H:=¢— B, C?:= C?(1) and

Dy .., =Dp .. (1). By Hy(1) = H, it suffices to show that for some ¢ >0,
d ‘

(4.1) He|UCG)ul U U Di,
i=1 (it iy} €2k Lig15eeesin} o

={ir,. MO}

[The First Claim] (U;'[:IC;;)C ={xeR%x; >—-4,...,x;>—0} and

(4.2) U D .l= U {xeR%x <6,....x,,, <5
{ikgtsrin} {1ees Jani1
{ite iy} SSUPS N
In fact, let {ix,41,... 00} :={L,...,d\{i,...,ix,}- If x is in the left hand
side, then x is not such that “at least (n — ko)-number of {x;_ .,,...,x;} satisfies
x;, = 0”. That is (noting that the rest number is at most (d — ko) — (n — ko) =
d —n), x is not such that “at most (d —n)-number of {x; ,...,x;} satisfies
xj, <0”. Hence x is such that “at least (d —n+ 1)-number of {x; .,...,x;}
satisfies x; < 6. This implies x is in the right-hand side. The reverse is also true.
Thus we have (4.2).
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[The Second Claim] It holds that

43) (HNRHN N J {xeR%x, =-=x,=0}=0.
{i] ..... ikl)}EIkl) {i,,,,.4,i(j} )
={iye.., ikl)}(
In fact, let x e HﬂR‘i. If we assume that for any {ij,...,i,} € Ix,, there exists

Loty - oylna1} < {i1y- -, ik()}c such that
X € Con{e(il), .. .,e(i”*‘>} = Ri N {X € Rd;xl‘” ==X = O},

where {iy,..., iz} :={1,...,d}\{i1,...,is—1}, then by H = g — B, there exist § =
5121 an® € B (a; = 0) such that x=0—f = Z;’;ll bsel) (by > 0). That is,

ko n—1
o= Zasr](‘y) + ste(’x) with a; > 0, b, > 0.

s=1 s=1

Fix {i1,...,ix,} € I, (Which is equivalent to that {#(1), ... yko) elien) —  eli)}
is a basis of RY by the definition of Iy,). Let 1 = {s=1,...,ko;e ¢ Span B},
J:={1,...,ko}\I and / =#I. We may denote I ={1,...,/}, J={/+1,...,ko}
by changing the order. We show that ¢/ > 1 is essentially reduced to ¢/ =0 and
this case has a contradiction.

First let /=0, i.e., I = @&. Then J ={l,...,ko} and e*) e Span B for all
s € J. By applying Lemma 5 with B, := Con{B, e!");s e J} c Span B instead of B,
we have o € T(ng) for some ny < n — 1. In fact, by the above expression of ¢ and
(W, gk eligrt)  eli-1)} are linearly independent, o can be expressed by a
linear sum of at most (n — 1)-number of these vectors with positive coefficients.
This contradicts with o € T(n).

Next let /> 1. Then

/ n—1 ko ko
o=+ ste(’&) + Z bee™ with f:= Zasn(s) + Z bse™ € Span B.
s=1 s=ko+1 s=1 s=/+1

By Lemma 5, 8 can be expressed by a linear sum of at most ko-number of
linearly independent vectors of {n),... #k0) el):se J} with positive coeffi-
cients. Hence by g € T'(n), at least one a; >0 (s=1,...,7), we may let s = 1.
Since e(") can be expressed by el = S5 ¢ () 4 st:kuH ce™ (c;eR), and by
el) ¢ Span B, we have ¢, # 0 for some s > n, e.g., let s =n. Then {1, ... »%o),
elivot) - elinn) eli) glinen) eli)} is also a basis of RY, ie., {iy,ia,... ik} €
Ii,. Hence by the above assumption there exists {ji,+1,---,Jn-1) < {in, 2, .-,
ir, ¢ such that x e Con{el™ e . . eliko) elikort)  elin1)} e,
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ko n—1
x = blel 4 st’e(i~“> + Z ble™)  with b’ > 0.
=2 s=ko+1
Thus by x = Z;’;,l bsel™) | we have b, =0 and b, =b, (s=2,...,ko). Moreover
for s=ko+1,...,n—1, if b, >0, then j; is a member of {izs=ko+1,...,
n—1} and b/ =b; > 0. Thus we may assume b'el’) = bel™) for all s=ko+
1,...,n—1. Hence

/ n—1
o=pB+ Z heel™) + Z byel).
s=2 s=ko+1
This is the case / — 1 for {i,,i,..., ik, } € I,- Hence the case / > 1 is reduced to

/=0 and we have a contradict.

[The Last Claim] (4.3) implies (4.1) for some ¢ > 0. In fact, if we first
assume for every 6 > 0,

(HNRHN N U {xeR%x, <6,...,x, <0} # .
{il,...,i/(‘}}EIk() {i,,,.,4,il]} )
C{il,....i/\»"}(

That is, for each /> 1 (let 5 = 1//), there exists x\) e H ﬂRﬁ such that

X e N U {xeR%x, <1/4,...,x, < 1)t}
{il,,..,iko}élko {i,l ..... l-d}
ity i
This means there exists at least one {ij,..., i, } € I,, and also exist {i,,...,iz} =
{i1,...,ir,} and a subsequence {/} such that for some ) € B,

g— 9 =xel{xeR!;0<x;, <1/4,...,0<x;, < 1/}
Thus BY%) satisfies ﬁf-/j) <o (i=1,...,d) and

lim 87 =6, (s # iny- .. ia).

Joo Tt

Since B is a closed convex cone, we may assume |$7)] <1 (k > 1). Hence it is
possible to take a further subsequence {£;} = {£;} such that a limit point §:=
lim;_ o /)’(//) exists. Therefore f e B, and x := 0 — i€ HNRY satisfies X ==
x;, = 0. This is inconsistent with (4.3). Hence for some J > 0, we have

(HNRH)N N J {xeR%x, <d,...,x;, <0} = .
{i[ ..... ikO}EI"'O ?}‘ ,,,,, l‘.d}}[
S UL geeey lko
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Furthermore by the same way we have

HN{x; > —0,...,x4 > —0d}

n N U {xeR%x, <6,...,x, <=0
{[1“..7[1\»0}61/% {i,,,...,l‘L/}
C{[l~,~--7[k0}(.
Therefore by (4.2) we have (4.1). [

ProOF OF LEMMA 4. Let 1 < k = ko < n. This lemma can be proved by the
same way as above. It is enough to consider the case r=1. Let H := o — B,

D). =D . (1)and D . :=D? . (1). It suffices to show that
5y k415225 In 5y k415225 In k41505 Int-1 k150w Ind1
for some 0 > 0,
(4.4) HN{x1 > —0,...,xg > =0} = 4] UA].
where
[ - )
AIk.n T U U Dik+1,...,i,l7
{l’],”.‘l'k}elky,, {ik+1 ..... i,, )
C{i] .4..,1'/(}[

k
Ai[' = U U U Dii[kJrl»--:in U U Dii+17~~-7fn+1

S et | =T G i) Ll 1 ins1 }
{itye ik} iy it}
Note that by the first claim of the previous proof, for a fixed {i,..., i} € I, we
have
c c
, 5 K 5
U U Dl = (V] {x, =6}N U Dy .
5=1 {iks1yenin} s=1 {ikrtsemsin}
c{it,en ik} SURNA
:{xil<5,...,xik,<5}U U {xin<5,...,xid<5}
{[/17“'3[d} .
{1y, i}
and
c
5
U Dik+1,44.,in+1 = U ‘{xirﬁrl < 57 tt 7xid < 5}
{ik+l ~~~~~ [ {l‘nﬂ,m,[{[}C{[l.’m,ik}L

C{i17~<~,i/c}r
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Hence by
U {x;, <0,...,x;, <} < U {xi., <0,...,x;, <0},
Lirornyig} ity i} {inatsooes g} < {1y i}

we have (noting that if B< C, then (AUB)NC =(ANC)UB)

c

U U Dl Y] U D,

s=1 {1y in} {1 eees ingr }
SU SRUR T

= {X,']<57...,Xjk<5}ﬂ U {x,-”“<5,...,x,-d<5}

U U {X,‘n <5,...,x,»‘, <5}
{inseria}

ISETI

In order to show (4.4), by the same way as in the last claim of the previous proof,
it is enough to show that

(HNRY) N (A,) N (B, UCye ) = &,
where

(AI/c,n)c = ﬂ U {xin == xid = 0}7
{l‘],m,l‘/‘»}elk_,l {i,,,m,id} i
C{il ..... ik}L

B = ﬂ {xh:"':xik:()}m U {xinH:"':xid:O} )

{it - ic} €I, [—
<ty i}
Cl,é;)l :: m U ‘{xiﬂ == xl{[ = 0}'
(it sk} €4 {inyernyia} S Loy i}

Note that (A],M)C N (BIA’L:H U CIA'C,n) = ((A]kyn)e N B[l‘f:”) U ((Al/c,n)(? N C]Af:”) and, by I, =
ln VI, (disjoint union),

(A]k_”)cﬂC[kr‘.n = ﬂ U {x,—n = .- :xid :O}
{l’l.,m,l‘k} EIk {[,,.,AA,7I}[}C{I‘l,m,fk}r
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Moreover by (4.3) (the second claim in the previous proof) we have (HNR?)N
(Az,,)NCpe = . Therefore the above claim is reduced to

(HNRY)N(4y,) N By, = .
However we can show that
(HNRE)N By, = O,
more strongly, for any fixed {i,..., i} € I{ ,, it holds that
(4.5)
(HORON | {x; = =x,=04n | {x, = =x,=0} =2
Y
In fact, if we assume there exists x € H such that
(46) xeR‘N{x,=-=x,=0}N . U '}{x,«”+l =...=x;, =0}
inst s i

ISP

By xe H, we have x =0 — f for some ff = 2‘5:1 ¢ € B with ¢, > 0. More-
over by (4.6), we also have x = Zf:kH bse™) with by > 0, where at most (n — k)-
number of {h,} are positive. Hence

k d
(4.7) c=f+x= Z e + Z bee'®.
s=1 s=k+1

On the other hand, by the definition of I, o can not be expressed by the fol-
lowing form.

k d
o= Zam(“‘) + Z bee™ with a, >0, b >0,
s=1 s=k+1
where just (n — k)-number of {b]} are positive

(note that {71, ..., 4% elic) el is a basis of RY). By ¢ € T(n), this implies
in (4.7) at least (n — k + 1)-number of {b,} are positive. This contradicts. There-
fore we have (4.5), and hence, (4.4) holds. [
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