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1. Introduction

We are interested in an isolated 3-dimensional hypersurface purely elliptic

singularity defined by a nondegenerate polynomial, especially ð0; 1Þ-type. The

notion of a purely elliptic singularity was introduced for a normal singularity

by Watanabe [9], where this singularity coincide with a log-canonical, non log-

terminal singularity. The type of the isolated purely elliptic singularity was

defined by Ishii [3]. The isolated 3-dimensional hypersurface purely elliptic sin-

gularities are classified into 3 types: ð0; 0Þ-type, ð0; 1Þ-type, ð0; 2Þ-type.

Above all, a singularity of ð0; 2Þ-type is called a simple K3-singularity and

studied in [5], [7] and [11]. As is well-known, Yonemura classifies in [11] isolated

quasi-homogeneous hypersurface simple K3-singularities defined by nondegener-

ate polynomials into 95 classes by weights, while his list is bijective to a list of

weighted Q-Fano 3-folds made by Fletcher [1]. However these 95 singularities are

scattered. In fact, Ishii shows that they cannot connect to each other under any

(FG)-deformation (see [4]).

On the other hand, the isolated n-dimensional hypersurface purely elliptic

singularity was characterized by the Newton boundary of its defining polynomial

by Watanabe [10] (see Section 2), where the defining polynomial is nondegenerate

in the sense of [8]. Recall the Yonemura’s classification method using this crite-

rion. 95 classes are determined by taking a positive rational weight whose a‰ne

3-dimensional hyperplane p passes through a point ð1; 1; 1; 1Þ, and such that this

point is in the interior of a 3-dimensional face of the Newton diagram in R4
b0

obtained from p. In the case of a singularity of ð0; 1Þ-type, we consider an a‰ne

2-dimensional linear space with the same property instead of the 3-dimensional

one.
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The notable point is the following fact. Certain a‰ne 2-dimensional linear

space of a singularity of ð0; 1Þ-type is contained by some a‰ne 3-dimensional

hyperplane of a singularity of ð0; 2Þ-type. To see this for all singularities of ð0; 1Þ-
type, we will investigate the singularity of ð0; 1Þ-type. However the Yonemura’s

method for a singularity of ð0; 2Þ-type is not useful because the weight of a 2-

dimensional linear space of a singularity of ð0; 1Þ-type is not determined uniquely.

In this paper, we introduce a new equivalence relation, called leading equiv-

alence relation, on defining polynomials giving the isolated n-dimensional hyper-

surface purely elliptic singularities of the same type in Section 3. The aim of

this paper is to classify the isolated 3-dimensional hypersurface purely elliptic

singularities of ð0; 1Þ-type defined by nondegenerate polynomials under this

leading equivalence relation. As a result, we classify them into 23 classes and

provide a list of representative elements under the leading equivalence relation

(see Section 4 Corollary 11). For singularities of ð0; 1Þ-type in 2-dimension and

singularities of ð0; 2Þ-type in 3-dimension, we can see that the classification under

the leading equivalence relation is equal to the one under the analytic equivalence

realtion (see Section 4 Theorem 18 and 19). So the number of the classification of

singularities under the leading equivalence relation is the same as the number of

Saito’s classification in [6] and Yonemura’s classification in [11]. For an a‰ne 2-

dimensional linear space of a singularity of ð0; 1Þ-type, we also give all a‰ne 3-

dimensional hyperplane of ð0; 2Þ-type containing it in Section 5 Table 3.

Throughout this paper, the symbols N ;Z;Q;R denote the sets of natural

numbers, integers, rational numbers and real numbers. For a topological space X,

intX means the set of interior points of X. #A denotes the cardinality of a set A.

The author would like to thank Professor Kimio Watanabe for his encour-

agement and for providing this subject. She also expresses her gratitude to

Professor Masataka Tomari, her colleague Naohiro Kanesaka and other members

of the seminar for helpful advice.

2. The Criterion by the Newton Diagram

The hypersurface purely elliptic singularity is characterized in terms of the

Newton boundary and its compact face. For the general definition, see [9] and

[10]. First of all we recall some definitions of the Newton diagram.

Let z ¼ ðz0; . . . ; znÞ be a variable and f ðzÞ ¼
P

m amz
m A C ½z0; . . . ; zn� where

m ¼ ðm0; . . . ;mnÞ A Z nþ1
b0 and zm ¼ zm0

0 � � � zmn
n . The Newton diagram Gþð f Þ is

the convex hull of 6
am00

ðmþ Rnþ1
b0 Þ in Rnþ1

b0 and the Newton boundary Gð f Þ
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is the union of the compact faces of Gþð f Þ. Set fDðzÞ ¼
P

m AD amz
m for a face

D of Gð f Þ. We say that the polynomial f is nondegenerate if qfD=qz0 ¼ � � � ¼
qfD=qzn ¼ 0 has no solution in ðC � f0gÞnþ1 for any face D of Gð f Þ. Let d ¼
ð1; . . . ; 1Þ A Rnþ1. Then Watanabe shows the following theorem which plays an

important role in this paper.

Theorem 1 (Watanabe [10]). Let f be a nondegenerate polynomial in

C ½z0; . . . ; zn� and suppose that the hypersurface X ¼ fz A C nþ1 j f ðzÞ ¼ 0g has an

isolated singularity at x ¼ 0 A C nþ1. Then,

(i) ðX ; xÞ is purely elliptic if and only if d A Gð f Þ.

Let ðX ; xÞ be a purely elliptic singularity. Then there exists a unique compact face

D0 of Gð f Þ such that d A intD0. Let s ¼ dimD0. Then,

(ii) ðX ; xÞ is of ð0; s� 1Þ-type if and only if sb 2 and ðX ; xÞ is of ð0; 0Þ-type if

and only if s ¼ 0 or 1.

In this paper, the above corresponding compact face D0 and the polynomial

fD0
are called leading face and leading term, respectively. For simplicity, we say

that f is a ð0; s� 1Þ-type polynomial in C ½z0; . . . ; zn� if f is a nondegenerate

polynomial defining a n-dimensional purely elliptic singularity of ð0; s� 1Þ-type

at x ¼ 0.

Yonemura showed 95 hypersurface simple K3 singularities by using the

above theorem in [11]. In other words, he classified leading terms of defining

polynomials giving simple K3 singularities by weights since they are quasi-

homogeneous polynomials in this case.

3. The Leading Equivalence Class

To retrieve leading terms of defining polynomials giving purely elliptic sin-

gularities, we introduce a new equivalence relation.

In the following, we always assume that f is nondegenerate. Let Snþ1 be

a symmetric group of degree nþ 1. For s A Snþ1, the action of s for f ðzÞ ¼P
m amz

m is as follows.

Definition 2. sð f Þ ¼
P

m amz
sðmÞ, where sðmÞ ¼ ðsðm0Þ; . . . ; sðmnÞÞ.

For f A C ½z0; . . . ; zn�, we denote Dð f Þ a compact face of Gð f Þ such that

d A intDð f Þ, if it exists. For s A Zb0 with 0a sa n, we set
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Fn
s ¼ f f A C ½z0; . . . ; zn� jThere exists Dð f Þ of Gð f Þ such that dimDð f Þ ¼ s:g:

It is noted that a polynomial f A Fn
s is a candidate for a ð0; s� 1Þ-type poly-

nomial in C ½z0; . . . ; zn� in virtue of Theorem 1. Then we introduce an equivalent

relation on Fn
s using the action s for f A Fn

s .

Definition 3. For f ; g A Fn
s , we say that f and g are leading equivalent if

there exists s A Snþ1 such that Dð f Þ and DðsðgÞÞ lie on the same s-dimensional

linear space. Then we denote it f @ g and call its equivalence class leading equiv-

alence class.

Example 4. Let f ¼ x2 þ y3 þ z6, g ¼ x3 þ y2 þ z6 þ yz3 A F2
2 . For sðmÞ ¼

ðm1;m0;m2Þ, sðgÞ ¼ x2 þ y3 þ z6 þ xz3. Then Dð f Þ and DðsðgÞÞ lie on the same

2-dimensional linear space whose normal vector is ð3; 2; 1Þ. Hence f @ g.

Consider the set

DFn
s ¼ f f A Fn

s j f has an isolated singularity at 0g:

Note that DFn
s is the set of ð0; s� 1Þ-type polynomials in C ½z0; . . . ; zn� for sb 2

and DFn
0 UDFn

1 is the set of ð0; 0Þ-type polynomials in C ½z0; . . . ; zn� by the

definition of Fn
s and Theorem 1. Then our aim is the same as determining

DFn
s =@, especially the case of n ¼ 3 and s ¼ 2.

In the latter half of this section, a method for determining DFn
s =@ is

described. As stated above, DFn
s has two properties: One is the property of Fn

s

and the other is the property that f has an isolated singularity at 0. We consider

Fn
s =@ at first, and check isolatedness since Fn

s seems to be easier to be treated

than DFn
s .

Consider a set fDð f ÞHRnþ1
b0 j f A Fn

s g. From the properties of the Newton

boundary and d A intDð f Þ, the compact face Dð f Þ lies in the intersection of the

first quadrant and the hyperplane with a positive rational weight which includes

d. Such a hyperplane can be expressed as

HnðaÞ ¼ fðu1; . . . ; unþ1Þ A Rnþ1
b0 j a1u1 þ � � � þ anþ1unþ1 ¼ 1g

where a A Wnþ1 ¼ fða1; . . . ; anþ1Þ A Qnþ1
>0 j a1 þ � � � þ anþ1 ¼ 1g. Let

Dn
s ¼ 6

a AWnþ1

DHHnðaÞ D is a convex polyhedron; dimD ¼ s; d A intD;

all vertices of D are integral:

����
( )

:

Moreover we prepare a polynomial hD ¼
P

m AD z
m whose all coe‰cients are

one. Then it is clear that fDð f ÞHRnþ1
b0 j f A Fn

s gHDn
s . For D A Dn

s , it holds that
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hD A Fn
s since GðhDÞ ¼ DðhDÞ ¼ D and dim D ¼ s. Therefore the following propo-

sition holds easily.

Proposition 5. fDð f ÞHRnþ1
b0 j f A Fn

s g ¼ Dn
s .

Here we introduce an equivalence relation on Dn
s , too.

Definition 6. For D1;D2 A Dn
s , we say that D1 and D2 are leading equivalent

if hD1
and hD2

are leading equivalent. Then we denote it D1 @D2 and its equivalence

class Dn
s =@.

Remark 7. For f A Fn
s , it holds f @ hDð f Þ because Dð f Þ ¼ DðhDð f ÞÞ.

Consider the mapping

H : Fn
s =@! Dn

s =@

defined by Hð½ f �Þ ¼ ½Dð f Þ� where the leading equivalence classes to which f and

Dð f Þ belong respectively are denoted by ½ f � and ½Dð f Þ�. Then the mapping H

is well-defined. Indeed, if ½ f � ¼ ½g�, then it holds that hDð f Þ @ f @ g@ hDðgÞ by

Remark 7, which implies Dð f Þ@DðgÞ by the definition, that is, Hð½ f �Þ ¼ Hð½g�Þ.
Then the following proposition holds.

Proposition 8. The mapping H : Fn
s =@! Dn

s =@ is bijective.

Proof. For any ½D� A Dn
s =@, there exists ½hD� A Fn

s =@ such that Hð½hD�Þ ¼
½DðhDÞ� ¼ ½D�. On the other hand, if Hð½ f �Þ ¼ Hð½g�Þ for ½ f �; ½g� A Fn

s =@, then

Dð f Þ@DðgÞ, which implies hDð f Þ @ hDðgÞ. From Remark 7, it holds f @ g.

Q.E.D.

To determine DFn
s =@, we will follow next steps:

Step 1. Determine all elements ½D� of Dn
s =@.

Step 2. Determine the element ½hD� of Fn
s =@ corresponding to ½D�.

Step 3. Determine the element of DFn
s =@ by finding a polynomial which is

leading equivalent to ½hD� and have an isolated singularity at 0.

Therefore we focus on Dn
s which is the set of some figures in the Euclidean space,

instead of polynomials.
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4. Classifications

In this section, we classify 3-dimensional hypersurface purely elliptic sin-

gularities of ð0; 1Þ-type, that is, determine DF3
2=@ using the leading equivalence

relation. After that, apply it to other types in 2 and 3-dimensions.

First of all, we prepare the following lemma about the elements of HnðaÞ for

a A Wnþ1, which is often used in this section.

Lemma 9. If x ¼ ðx1; . . . ; xnþ1Þ A Z nþ1
b0 is a point in H nðaÞ for a A Wnþ1 and

x0 d, then there exists some i such that xi ¼ 0.

Proof. Assume that xi b 1 for all i. From x A HnðaÞ and a A Wnþ1, we have

a1ðx1 � 1Þ þ � � � þ anþ1ðxnþ1 � 1Þ ¼ 0. Since ai > 0 and the assumption xi b 1 for

all i, we obtain x1 ¼ � � � ¼ xnþ1 ¼ 1. This contradicts x0 d. Q.E.D.

4.1. The (0‚ 1)-Type in 3-Dimension

This subsection is devoted to prove the following theorem mainly.

Theorem 10. All representative elements of F3
2=@ are listed in Table 1.

Table 1

No. F3
2=@ W4

1 x2 þ y3 þ z6w6 ð1=2; 1=3; g; 1=6 � gÞ
2 x2 þ y4 þ z4w4 ð1=2; 1=4; g; 1=4 � gÞ
3 x2 þ y6 þ z3w3 ð1=2; 1=6; g; 1=3 � gÞ
4 x3 þ y3 þ z3w3 ð1=3; 1=3; g; 1=3 � gÞ
5 x3 þ y6 þ z2w2 ð1=3; 1=6; g; 1=2 � gÞ
6 x4 þ y4 þ z2w2 ð1=4; 1=4; g; 1=2 � gÞ
7 x2 þ yz3 þ y4w6 ð1=2; g; ð1 � gÞ=3; ð1 � 4gÞ=6Þ
8 x2 þ yz4 þ y3w4 ð1=2; g; ð1 � gÞ=4; ð1 � 3gÞ=4Þ
9 x2 þ y2z3 þ y2w6 ð1=2; g; ð1 � 2gÞ=3; ð1 � 2gÞ=6Þ

10 x2 þ y2z4 þ y2w4 ð1=2; g; ð1 � 2gÞ=4; ð1 � 2gÞ=4Þ
11 x3 þ yz2 þ y3w6 ð1=3; g; ð1 � gÞ=2; ð1 � 3gÞ=6Þ
12 x3 þ yz3 þ y2w3 ð1=3; g; ð1 � gÞ=3; ð1 � 2gÞ=3Þ
13 x4 þ yz2 þ y2w4 ð1=4; g; ð1 � gÞ=2; ð1 � 2gÞ=4Þ
14 xy2 þ xz3 þ xw6 ðg; ð1 � gÞ=2; ð1 � gÞ=3; ð1 � gÞ=6Þ
15 xy2 þ xz4 þ xw4 ðg; ð1 � gÞ=2; ð1 � gÞ=4; ð1 � gÞ=4Þ
16 xy3 þ xz3 þ xw3 ðg; ð1 � gÞ=3; ð1 � gÞ=3; ð1 � gÞ=3Þ
17 xy2 þ x2z3 þ yw3 þ zw4 ðg; ð1 � gÞ=2; ð1 � 2gÞ=3; ð1 þ gÞ=6Þ
18 x2yþ xz2 þ y3w4 þ z3w ðg; 1 � 2g; ð1 � gÞ=2; ð3g� 1Þ=2Þ
19 x2y2 þ xz2 þ y2w4 þ z2w2 ðg; 1=2 � g; ð1 � gÞ=2; g=2Þ
20 x2y2 þ xz3 þ yw3 þ z2w2 ðg; 1=2 � g; ð1 � gÞ=3; ð1 þ 2gÞ=6Þ
21 x3y2 þ xz2 þ y2w3 þ z2w ðg; ð1 � 3gÞ=2; ð1 � gÞ=2; gÞ
22 x3y4 þ xz2 þ yw3 þ zw2 ðg; ð1 � 3gÞ=4; ð1 � gÞ=2; ð1 þ gÞ=4Þ
23 x2y2 þ x2z2 þ yzw2 þ y2w2 þ z2w2 ðg; 1=2 � g; 1=2 � g; gÞ
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The right hand side of the elements of F3
2=@ in Table 1 are the normal

vectors of the hyperplanes which contain the corresponding elements of D3
2=@,

where g A Q>0.

The proof of Theorem 10 is given after the next Corollary 11 which is the

main result.

Corollary 11. #ðDF3
2=@Þ ¼ 23.

Proof. Note that, in Table 1 of Theorem 10, No. 17@ xy2 þ x2z3 þ yw3,

No. 18@ x2yþ xz2 þ y3w4, No. 19@ x2y2 þ xz2 þ y2w4, No. 20@ x2y2 þ
xz3 þ yw3, No. 21@ x3y2 þ xz2 þ y2w3, No. 22@ x3y4 þ xz2 þ yw3 and No.

23@ x2y2 þ x2z2 þ yzw2. Then we see that the polynomials in Table 2 are

representative elements of DF3
2=@.

Proof of Theorem 10. We give some devices for finding all elements of

D3
2=@. In this subsection, d always means a point ð1; 1; 1; 1Þ.

Recall the property of D3
2 . If D A D3

2 , then there exists a A W4 such that

d A intDHH 3ðaÞ and there exists a 2-dimensional linear space H2 including D

Table 2

No. DF3
2=@

1 x2 þ y3 þ z6w6 þ z12 þ w13

2 x2 þ y4 þ z4w4 þ z8 þ w9

3 x2 þ y6 þ z3w3 þ z6 þ w7

4 x3 þ y3 þ z3w3 þ z6 þ w7

5 x3 þ y6 þ z2w2 þ z4 þ w5

6 x4 þ y4 þ z2w2 þ z4 þ w5

7 x2 þ yz3 þ y4w6 þ y5 þ w31

8 x2 þ yz4 þ y3w4 þ w10 þ y6

9 x2 þ y2z3 þ y2w6 þ z5 þ w10 þ y6

10 x2 þ y2z4 þ y2w4 þ z6 þ w6 þ y7

11 x3 þ yz2 þ y3w6 þ y4 þ w25

12 x3 þ yz3 þ y2w3 þ w6 þ y5

13 x4 þ yz2 þ y2w4 þ y4 þ w12

14 xy2 þ xz3 þ xw6 þ x3 þ y4 þ z6

15 xy2 þ xz4 þ xw4 þ x4 þ y3 þ z6

16 xy3 þ xz3 þ xw3 þ y4 þ x5 þ z4

17 xy2 þ x2z3 þ yw3 þ x4 þ z9

18 x2yþ xz2 þ y3w4 þ y4 þ w17

19 x2y2 þ xz2 þ y2w4 þ x3 þ y7 þ w6

20 x2y2 þ xz3 þ yw3 þ x4 þ y5

21 x3y2 þ xz2 þ y2w3 þ x4 þ y9 þ w4

22 x3y4 þ xz2 þ yw3 þ x5 þ y16

23 x2y2 þ x2z2 þ yzw2 þ x4 þ y5 þ z5 þ w4

Q.E.D.

The classification of hypersurface purely elliptic singularities 239



(see Fig. 1). Consequently, if we find all of such a 2-dimensional linear space H2,

then we can easily take out the required convex polygon D A D3
2 . Therefore we

will find H2.

The plane H2 is determined by 3 points l; m; n with non-negative integral

coordinates since dim H2 ¼ 2. Let V, S and F be the sets of points having 4

coordinates whose only 1 coordinate is not zero, whose only 2 coordinates are

not zero and whose only 3 coordinates are not zero, respectively. Lemma 9

implies that ðl; m; nÞ belongs to the one of the following cases:

(I) ðl; m; nÞ A ðV ;V ;VÞ, (II) ðl; m; nÞ A ðV ;V ;SÞ,
(III) ðl; m; nÞ A ðV ;V ;FÞ, (IV) ðl; m; nÞ A ðV ;S;SÞ,
(V) ðl; m; nÞ A ðV ;S;F Þ, (VI) ðl; m; nÞ A ðV ;F ;F Þ,
(VII) ðl; m; nÞ A ðS;S;SÞ, (VIII) ðl; m; nÞ A ðS;S;FÞ,
(IX) ðl; m; nÞ A ðS;F ;FÞ, (X) ðl; m; nÞ A ðF ;F ;F Þ.

Furthermore these cases are classified in more detail.

Lemma 12. It holds that ðl; m; nÞ belongs to one of the following cases:

(II) fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ð0; 0; c; dÞg where bba,

(III) fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ðc; 0; d; eÞg where a> c,

(IV.1) fða; 0; 0; 0Þ; ð0; b; c; 0Þ; ð0; d; 0; eÞg where ebc,

(IV.2) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ð0; 0; d; eÞg where a> b,

(V.1) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ðd; 0; e; f Þg where a> b; d,

Figure 1
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(V.2) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ð0; d; e; f Þg where a> b,

(V.3) fða; 0; 0; 0Þ; ð0; b; 0; cÞ; ðd; 0; e; f Þg where a> d,

(V.4) fða; 0; 0; 0Þ; ð0; b; 0; cÞ; ð0; d; e; f Þg where b> d,

(VI.1) fða; 0; 0; 0Þ; ðb; c; d; 0Þ; ðe; 0; f ; gÞg where a> b; e,

(VI.2) fða; 0; 0; 0Þ; ðb; c; d; 0Þ; ð0; e; f ; gÞg where a> b,

(VII.1) fða; b; 0; 0Þ; ðc; d; 0; 0Þ; ð0; 0; e; f Þg where a; db2 and a> c and d > b,

(VII.2) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ðe; 0; 0; f Þg,

(VII.3) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ð0; e; 0; f Þg where f bd,

(VIII.1) fða; b; 0; 0Þ; ðc; d; 0; 0Þ; ðe; 0; f ; gÞg where a> c and d > b,

(VIII.2) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ð0; e; f ; gÞg where dbb,

(VIII.3) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ðe; 0; f ; gÞg,

(VIII.4) fða; b; 0; 0Þ; ðc; d; e; 0Þ; ð0; 0; f ; gÞg where a> e,

(IX.1) fða; b; c; 0Þ; ðd; e; f ; 0Þ; ð0; 0; g; hÞg,

(IX.2) fða; b; 0; 0Þ; ðc; d; e; 0Þ; ð f ; 0; g; hÞg,

(IX.3) fða; b; c; 0Þ; ðd; 0; e; 0Þ; ð f ; 0; g; hÞg,

(IX.4) fða; b; c; 0Þ; ðd; 0; e; f Þ; ð0; g; 0; hÞg where hbg,

(X.1) fða; b; c; 0Þ; ðd; e; f ; 0Þ; ðg; 0; h; iÞg,

(X.2) fða; b; c; 0Þ; ðd; 0; e; f Þ; ðg; h; 0; iÞg,

with a; b; . . . ; i A N .

Proof. The case (I) can be excluded since H2 determined by (I) cannot

include d. Consider the case (II). If we choose fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ð0; 0; c; dÞg
as fl; m; ng where a; b; c; d A N , then H2 may contain d. The other cases in (II)

are reduced to this case, and we may assume bb a by considering the leading

equivalence relation, especially, the permutation. In the case (III), similarly, we

may only consider the case fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ðc; 0; d; eÞg, where a > c since

the point ðc; 0; d; eÞ is an internally dividing point of ða; 0; 0; 0Þ and some point

on ZW-plane. The remaining cases are similar. Q.E.D.

On the other hand, d is included in some convex polygon in H2. By virtue

of the following lemma 13, the set ðl; m; nÞ belongs to either (T) or (Q):

(T) ðl; m; nÞ constructs a triangle which includes d in the interior.

(Q) ðl; m; nÞ constructs a quadrangle with another point where the intersec-

tion point of two diagonal lines is d.

Lemma 13. Let p1; . . . ; pr be the vertices of a convex plane r-gon Xr with

rb 4 and x be an interior point of Xr. Let spipjpk be a triangle spanned by pi; pj ,

and pk for fi; j; kgH f1; 2; . . . ; rg.
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(i) Let r ¼ 4. There are no triangle spipjpk which includes x in the interior if

and only if x is an intersection point of two diagonal lines of X4.

(ii) Let rb 5. There exists a triangle spipjpk which includes x in the interior.

Proof. The case (i) is clear. For the case (ii), we show the way of finding a

triangle which includes x in the interior. Set vertices p1; . . . ; pr of Xr clockwise

and connect p1 and pj for any j0 1; 2; r. Since x is an interior point, either (a) or

(b) holds:

(a) There exists i A f2; . . . ; r� 1g such that x A intsp1pi piþ1
.

(b) There exists i A f3; . . . ; r� 1g such that x A p1 pi where p1 pi is a segment

connected by p1 and pi.

The case (a) satisfies the lemma. Consider the case (b). Then x lies in the quad-

rangle spanned by p1; pi�1; pi; piþ1. Remembering the case (i), we may assume

that x A p1 pi V pi�1 piþ1. Assume that either pi�1 or piþ1 is next to p1, for sim-

plicity, pi�1 is next to p1, that is, i ¼ 3. Then there exists j A f5; . . . ; rg such that

x A intsp2p3pj because rb 5. Assume that both pi�1 and piþ1 are not next to p1.

It is clear that there exists j A fi þ 2; . . . ; rg such that x A intspi�1pipj . Q.E.D.

Further it is enough to consider only the case (T) by the following lemma.

Lemma 14. In each case of Lemma 12, the case (Q) does not occur or can be

reduced into the case (T).

Proof. The cases (II), (IV.1) and (VII.2) belong to the case (T). For the

other cases, we show only two typical cases (III) and (V.1) since the other cases

are proved in the similar way.

Consider the case (III). The condition (Q) means that an another point must

be ð0; f ; g; hÞ in the YZW-plane where f ; g; h A N and b > f since the intersec-

tion point of two diagonal lines is d. Then there exist 0 < bi < 1 for i ¼ 1; . . . ; 4

such that b1 þ b2 ¼ 1, b1ða; 0; 0; 0Þ þ b2ð0; f ; g; hÞ ¼ d, b3 þ b4 ¼ 1, b3ð0; b; 0; 0Þþ
b4ðc; 0; d; eÞ ¼ d. The equations imply that

1

a
þ 1

f
¼ 1;

1

c
þ 1

b
¼ 1; f ¼ g ¼ h; c ¼ d ¼ e:

Solve this, we have a ¼ � � � ¼ h ¼ 2, which contradicts a > c. Therefore the case

(Q) does not occur.

Consider the case of (V.1). Then we may set an another point ð0; g; h; iÞ
where g; h; i A N . Similarly we obtain a ¼ c ¼ e ¼ f ¼ g ¼ h ¼ i ¼ 2 and b ¼ d ¼
1. Since the quadrangle is included in H 3ðaÞ where a ¼ ð1=2; 1=4; g; 1=ð4 � gÞÞ
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with g A Q>0, there is a vector ð0; 0; 4; 4Þ on the same 2-dimensional plane H2.

Since the triangle constructed by ð2; 0; 0; 0Þ, ð1; 2; 0; 0Þ and ð0; 0; 4; 4Þ includes d in

the interior, this case reduces to the case (T). Q.E.D.

Summarize the above. We follow the next steps for each case of Lemma 12

to prove Theorem 10. Let a ¼ ða1; a2; a3; a4Þ A W4.

Step 1. Find H2 by determining three points l; m; n A Z 4
b0 satisfying the

following conditions (H) and (T):

(H) l; m; n A H 3ðaÞ,
(T) d A intD where D is a triangle determined by ðl; m; nÞ,
that is, there exist 0 < bi < 1 for i ¼ 1; 2; 3 such that b1 þ b2 þ b3 ¼ 1

and b1lþ b2mþ b3n ¼ d.

Step 2. Determine all elements ½D� of D3
2=@, where D is chosen as a max-

imum convex polygon in H2.

Step 3. Determine an element ½hD� of F3
2=@ by using ½D�.

All elements of F3
2=@ have been already listed in Table 1 of Section 4 and

are chosen so as to satisfy that

(i) All coe‰cients are 1,

(ii) The first three monomials include d in the interior,

(iii) The monomials except the above are necessary for constructing the

maximum convex polygon in H2.

The remaining is devoted to follow the above steps for each case of Lemma

12. For this detailed proof, see [2].

Case (II)

(II) fl; m; ng ¼ fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ð0; 0; c; dÞg where bb a (see Fig. II).

Figure II
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The condition (H) implies that

a1 ¼ 1

a
; a2 ¼ 1

b
; ca3 þ da4 ¼ 1:ð1Þ

Considering ai < 1, we have a; bb 2. From the condition (T),

b1 ¼ 1

a
; b2 ¼ 1

b
; b3 ¼ 1

c
; c ¼ d:

Considering bi < 1, we have a; b; cb 2. It follows from (1) and c ¼ d that 1 ¼P4
i¼1 ai ¼ 1=aþ 1=bþ 1=c. Put together these conditions as:

a; b; cb 2; bb a; c ¼ d;
1

a
þ 1

b
þ 1

c
¼ 1:

Solutions of the above equation are

ða; b; c; dÞ ¼ ð2; 3; 6; 6Þ; ð2; 4; 4; 4Þ; ð2; 6; 3; 3Þ; ð3; 3; 3; 3Þ; ð3; 6; 2; 2Þ; ð4; 4; 2; 2Þ:

Consider the 2-dimensional linear space H2 determined by ða; b; c; dÞ ¼ ð2; 3; 6; 6Þ,
then a triangle D obtained by ð2; 0; 0; 0Þ, ð0; 3; 0; 0Þ and ð0; 0; 6; 6Þ in H2 satisfies

the condition (T). Therefore x2 þ y3 þ z6w6 given by D is an element of F3
2=@.

Similarly, we obtain 6 elements as follows:

No. 1 x2 þ y3 þ z6w6, No. 2 x2 þ y4 þ z4w4, No. 3 x2 þ y6 þ z3w3,

No. 4 x3 þ y3 þ z3w3, No. 5 x3 þ y6 þ z2w2, No. 6 x4 þ y4 þ z2w2.

Case (III)

(III) fða; 0; 0; 0Þ; ð0; b; 0; 0Þ; ðc; 0; d; eÞg where a > c.

We have a; bb 2 from the condition (H). The condition (T) implies that

b1 ¼ d � c

ad
; b2 ¼ 1

b
; b3 ¼ 1

d
; d ¼ e:ð2Þ

Considering 0 < bi < 1, we have d > c and b; db 2. If ðc; 0; d; eÞ is an internally

dividing point of ða; 0; 0; 0Þ and some integral point on ZW-plane, then this case

is reduced to (II). Therefore we assume ad B ða� cÞZ. If a ¼ 2, then we have

c ¼ 1 by a > c, which contradicts ad B ða� cÞZ ¼ Z. Hence we assume ab 3.

We obtain the following conditions:

ab 3; b; db 2; a; d > c; d ¼ e; ad B ða� cÞZ:
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Since b1 þ b2 þ b3 ¼ 1 and (2),

b2 ¼ 1 � b1 � b3 ¼ 1 � d � c

ad
� 1

d
¼ dða� 1Þ þ ðc� aÞ

ad
:

On the other hand, from b2 ¼ 1=b,

b ¼ 1

b2

¼ ad

dða� 1Þ þ ðc� aÞ b 2:ð3Þ

Assume c ¼ 1, then b ¼ ðadÞ=fða� 1Þðd � 1Þg and ad B ða� cÞZ ¼ ða� 1ÞZ,

which contradicts b A N . Hence cb 2. From (3), ab 3 and cb 2,

2 ¼ 2ða� 2Þ
a� 2

b
2ða� cÞ
a� 2

b d:

Therefore we obtain d ¼ 2, so that c ¼ 1 from d > c, which contradicts cb 2.

Case (IV)

(IV.1) fða; 0; 0; 0Þ; ð0; b; c; 0Þ; ð0; d; 0; eÞg where eb c (see Fig. IV.1).

By an argument similar to (II), we obtain 7 elements as follows:

No. 7 x2 þ yz3 þ y4w6, No. 8 x2 þ yz4 þ y3w4,

No. 9 x2 þ y2z3 þ y2w6, No. 10 x2 þ y2z4 þ y2w4,

No. 11 x3 þ yz2 þ y3w6, No. 12 x3 þ yz3 þ y2w3,

No. 13 x4 þ yz2 þ y2w4.

(IV.2) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ð0; 0; d; eÞg where a > b.

This case does not occur by an argument similar to (III).

Figure IV.1
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Case (V)

(V.1) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ðd; 0; e; f Þg where a > b; d.

From b1 þ b2 þ b3 ¼ 1 ¼ b1aþ b2bþ b3d, it holds that b1ða� 1Þ þ b2ðb� 1Þ
þ b3ðd � 1Þ ¼ 0. Then we obtain a ¼ b ¼ d ¼ 1 since bi > 0 and a; b; d A N ,

which contradicts a > b; d.

(V.2) fða; 0; 0; 0Þ; ðb; c; 0; 0Þ; ð0; d; e; f Þg where a > b.

The condition (T) implies that

b1 ¼ eðc� bÞ þ bd

aec
; b2 ¼ e� d

ec
; b3 ¼ 1

e
:ð4Þ

We obtain the following conditions:

ab 3; eb 2; a > b; e > d; e ¼ f ; ac B ða� bÞZ;

where ac B ða� bÞZ means that ðb; c; 0; 0Þ is not an internally dividing point

of ða; 0; 0; 0Þ and some integral point on Y-plane. Then b1 ¼ 1 � b2 � b3 ¼
feðc� 1Þ þ ðd � cÞg=ðecÞ. From (4),

a ¼ eðc� bÞ þ bd

ecb1

¼ eðc� bÞ þ bd

eðc� 1Þ þ ðd � cÞb 3;ð5Þ

ð3 � bÞðe� dÞb cð2e� 3Þ:ð6Þ

It follows from eb 2 and e > d that b ¼ 1 or 2. If b ¼ 1, we have cb 2 because

ðb; c; 0; 0Þ A H 3ðaÞ. From (6),

2ðe� dÞb cð2e� 3Þb 2ð2e� 3Þ

e� db 2e� 3

3b eþ db 2 þ db 3

Therefore d ¼ 1 and e ¼ 2. Then a ¼ ð2c� 1Þ=ðc� 1Þb 3 implies that 2b c.

Since cb 2, we have c ¼ 2, so that a ¼ 3, which contradicts ac B ða� bÞZ. If

b ¼ 2, it holds that e� db cð2e� 3Þb 2e� 3 by (6). Therefore we have e ¼ 2

and d ¼ 1, then a ¼ 2, which contradicts a > b.

(V.3) fða; 0; 0; 0Þ; ð0; b; 0; cÞ; ðd; 0; e; f Þg where a > d.

This case does not occur by an argument similar to (III).
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(V.4) fða; 0; 0; 0Þ; ð0; b; 0; cÞ; ð0; d; e; f Þg where b > d.

This case does not occur by an argument similar to (III).

Case (VI)

(VI.1) fða; 0; 0; 0Þ; ðb; c; d; 0Þ; ðe; 0; f ; gÞg where a > b; e.

This case does not occur by an argument similar to (V.1).

(VI.2) fða; 0; 0; 0Þ; ðb; c; d; 0Þ; ð0; e; f ; gÞg where a > b.

This case does not occur by an argument similar to (V.2).

Case (VII)

(VII.1) fða; b; 0; 0Þ; ðc; d; 0; 0Þ; ð0; 0; e; f Þg where a; db2 and a > c and d > b.

At first, we need some consideration about a and b. The condition (H)

implies that

aa1 þ ba2 ¼ 1; ea3 þ f a4 ¼ 1:ð7Þ

The condition (T) implies that

ab1 þ cb2 ¼ 1; bb1 þ db2 ¼ 1; b3 ¼ 1

e
; e ¼ f :ð8Þ

Considering b3 < 1, we have eb 2. Suppose a ¼ b, then a1 þ a2 ¼ 1=a from (7).

Since e ¼ f , we have a3 þ a4 ¼ 1=e. Therefore 1 ¼
P i¼4

i¼1 ai ¼ 1=aþ 1=e, so that

we have a ¼ e ¼ 2 since a; eb 2. Then d is on the side which connects ð2; 2; 0; 0Þ
and ð0; 0; 2; 2Þ, which is a contradiction. Therefore a0 b. On the other hand, from

(8), b1ða� bÞ þ b2ðc� dÞ ¼ 0. If a > b, then it must be c < d because bi > 0. If

a < b, it must be c > d, so that b > a > c > d from a > c, which contradicts

b < d. Therefore a; d > b; c.

From (7), 1 ¼ eða3 þ a4Þ ¼ eð1 � a1 � a2Þ, that is, ea1 þ ea2 ¼ e� 1. Since

eb 2, we have fe=ðe� 1Þga1 þ fe=ðe� 1Þga2 ¼ 1. From this equation and (7),

fe=ðe� 1Þ � aga1 þ fe=ðe� 1Þ � bga2 ¼ 0. Considering ai > 0 and a0 b, if a <

e=ðe� 1Þ, then 2a a < e=ðe� 1Þ ¼ 1 þ 1=ðe� 1Þa 2, which is a contradiction.

If a > e=ðe� 1Þ, then 2b 1 þ 1=ðe� 1Þ ¼ e=ðe� 1Þ > bb 1, so that b ¼ 1. Then

this case does not occur by an argument similar to (III).

(VII.2) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ðe; 0; 0; f Þg (see Fig. VII.2).
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By an argument similar to (V.1), we obtain 3 elements as follows:

No. 14 xy2 þ xz3 þ xw6, No. 15 xy2 þ xz4 þ xw4,

No. 16 xy3 þ xz3 þ xw3.

(VII.3) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ð0; e; 0; f Þg where f b d (see Fig. VII.3).

The condition (T) implies that b1 ¼ ðd � cÞ=ðadÞ ¼ ð f � eÞ=ðbf Þ, b2 ¼ 1=d,

b3 ¼ 1=f . We obtain the following conditions: d > c, f > e, f b db 2. Using

b2 ¼ 1 � b1 � b3 ¼ ð f b� f þ e� bÞ=ðbf Þ, we have

d ¼ 1

b2

¼ bf

f b� f þ e� b
b 2;ð9Þ

2ð f � eÞb bð f � 2Þ:

If f ¼ 2, then d ¼ 2 and c ¼ e ¼ 1 by the above condition. Then, we have

d ¼ 2b=ðb� 1Þ, which contradicts d ¼ 2. Hence f b 3. Then,

2ð f � eÞ
f � 2

b b:ð10Þ

Divide into two cases: e ¼ 1 and eb 2.

(i) Suppose e ¼ 1. We have bb 2 by bb1 þ b3 ¼ 1. Then 4b 2 þ 2=ð f � 2Þ ¼
2ð f � 1Þ=ð f � 2Þb bb 2, that is, b ¼ 2; 3; 4.

Figure VII.2

Figure VII.3
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(i.1) If b ¼ 2, from (9) and f b 3, it holds that 2 < d ¼ 2f =ð f � 1Þ ¼
f2ð f � 1Þ þ 2g=ð f � 1Þ ¼ 2 þ 2=ð f � 1Þa 3. Hence we have d ¼ f ¼ 3, and

c ¼ 1 or 2 by d > c. If c ¼ 1, it holds that a ¼ 2 from 1=3 ¼ ð f � eÞ=ðbf Þ ¼
b1 ¼ ðd � cÞ=ðadÞ ¼ 2=ð3aÞ. Therefore we obtain ða; b; c; d; e; f Þ ¼ ð2; 2; 1; 3; 1; 3Þ,
which corresponds to

No: 20 x2y2 þ xz3 þ yw3 þ z2w2:

If c ¼ 2, we have ða; b; c; d; e; f Þ ¼ ð1; 2; 2; 3; 1; 3Þ, which corresponds to

No: 17 xy2 þ x2z3 þ yw3 þ zw4:

(i.2) If b ¼ 3, similarly, we have ða; b; c; d; e; f Þ ¼ ð2; 3; 1; 2; 1; 4Þ, which is

leading equivalent to No. 17.

(i.3) If b ¼ 4, we have ða; b; c; d; e; f Þ ¼ ð3; 4; 1; 2; 1; 3Þ, which corresponds to

No: 22 x3y4 þ xz2 þ yw3 þ zw2:

(ii) Suppose eb 2. It follows from (10) that 2b f2ð f � eÞg=ð f � 2Þb b, so

that b ¼ 1 and 2.

(ii.1) If b ¼ 1, we have a; eb 2 from ða; b; 0; 0Þ A H 3ðaÞ and bb1 þ eb3 ¼ 1.

Then d ¼ f =ðe� 1Þ from (9). Hence we have b1 ¼ ð f � eÞ=f , b2 ¼ ðe� 1Þ=f . It

follows from ab1 þ cb2 ¼ 1 and f > e that að f � eÞ=f þ cðe� 1Þ=f ¼ 1, that is,

a ¼ f þ c� ec

f � e
:ð11Þ

We have eþ c� ecb f � e > 0 because ab 2 and f > e, that is, 0a ðe� 1Þ �
ðc� 1Þ < 1. Therefore it holds that c ¼ 1 by eb 2. Then, from (11) and f > e,

it holds that 2a a ¼ ð f � eþ 1Þ=ð f � eÞa 2. Hence a ¼ 2 and f ¼ eþ 1. Then

2a d ¼ f =ðe� 1Þ ¼ ðeþ 1Þ=ðe� 1Þ, that is, 3b e, therefore e ¼ 2 and 3 from

eb 2. If e ¼ 2, we have ða; b; c; d; e; f Þ ¼ ð2; 1; 1; 3; 2; 3Þ, which is leading equiv-

alent to No. 17. If e ¼ 3, we have ða; b; c; d; e; f Þ ¼ ð2; 1; 1; 2; 3; 4Þ, which cor-

responds to

No: 18 x2yþ xz2 þ y3w4 þ z3w:

(ii.2) If b ¼ 2, it follows from (9) that d ¼ 2f =ð f þ e� 2Þb 2. We have

ea 2, then e ¼ 2 by eb 2, so that d ¼ 2. It holds that c ¼ 1 by d > c. There-

fore b1 ¼ 1=ð2aÞ, b2 ¼ 1=2 and b3 ¼ 1=f . Since b1 þ b2 þ b3 ¼ 1, we have

ð f � 2Þða� 1Þ ¼ 2. Solve this equation, we obtain ða; b; c; d; e; f Þ ¼ ð3; 2; 1; 2; 2; 3Þ
and ð2; 2; 1; 2; 2; 4Þ, which correspond to

No: 21 x3y2 þ xz2 þ y2w3 þ z2w; No: 19 x2y2 þ xz2 þ y2w4 þ z2w2:
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Case (VIII)

(VIII.1) fða; b; 0; 0Þ; ðc; d; 0; 0Þ; ðe; 0; f ; gÞg where a > c and d > b.

This case does not occur by an argument similar to (V.1).

(VIII.2) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ð0; e; f ; gÞg where db b (see Fig. VIII.2).

Divide into two cases: a ¼ 1 and ab 2.

(i) Suppose a ¼ 1. The condition (H) implies bb 2. The condition (T)

implies that b1 ¼ ðg� eÞ=ðbgÞ, b2 ¼ ðg� f Þ=ðdgÞ, b3 ¼ 1=g. We obtain the fol-

lowing conditions: a ¼ 1, b; c; d; gb 2, db b, g > e; f . Using b1 ¼ 1 � b2 � b3 ¼
fgðd � 1Þ þ ð f � dÞg=ðdgÞ, we have

b ¼ dðg� eÞ
gðd � 1Þ þ ð f � dÞb 2;ð12Þ

2ðg� f Þb 2ðg� f Þ � deb dðg� 2Þ:ð13Þ

Divide into two cases: g ¼ 2 and gb 3.

(i.1) If g ¼ 2, then g > f ; e implies f ¼ e ¼ 1. It follows from b1 þ b2 þ
b3 ¼ 1 that 1=ð2bÞ þ 1=ð2dÞ þ 1=2 ¼ 1, so that b ¼ d ¼ 2. Using b1 ¼ b2 ¼ 1=4,

we have c ¼ 3 from b1 þ cb2 ¼ 1. Therefore ða; b; c; d; e; f ; gÞ ¼ ð1; 2; 3; 2; 1; 1; 2Þ,
which is leading equivalent to No. 21.

(i.2) If gb 3, from (13),

2ðg� f Þ
g� 2

b d:ð14Þ

Divide into two cases: f ¼ 1 and f b 2.

Assume f ¼ 1, using gb 3 and db 2,

4b 2 þ 2

g� 2
¼ 2ðg� 1Þ

g� 2
b db 2:ð15Þ

Figure VIII.2
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Therefore d ¼ 2; 3; 4. If d ¼ 2, we have ða; b; c; d; e; f ; gÞ ¼ ð1; 2; 2; 2; 1; 1; 3Þ from

the condition (T), which is leading equivalent to No. 19. If d ¼ 3, from (15) and

gb 3, we have g ¼ 3 and 4. However, from the condition (T), they does not

occur. If d ¼ 4, similarly, it does not occur.

Assume f b 2, from (14) and db 2, we have d ¼ 2. Then db bb 2

implies b ¼ 2. Then b1 ¼ 1 � b2 � b3 ¼ ðgþ f � 2Þ=ð2gÞ. From b1 þ cb2 ¼ 1, it

holds that ðg� f Þðc� 1Þ ¼ 2. Therefore g ¼ f þ 2, c ¼ 2 or g ¼ f þ 1, c ¼ 3.

If g ¼ f þ 2 and c ¼ 2, we have b1 ¼ f =ð f þ 2Þ, b2 ¼ b3 ¼ 1=ð f þ 2Þ. It fol-

lows from 2b1 þ eb3 ¼ 1 that 2f f =ð f þ 2Þg þ f1=ð f þ 2Þge ¼ 1. Then f ¼ 2 � e,

which contradicts e A N from f b 2. Similarly, this case of g ¼ f þ 1 and c ¼ 3

is a contradiction.

(ii) Suppose ab 2. The condition (T) implies that b1 ¼ ðg� eÞ=ðbgÞ ¼
fgðd � cÞ þ fcg=ðadgÞ, b2 ¼ ðg� f Þ=ðdgÞ, b3 ¼ 1=g. We obtain the following

conditions: db b and a; gb 2 and g > e; f . Using b1 ¼ 1 � b2 � b3 ¼ fgðd � 1Þþ
ð f � dÞg=ðdgÞ, we have

a ¼ gðd � cÞ þ fc

gðd � 1Þ þ ð f � dÞb 2;ð16Þ

ð2 � cÞðg� f Þb dðg� 2Þb 0:ð17Þ

Hence c ¼ 1; 2 by g > f and gb 2.

(ii.1) If c ¼ 1, it holds that

g� f b dðg� 2Þ:ð18Þ

Assume g ¼ 2, then g > f ; e implies f ¼ e ¼ 1. From (16) and a A N ,

we have a ¼ 3 and d ¼ 2. The condition (T) implies that b ¼ 2. Therefore

ða; b; c; d; e; f ; gÞ ¼ ð3; 2; 1; 2; 1; 1; 2Þ, which is leading equivalent to No. 21.

Assume gb 3, from (18), it holds that 1 þ ð2 � f Þb 1 þ ð2 � f Þ=ðg� 2Þ ¼
ðg� f Þ=ðg� 2Þb db 1. Therefore f ¼ 1 or 2. If f ¼ 1, we have d ¼ 1 or 2. If

d ¼ 1, then db b implies b ¼ 1. Then a1 þ a3 ¼ 1 by ð1; 0; 1; 0Þ A H 3ðaÞ, which is

a contradiction. If d ¼ 2, from the condition (T), we have b ¼ 2, e ¼ 1 or b ¼ 1,

e ¼ 2. The case ða; b; c; d; e; f ; gÞ ¼ ð2; 2; 1; 2; 1; 1; 3Þ is leading equivalent to No.

19, and the case ða; b; c; d; e; f ; gÞ ¼ ð2; 1; 1; 2; 2; 1; 3Þ which is leading equivalent

to No. 18. If f ¼ 2, similary, this case is a contradiction.

(ii.2) If c ¼ 2, we have g ¼ 2 from (17). Then g > e; f implies e ¼ f ¼ 1.

From (16), we have a ¼ 2. The condition (T) implies that b ¼ d ¼ 2. Therefore

ða; b; c; d; e; f ; gÞ ¼ ð2; 2; 2; 2; 1; 1; 2Þ, which corresponds to

No: 23 x2y2 þ x2z2 þ yzw2 þ y2w2 þ z2w2:
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(VIII.3) fða; b; 0; 0Þ; ðc; 0; d; 0Þ; ðe; 0; f ; gÞg.

This case does not occur by an argument similar to (III) and (V.1).

(VIII.4) fða; b; 0; 0Þ; ðc; d; e; 0Þ; ð0; 0; f ; gÞg where a > e.

This case does not occur by an argument similar to (VI.2).

Case (IX)

(IX.1) fða; b; c; 0Þ; ðd; e; f ; 0Þ; ð0; 0; g; hÞg.

At first we consider the relation between a and b. The condition (T) implies

that

c ¼ f ¼ g ¼ 1; ab1 þ db2 ¼ 1; bb1 þ eb2 ¼ 1; b3 ¼ 1

h
:ð19Þ

We may assume e > b and a > d, and ea� bd B ðe� bÞZ, ea� bd B ða� dÞZ
and a; eb 3 where ea� bd B ðe� bÞZ means that ða; b; c; 0Þ is not an internally

dividing point of ðd; e; f ; 0Þ and some integral point on X-plane and ea� bd B

ða� dÞZ means that ðd; e; f ; 0Þ is not an internally dividing point of ða; b; c; 0Þ
and some integral point on YZ-plane. The condition (H) implies that

aa1 þ ba2 þ a3 ¼ 1; da1 þ ea2 þ a3 ¼ 1; a3 þ ha4 ¼ 1; hb 2:ð20Þ

If a ¼ b, from (19), we have b2ðd � eÞ ¼ 0, so that d ¼ e. From (20),

aða1 þ a2Þ þ a3 ¼ 1. Using
P i¼4

i¼1 ai ¼ 1, it holds that ða� 1Þa3 þ aa4 ¼ a� 1.

From ab 2, a3 þ a=ða� 1Þa4 ¼ 1. From (20), we have fa=ða� 1Þ � hga4 ¼ 0.

Since a4 > 0, h ¼ a=ða� 1Þa 2, so that h ¼ 2 and a ¼ 2 because hb 2, and

b3 ¼ 1=2. From b1 þ b2 ¼ 1=2 and (19), we have ð2 � dÞb2 ¼ 0, so that d ¼ 2

by b2 > 0, which contradicts a > d. Therefore a0 b. From (19), it holds that

b1ða� bÞ þ b2ðd � eÞ ¼ 0. If a < b, we have d > e, which contradicts b < e,

d < a. Hence a > b, e > d.

It follows from (20) and a4 ¼ 1 �
P3

i¼1 ai that ha1 þ ha2 þ ðh� 1Þa3 ¼ h� 1.

Since hb 2, h=ðh� 1Þa1 þ h=ðh� 1Þa2 þ a3 ¼ 1. From (20), fh=ðh� 1Þ � aga1 þ
fh=ðh� 1Þ � bga2 ¼ 0. Considering a > b and a; hb 2, we have a > h=ðh� 1Þ >
b. Then 2b 1 þ 1=ðh� 1Þ > bb 1, hence b ¼ 1. We obtain the following con-

ditions: b ¼ 1, hb 2, a; eb 3, a; e > d, ea� d B ðe� 1ÞZ, ea� d B ða� dÞZ.

Similarly, we have b1 ¼ fhðe� 1Þ � eg=fhðe� 1Þg. From (19), a ¼ ðhe� h� dÞ=
ðhe� h� eÞ. Since ab 3, it holds that

2h� db eð2h� 3Þ:ð21Þ
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From eb 3 and hb 2, we have 4 � db 1 þ ð3 � dÞð2h� 3Þ ¼ ð2h� dÞð2h� 3Þ
b eb 3. Hence we have d ¼ 1, so that e ¼ 3. From (21) and hb 2, it holds

h ¼ 2. Then a ¼ 3, which contradicts ea� d B ðe� 1ÞZ.

(IX.2) fða; b; 0; 0Þ; ðc; d; e; 0Þ; ð f ; 0; g; hÞg.

This case does not occur by an argument similar to (V.2).

(IX.3) fða; b; c; 0Þ; ðd; 0; e; 0Þ; ð f ; 0; g; hÞg.

This case does not occur by an argument similar to (V.1).

(IX.4) fða; b; c; 0Þ; ðd; 0; e; f Þ; ð0; g; 0; hÞg where hb g.

Divide into two cases: g ¼ 1 and gb 2.

(i) Suppose g ¼ 1. The condition (T) implies that

b1 ¼ 1 � b3

b
; b2 ¼ b� ð1 � b3Þc

be
; b3 ¼ ðe� f Þbþ cf

ehbþ cf
:ð22Þ

We obtain the following conditions: g ¼ 1, b; hb 2. Similarly, from b3 ¼
1 � b2 � b1, we have ðbeþ c� eÞb3 ¼ be� bþ c� e. If beþ c� e ¼ 0, we have

be� bþ c� e ¼ �b0 0, which is a contradiction. Therefore beþ c� e0 0. Then

it holds that b3 ¼ ðbe� bþ c� eÞ=ðebþ c� eÞ. From (22),

h ¼ beþ c� eþ f � bf

be� bþ c� e
b 2;ð23Þ

ðb� 1Þð f � 1Þa ðb� 1Þð1 � eÞ þ 2 � c:

It follows from bb 2 that f a 2 � eþ ð2 � cÞðb� 1Þa 4 � e� ca 4 � 1 � 1 ¼ 2,

that is, f ¼ 1 or 2.

(i.1) If f ¼ 1, from (23), 2b ðb� 1Þðe� 1Þ þ cb 1. If ðb� 1Þðe� 1Þ þ c ¼ 1,

we have c ¼ e ¼ 1 by bb 2. Then b1 þ b2 ¼ 1, which is a contradiction. If

ðb� 1Þðe� 1Þ þ c ¼ 2. Considering bb 2 and c; eb 1, we have ðb� 1Þðe� 1Þ ¼
0, c ¼ 2 or ðb� 1Þðe� 1Þ ¼ c ¼ 1. If ðb� 1Þðe� 1Þ ¼ 0 and c ¼ 2, then e ¼ 1

since bb 2. From (23), we have h ¼ 2. Moreover db 2 since ðd; 0; 1; 1Þ A H 3ðaÞ.
Then b1 ¼ 1=ðbþ 1Þ and b2 ¼ ðb� 1Þ=ðbþ 1Þ. It follows from ab1 þ db2 ¼ 1 that

a=ðbþ 1Þ þ fdðb� 1Þg=ðbþ 1Þ ¼ 1. Considering b; db 2, we have ða; b; c; d; e; f ;
g; hÞ ¼ ð1; 2; 2; 2; 1; 1; 1; 2Þ, which is leading equivalent to No. 21. If ðb� 1Þ �
ðe� 1Þ ¼ c ¼ 1, similarly, we have ða; b; c; d; e; f ; g; hÞ ¼ ð1; 2; 1; 2; 2; 1; 1; 2Þ which

is leading equivalent to No. 4 and ða; b; c; d; e; f ; g; hÞ ¼ ð2; 2; 1; 1; 2; 1; 1; 2Þ which

is leading equivalent to No. 21.
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(i.2) If f ¼ 2, similarly, this case does not occur.

(ii) Suppose gb 2. Then hb g implies hb 2. Similarly, from b3 ¼ 1 � b1

� b2, we have ð fc� hcþ heÞb3 ¼ fc� c� f þ e. Suppose fc� c� f þ e ¼
f ðc� 1Þ � ðc� eÞ ¼ 0, we have fc� hcþ he ¼ fc� hðc� eÞ ¼ 0. Since c� e ¼
f ðc� 1Þ, we have ðc� 1Þðh� 1Þ ¼ 1 by f 0 0. Considering hb 2, we have

h ¼ c ¼ 2, and f ¼ e ¼ 1. The condition (H) implies db 2. Then b1 ¼ 1=ðbþ gÞ
and b2 ¼ ðbþ g� 2Þ=ðbþ gÞ. It follows from db 2 and ab1 þ db2 ¼ 1 that

4 � ab bþ gb 3. Then ða; b; c; d; e; f ; g; hÞ ¼ ð1; 1; 2; 2; 1; 1; 2; 2Þ, which is leading

equivalent to No. 23. Suppose fc� c� f þ e0 0, we have

g ¼ fc� f bþ be� hcþ hbþ he� beh

fc� c� f þ e
b 2;ð24Þ

ð2 � bÞð f � eÞb cð f � 2Þ:ð25Þ

Divide into three cases: f ¼ 1, f ¼ 2 and f b 3.

(ii.1) If f ¼ 1. From 00 fc� c� f þ e ¼ �1 þ e, we have eb 2. Since (24)

and e; hb 2,

ðb� 1Þð1 � hÞðe� 1Þb ðh� 1Þðc� 1Þ þ e� 2b 0;

0a ðb� 1Þðh� 1Þa 0:

Hence we have b ¼ 1. From (24), g ¼ ðe� 1 þ hþ c� hcÞ=ðe� 1Þ A N . Since

gb 2 and eb 2, we have hþ c� hc > 0. From c� 1a ðh� 1Þðc� 1Þ < 1 and

hb 2, we get c ¼ 1. Then g ¼ e=ðe� 1Þb 2 and eb 2 imply e ¼ 2, therefore

g ¼ 2. From the condition (H) and (T), we have ða; b; c; d; e; f ; g; hÞ ¼ ð2; 1; 1; 2;

2; 1; 2; 1Þ, which is leading equivalent to No. 23.

(ii.2) If f ¼ 2, from (25), it holds that ð2 � bÞð2 � eÞb 0. Divide into two

cases: 2b b; e and 2a b; e. The case of 2b b; e does not occur by using (25). The

case of 2a b; e, from bb1 þ gb3 ¼ 1 and b; gb 2, we have b1 þ b3 ¼ 1=2�
fb1ðb� 2Þ þ b3ðg� 2Þg=2a 1=2. Then b2 ¼ 1 � ðb1 þ b3Þb 1=2. From 2b2 þ
hb3 ¼ 1 and b2 b 1=2, it holds that 1 þ hb3 a 2b2 þ hb3 ¼ 1, hence hb3 a 0,

which is a contradiction.

(ii.3) If f b 3, from (25),

ð2 � bÞð2 � eÞb cð f � 2Þb 1:ð26Þ

Therefore b0 2. Divide into two cases: b ¼ 1 and bb 3.
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Assume b ¼ 1, from (26),

1 þ 2 � e

f � 2
¼ f � e

f � 2
b cb 1:ð27Þ

Since f b 3, we have e ¼ 1 or 2. If e ¼ 1, this case does not occur by an

argument similar to (ii.2). If e ¼ 2, we have c ¼ 1 by (27). Since ða; 1; 1; 0Þ A H 3ðaÞ,
we have ab 2. Using the condition (T), this case does not occur. Similarly, the

case of bb 3 does not occur.

Case (X)

(X.1) fða; b; c; 0Þ; ðd; e; f ; 0Þ; ðg; 0; h; iÞg.

This case does not occur by an argument similar to (V.1).

(X.2) fða; b; c; 0Þ; ðd; 0; e; f Þ; ðg; h; 0; iÞg.

Divide into two cases: b ¼ 1 and bb 2. The condition (T) implies that

a ¼ d ¼ g ¼ 1.

(i) Suppose b ¼ 1. The condition (H) implies cb 2. Then

ðcfhþ eiÞb1 ¼ hð f � eÞ þ ei:ð28Þ

Considering b1 þ hb3 ¼ 1, we see hb 2. On the other hand, from b1 þ b2 þ
b3 ¼ 1, it holds that ð fhþ i � f Þb1 ¼ hð f � 1Þ þ ði � f Þ. If fhþ i � f ¼ 0, then

0 ¼ hð f � 1Þ þ ði � f Þ ¼ �h, which is a contradiction. Therefore fhþ i � f 0 0,

that is, b1 ¼ fhð f � 1Þ þ ði � f Þg=ð fhþ i � f Þ. From (28),

c ¼ fh� heþ i � f þ e

hð f � 1Þ þ ði � f Þ b 2:ð29Þ

ðh� 1Þðe� 1Þa�ðh� 1Þð f � 1Þ þ 2 � i:

Since hb 2,

e� 1a�ð f � 1Þ þ 2 � i

h� 1
a�f þ 1 þ 2 � i;

ea 4 � f � ia 2:

Hence we have e ¼ 1 or 2.

(i.1) If e ¼ 1, then f b 2 by a1 þ a3 þ f a4 ¼ 1. From (29),

c ¼ fh� hþ i � f þ 1

hð f � 1Þ þ ði � f Þ b 2:ð30Þ
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Since h; f b 2, it holds that 2 � ib ðh� 1Þð f � 1Þb 1, so that i ¼ 1. Then we

have ða; b; c; d; e; f ; g; h; iÞ ¼ ð1; 1; 2; 1; 1; 2; 1; 2; 1Þ, which is leading equivalent to

No. 16.

(i.2) If e ¼ 2, from (29), we have 2 � ib f ðh� 1Þb 1, that is, i ¼ 1 and

f ðh� 1Þ ¼ 0. We have h ¼ 2 and f ¼ 1 by hb 2. Then c ¼ 1, which contradicts

cb 2.

(ii) Suppose bb 2. We may set cb b. Then cb b and bb 2 imply cb 2.

Then ðebi þ hfcÞb1 ¼ ði � hÞeþ hf . We have ðei � icþ fcÞb1 ¼ ei � i � eþ f . If

ei � icþ fc ¼ 0, then we have ei � i � eþ f ¼ 0. We have c ¼ i ¼ 2 by cb 2,

so that e ¼ f ¼ 1. Then a1 þ a3 þ a4 ¼ 1, which is a contradiction. Therefore

ei � icþ fc0 0, that is, b1 ¼ ðei � i � eþ f Þðei � icþ fcÞ. Moreover

b ¼ ei � ehþ hf � icþ chþ fc� hfc

ei � i � eþ f
b 2;ð31Þ

ð2 � hÞðe� f Þ � cfði � 1Þ þ ðh� 1Þð f � 1Þgb iðe� 2Þ;

ð2 � hÞðe� hÞb iðe� 2Þ:ð32Þ

Divide into three cases: e ¼ 1, e ¼ 2 and eb 3.

(ii.1) If e ¼ 1, then f b 2 by a1 þ a3 þ f a4 ¼ 1. Since (31) and e ¼ 1, it

holds that ðh� 1Þð1 � cÞð f � 1Þb ði � 1Þðc� 1Þ þ f � 2b 0. Since f b 2, we

have 0a ðh� 1Þðc� 1Þa 0. We have h ¼ 1 by cb 2. Then b ¼ ði � 1 þ f �
icþ cÞ=ð f � 1Þb 2 from (31), and f b 2 implies that cþ i � ic > 0. Then i�
1a ði � 1Þðc� 1Þ < 1 by cb 2. It holds i ¼ 1, then a1 þ a2 þ a4 ¼ 1, which is a

contradiction.

(ii.2) If e ¼ 2, from (32), it holds that ð2 � hÞð2 � f Þb 0. Divide into two

cases: 2 > f ; h and 2a f ; h. If 2 > f ; h, it means that f ¼ h ¼ 1. We have ib 2

by a1 þ ha2 þ ia4 ¼ 1. From (31), 1=ði � 1Þb cb 2, which contradicts ib 2. If

2a f ; h, this case does not occur by an argument similar to (IX.4) (ii.2).

(ii.3) If eb 3, from (32),

ð2 � hÞðe� f Þb iðe� 2Þb 1:ð33Þ

Therefore h0 2. Divide into two cases: h ¼ 1 and hb 3. If h ¼ 1, from (33),

1 þ 2 � f

e� 2
¼ e� f

e� 2
b ib 1:ð34Þ

Since eb 3, we have f ¼ 1 or 2. If f ¼ 1, this case does not occur by an

argument similar to (IX.4) (ii.2). If f ¼ 2, we obtain i ¼ 1 by (34), then a1 þ
a2 þ a4 ¼ 1, which is a contradiction. If hb 3, similarly, this case does not occur.
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Therefore we obtained all elements of F3
2=@ listed in Table 1 of Section 4.

Q.E.D.

4.2. The Other Types in 2 and 3-Dimensions

For a singularity of the ð0; 0Þ-type, it is easy to see the following theorems.

Theorem 15. ðF2
0=@ÞU ðF2

1=@Þ ¼ f½xyz�; ½x2 þ y2z2�; ½x2yþ yz2�g. Moreover

#fðDF2
0=@ÞU ðDF2

1=@Þg ¼ 3.

Proof. We follow Steps 1, 2 and 3 of Section 3. It is clear that F2
0=@ is

½xyz�. For F2
1=@, set two points m;m 0 A Z 3

b0 which construct such a compact line

including ð1; 1; 1Þ in the interior. Lemma 9 implies that ðm;m 0Þ A ðV ;VÞ or ðV ;SÞ
or ðS;SÞ where V and S are the sets of points having 3 coordinates whose only 1

coordinate is not zero and whose only 2 coordinates are not zero, respectively.

The case ðm;m 0Þ A ðV ;VÞ does not occur because the line determined by m and

m 0 does not include ð1; 1; 1Þ. Under the leading equivalence relation and the

equation ð1; 1; 1Þ ¼ tmþ ð1 � tÞm 0 for some t A Q>0 with 0 < t < 1, we see that

F2
1=@ are ½x2 þ y2z2� and ½x2yþ yz2�.

At last, it is clear that Tpqr : x
p þ yq þ zr þ axyz (a0 0 and 1=pþ 1=qþ

1=r < 1), x2 þ y2z2 þ y4 þ z5 and x2yþ yz2 þ y3 þ z4 are representative elements

of ðDF2
0=@ÞU ðDF2

1=@Þ. Q.E.D.

Theorem 16. ðF3
0=@ÞU ðF3

1=@Þ ¼ f½xyzw�; ½x2þ y2z2w2�; ½x2y2 þz2w2�; ½xy2þ
xz2w2�; ½xy2zþ xzw2�g. Moreover #fðDF3

0=@ÞU ðDF3
1=@Þg ¼ 5.

Proof. Similary, it is clear that Tpqrs : x
p þ yq þ zr þ ws þ axyzw (a0 0 and

1=pþ 1=qþ 1=rþ 1=s < 1), x2 þ y2z2w2 þ y6 þ z6 þ w7, x2y2 þ z2w2 þ x4 þ y4

þ z4 þ w5, xy2 þ xz2w2 þ x2 þ z8 þ w9 and xy2zþ xzw2 þ x3 þ y6 þ w6 þ z4 are

representative elements of ðDF3
0=@ÞU ðDF3

1=@Þ. Q.E.D.

Remark 17. For the ð0; 0Þ-type polynomial in C ½z0; . . . ; zn�, the dimension

of its leading face D0 is equal to one or zero in virtue of Theorem 1. Then we see

that some case of dimD0 ¼ 1 is reduced to the case of dimD0 ¼ 0 by a suitable

coordinate transformation as follows: Let f be a ð0; 0Þ-type polynomial in

C ½z0; . . . ; zn� with dimD0 ¼ 1 where D0 is a leading face of f . Then the leading

terms fD0
is leading equivalent to zk1

� � � zklfðzp1
� � � zprÞ

2 þ ðzq1
� � � zqsÞ

2g where

f0; . . . ; ng ¼ fk1; . . . ; klgqfp1; . . . ; prgqfq1; . . . ; qsg by the similar way of Theo-

rems 15 and 16 and simple coordinate transformations. If r ¼ 1, then
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fD0
@ zk1

� � � zkl ðz2
p1
þ z2

q1
� � � z2

qs
Þ

¼ zk1
� � � zklfðzp1

þ izq1
� � � zqsÞ

2 � 2iðzp1
þ izq1

� � � zqsÞzq1
� � � zqsg:

The transformation

zp1
! zp1

� izq1
� � � zqs

implies zk1
� � � zkl z2

p1
� 2iz0 � � � zn in the new coordinates. Then the leading face is

changed into a point.

For the n-dimensional isolated hypersurface purely elliptic singularity of

ð0; n� 1Þ-type, it is easy to see that the classification using leading equivalence

relation is the same as the one using the weight since the weight of the leading

face of defining polynomial giving purely elliptic singularity is determined

uniquely. Therefore, in the 3-dimension, the classification using leading equiv-

alence relation coincides with the Yomemura’s classification. Therefore we obtain

the following theorem immediately.

Theorem 18 (Yonemura [11]). All representative elements of F3
3=@ are listed

in Table 2.2 of [11]. Moreover #ðDF3
3=@Þ ¼ 95.

Moreover, in general for the n-dimensional isolated hypersurface purely

elliptic singularity of ð0; n� 1Þ-type, the following fact was known. The singu-

larities which belong to the same analytical equivalence class have a canonical

model up to isomorphisms, which are obtained from the weighted blowing-ups by

the weights of leading faces of each singularities. Then, by a result of Tomari [7]

Theorem 4.16, we see that their weights are equal because the Konöller invariant

gm is determined by the canonical model uniquely. Therefore, as is well known,

Saito’s classification of the 2-dimensional hypersurface purely elliptic singularities

under the analytic equivalence relation in [6] is the same as the classification

under the leading equivalence relation. Therefore the following theorem holds

immediately.

Theorem 19 (Saito [6]). F2
2=@¼ f½x3 þ y3 þ z3�; ½x2 þ y4 þ z4�; ½x2 þ y3 þ

z6�g. Moreover #ðDF2
2=@Þ ¼ 3.

5. On the (0‚ 2)-Type

Through a singularity of ð0; 1Þ-type, we review a singularity of ð0; 2Þ-type in

the 3-dimension. For instance, let f ¼ x2 þ y3 þ z6w6 þ z12 þ w13. Then f is a
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ð0; 1Þ-type polynomial and its leading term is No. 1 f0 ¼ x2 þ y3 þ z6w6 in Table

1 of Section 4. Furthermore, it is obvious that the leading face of f is included

in a leading face of the ð0; 2Þ-type polynomial g ¼ x2 þ y3 þ z6w6 þ z12 þ w12. In

general, we have the following theorem.

Theorem 20. The leading face of a ð0; 1Þ-type polynomial in C ½x; y; z;w� is
included in the leading face of some ð0; 2Þ-type polynomial in C ½x; y; z;w�.

Proof. To show this, we give the list of Table 3 of all corresponding

weights of leading faces of ð0; 2Þ-type polynomials for each elements in Table 1

of Section 4, where, for example, YN10 means No. 10 ð1=2; 1=3; 1=12; 1=12Þ in

Table 2.2 of [11]. As a remark, for the another representative element, it is only

the permutation of the weight di¤erences.

Q.E.D.

Table 3

The number

of ð0; 1Þ-type The number of ð0; 2Þ-type

No. 1 YN10, YN11, YN12, YN13, YN14, YN46, YN47, YN48, YN49, YN50, YN51,

YN83

No. 2 YN7, YN8, YN9, YN35, YN36, YN37

No. 3 YN5, YN8, YN29, YN31, YN33, YN39

No. 4 YN3, YN4, YN17, YN18

No. 5 YN2, YN3, YN24, YN53

No. 6 YN1, YN2, YN19

No. 7 YN38, YN39, YN40, YN41, YN42, YN43, YN44, YN45, YN77, YN78, YN79,

YN80, YN81, YN82, YN92, YN93

No. 8 YN6, YN31, YN32, YN33, YN34, YN37, YN74, YN75, YN76, YN78, YN90,

YN91

No. 9 YN6, YN7, YN8, YN12, YN33, YN40, YN44, YN75

No. 10 YN5, YN6, YN7, YN10, YN32, YN42

No. 11 YN20, YN22, YN24, YN25, YN27, YN28, YN59, YN60, YN65, YN67, YN68,

YN72, YN88

No. 12 YN2, YN15, YN16, YN18, YN22, YN53, YN54, YN84

No. 13 YN4, YN19, YN23, YN26, YN55, YN58, YN61, YN62, YN69

No. 14 YN8, YN18, YN19, YN63, YN66, YN89

No. 15 YN3, YN7, YN21, YN66

No. 16 YN1, YN5, YN21

No. 17 YN18, YN21, YN57, YN69, YN85, YN87, YN89, YN94

No. 18 YN58, YN63, YN64, YN66, YN70, YN71, YN87, YN89, YN95

No. 19 YN3, YN19, YN24, YN63, YN85

No. 20 YN1, YN53, YN63, YN85

No. 21 YN19, YN21, YN23, YN25, YN66

No. 22 YN58, YN63, YN64, YN66, YN70, YN71, YN87, YN89, YN95

No. 23 YN1, YN3
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Remark 21. The converse of the above theorem does not hold. In fact,

there exist leading faces of ð0; 2Þ-type polynomials which never contain any lead-

ing faces of ð0; 1Þ-type polynomials: YN30, YN52, YN56, YN73, YN86 in Table

2.2 of [11].

Remark 22. Under a certain condition on a deformation of a purely elliptic

singularity, Ishii shows that a singularity of ð0; 1Þ-type deforms to a singularity of

ð0; 1Þ-type or ð0; 2Þ-type (see [4]).
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