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RAPID DECAY OF THE TOTAL ENERGY
FOR DISSIPATIVE WAVE EQUATIONS

By

Fumihiko Hirosawa and Hideo Nakazawa

1. Introduction

In this paper, we are concerned with the dissipative wave equation of the
form:

{wt, — Aw +b(t,x)w; +c(t, x)w =0 (t,x) € (0,0) x RY,
w(0,x) = wo(x), w,(0,x) =wi(x) xeR",

(1.1)

where w = w(z,x), A= z_jil(az/axz), b(t,x) and c¢(t,x) are some non-negative
continuous functions.

In Saeki and Ikehata [12] the authors obtained the following decay estimate
for (1.1) with ¢(¢,x) = 0: Suppose that N > 3, b(t,x) = b(x) > by in R for some
positive constant by. If (wo,w1) e H'NL>! x L>! then the estimate

2 2 2
(1 + )Wz < Cillowo, wi)lliazz g2

holds with a positive constant Cy, where

= L1 = [ 0+ PP de < o0,

RN

|w(2)|[% is the total energy at time t:

1
(Ol =5 | (Vw0 +wi(e. %)
RY
and

2 2 2 2
10w, w0) 1z ez = IwollZp + hwoll2a s + w3

Our aim is to derive more rapid decay estimate for the total energy without the
assumption for the data as above. We consider our problem under the following
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two kinds of assumptions on the dimension number, initial data and coefficients,
that is,

bi(t,x) <0 or |b,(t,x)| < 7,(2), (1.2)

{N > 1, (wo,wy) € H' x L% by < b(t,x) < by,
¢(t,x) <0 or |e,(t,x)] < y.(0)e(t, x)

or
N >1, (wy,w;) e H' x L?
bo(1+1)7 <b(t) <bi(1+1)7,
by(1+0)" < —b(t) <bs(1 4+, (1.3)
by < by G_lbzéa_lb3,

<
¢(t,x) <0 or |e,(t,x)] < 7p.(0)e(t, x)

for some positive constants by, b, by, b3 and o < 1, and for some functions y,(z),
7.(2) € L'((0, 0)). Then our main results are described as follows:

THEOREM 1.1. Let w be a solution to the Cauchy problem (1.1). Assume (1.2).
Then the following inequality holds:

(L+Dlw() I + Iw(0)]17:

t
—I—J {(1 + )i ()72 + [Vw(2)]|72 +J c(t, x)w(z, x)? dx} dt < G, (14)
0 RY
where Cy depends only on ||woll;1, ||will2 and by, and

Iw(o)||3 = %L (IVw(t, x)|* + wi(t, x)* + c(t, x)w(t, x)*) dx

N
is the total energy at t. Moreover, we have

Jim (1 +2)||w(0)||3 = 0. (1.5)

Particularly, if b(z,x) = b(z) behaves like bo(1 +¢)"° with by >2 and o€
(1/2,1], then more rapid energy decay estimate holds:

THEOREM 1.2.  Assume (1.3) with by > 2 and o € (1/2,1]. Then the following
inequality holds:
t

(14 0 o)+ (ol + |

0 {(1 @)+ (14 )92

@)1+ 0 @+ (17 |

c(z, x)w(t, x)? dx} dt < Cs, (1.6)
RY
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where y(o) =1 (if 6 =1), =0 (if ¢ # 1), and Cs depends on ||wol| 1, ||w1ll;. and
b(t,x). Moreover, we have

[Jim (14 N w(@)|5 = 0. (1.7)

In particular, if o =1, then we find

. 2
i (o) = 0. (18)

The proofs of these theorems are done by the weighted energy method, which
were used in [1], [3], [5], [7], [8], [10], [13] and [14], for instance. Among them,
in [13] it was proved that the total energy ||w(7)|3 decays like O(r*), where
u is a positive real number satisfying p < (1+1)b(¢t,x) and (u—1)(x—2)—
(= 1)1+ 0)b(t,x) — (1 4+ 1)*b,(1,x) > 0. This shows that one can take u at
most u = 2. Moreover, in [14], it is obtained that C;(14 7)™ < ||w(r)||3 <
Cy(1+1)™" for some positive constants C; and C,, where w, = min{by,2},
1 = 2by. Recently the latter of the present authors [10] generalized the result of
[12] to o(t72).

We mention other results on (1.1) with ¢(¢,x) = 0. Energy non-decay and
scattering problem is considered in [4], [5], [6], [7], [9] and [11]. In [2] it has been
proved that if the dissipation is of spatial anisotropy, then (1.1) does not have
uniform decay property.

The content of the present paper is organized as follows. In Section 2, we
give the proof of Theorem 1.1. Theorem 1.2 is shown in Section 3. In Section 4,
we state related results without proofs.

2. Proof of Theorem 1.1

Let ¢ = ¢(¢) and = Y(¢) be non-negative smooth functions, to be chosen
later. Multiplying gw; + yw by the equation of (1.1) and integrating it over R,
we have

d (J X (1, x) dx) + J Z(t,x) dx =0, (2.9)
dt RrRY RV
where

X(t,x) = g (W2 + [Vw]* + ew?) + Yww + wwz (2.10)

and
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Z(t,x) = 2bp — ¢ = 29 w? + 2 =g, |Vw\2
2 2
1
+5 W — (0Y), + 2e — (pe) yw*. (2.11)
Let us take
o(t) = gbo + b3t and Y(t) = bg. (2.12)

(i) Estimate of Z(z,x). Using the condition on b(z,x) in (1.2), we easily
obtain

2bp — 9, =2 = Cy(bo)(1+1) and 2y — g, = by,
where Cy(by) = 2b2 min{1,by}. Noting the condition on b, in (1.2), we have
0 if b, <0,
—(by), = .
=00z e i
Moreover since 2yc — (pc), = bjc — gc,, using the condition on ¢(z,x) in (1.2), we
find

bic if ¢, <0,

e — >
Ye—(pc), = {béc — Cs(bo)(1 + 0)p.()e if |ef] < ¢,

where we put Cs(by) = (bo/2) min{5,2by}. It then follows from the arguments
above that

2 2
J Z(1,x) dx = Calbo)(1 + D2z | 42 ”VW(2Z>”“
RJV

2
b3 2 1
+=2|  c(t,x)w(t,x)” dx — = W (1), (2.13)
2 RN 2
where
0 if by <0and ¢, <0,
b3yt )Hw )Hi, if |b,| < 7, and ¢, <0,
Wi(1) = ¢ Cs(bo)(1 + 1)y, (t) [qw c(t, x)w(t, (1,x) dx if b, <0 and |¢;| < y,c,

b3ys (1) w72
+ Cs(bo) (1 4 1)y.(2) [qw c(t, x)w(1, x)2dx if |b| <y, and |¢| < y.c.

(ii) Estimate of X (7, x). Put

by — ¥,

B:lp’ C: 2
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and for the convenience of proving

X1 = X2 = = (Aw? + Bww + Cw?).

N —

Then we have

X(1,x) = ng\z +ew?) + X) + Xo. (2.14)

Noting 4,B,C >0 by (2.12), we find

B\ B2\ B\ s
2X) = C(w—i—%»vt) + (A _R)W’ > (A —R>w, > Cg(bo)(1 + t)w;

with Cg(bo) = (bo/4) min{3,2by}. Similar argument is applicable for X, to
conclude

2

B B  3p3
2X, > <C——>w2 with C — 0

aZW>O.

44

From the arguments above and the estimate 4 > (1/2)(4 — B%>/4C), it then
follows that

1 B? 1 B?
X ) I 2 2 2 - _ = 2
(t,x)_2< 4C>(wt+|Vw| —&—cw)+2<C 4A>W
> C L5 2 2, 365 o
> Co(bo)(1 + [)E(W’ + |Vw|" 4+ ew )+%w . (2.15)
On the other hand, we can easily obtain
J X(0,%) < G ([w(O)|I% + [woll2) = Cs. (2.16)
RA’

(iii) Derivation of (1.4). Integrating (2.9) on [0,¢] and using (2.13), (2.15) and
(2.16), we find

3b3
Colbo) (1 + Dw(OI% + 5 (o)}

t 2 2 2
+ {C4<bo><1 sl e ] et ute 0 "x} -
0 RY

1 t
SCg—I——J Wi () dx.
2)o
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In the following, we give a proof of only the case of || <y, and |¢,| < y,.c since
we can estimate the other cases more easily. Put

. 3b3 Cy(bo) b2
C9(b0) = mln{cﬁ(bo)a2_6)7¥770}7
b§ Cs(ho)

Cl()(bo) =Il’laX{Cg,77 3

Cio(bo)
Co(bg) -

} and Cll(bo)z

Then the inequality above has the following form:

(1-+ )Wl + (0
+ [+ + 19w + [ ctrmten? axf

< F(1), (2.17)

N

t
Fo) = Gt {1+ [ (I + 1+ 00) [ eleowten? a) def.
0
From (2.17), we especially find
(1+ z)J et X)w(t, x)? dx < 2F (1) (2.18)
RY
and
Iw(0)||7 < F(2). (2.19)
Differentiating F(¢) defined above, and using (2.18) and (2.19), we have

F'(1) < Cri(bo) (75(1) + 2.(1)) F (1)

From this we set
F(l) <(Cp= Cll(bo)eC” < 00

with

o0

Ci3 = Cyi(bo) Jo (7,(%) + 27.(7)) dx.

This and (2.17) give (1.4).
(iv) Derivation of (1.5). It follows from (1.4) that ||w(t)||12E e L'([0, o)), there-
fore we find
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liminf (1 + 0|lw(n)|lz = 0.

So, we have only to show that {(1+ t)||w(t)||2E}t20 is a Cauchy sequence with
respect to ¢. For this aim, we consider the following identity:

2
I

DL+ IR = o)+ (140 (o).

Using the energy identity

Sl + [ (e mte0? = L w27 ) o,
dt RY 2
which is derived from (2.9) with ¢ =1 and y =0, we find

d
S+ 0w 03

== a0 [ b0 dv 0
R

J et x)w(t, x)? dx.
N 2 RY

Integrating the equation above on € [t,5] (0 <t <t < ), we have

(14 a2 w(e2) I = (1 + ) lw(en) 3]

< le {|w(1)|fE +(141) < L bt x)wi(t, %)* + Mw(z, %) dx> } dr.

14l

(2.20)

Using (1.2), we find that the right hand side of (2.20) is estimated from above
by

Jt2{||w(t)||125+b1(1+t)|w,(t)||iz+wj c(z,x)w(z,x)zdx}dz. (221)
RY

n

Since
(1+ z)J e(t, x)w(t,x)? dx < 2C,
RY
by (1.4), it follows that
l %) 5]
EJ ()1 +z)J c(t, )w(t, x)? dxdr < CZJ (1) dt. (2.22)
151 RY n

Therefore we obtain
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(1 + ) l[w(t) |z — (14 a)w(z)[17]

< J () + 51 (1 + )llw0)[= + Core(0)

5

to conclude (1.5).

3. Proof of Theorem 1.2

From the condition on by and g, we may assume 2b; > o + 3. So, we take
ee€(0,1) as

2
0 I 3.3
D7 p— (323)

Put
p(1) =b3(1—2)(1+ 07", Y1) = by(1+1)7, (3.24)

and consider (2.9)—(2.11).
(i) Estimate of Z(z,x). Easy computations give

2bp — ¢, — 2y = Cia(bo,0)(1 + 1) (3.25)
and
2y — ¢, = Cis(by, ) (1 +1)7, (3.26)
where
og+1 1
Cia(bo,0) = 2b%(1 — &) (bo S _8>
and
Cis(bo,0) = b3{2 — (a + 1)(1 — &)}
Note that
0 ifo=1, Bby(1+0)7" ifo=1
= ) and —(hy), > < 072 ’
Vi {—m(t) if 0<o<l, V), {o ifo<o<l,
where

Py (t) = b3(1 — o) (1 +1)" 7 e L'(0, 0).

So, we find
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p2hi(14+1)7" ifo=1
—(by), =" , ’ 3.27
Ve = (b9, {_N(’) if0<o<l. (3.27)
By the use of the condition on c¢(#,x) and (3.26), we obtain
- 0 if ¢, <0,
20e= (), = Cus(bo,0)(1+0)%¢ - {Cls(bo)(l F 0™ e if el <76 O

where we have used the estimate
—pc; = —C16(b0)(1 + l)a+1y(,t'

with Cig(bg) = b3(1 —¢). It then follows from (3.25)—(3.28) that

2
[[we (L2

J Z(t,x) dx > C14(b0,0')(1 + l‘) 3
RY

2
+ Cis(bo,0)(1 + t)”{'vw(;”er;JRN c(t, x)w(t, x)* dx} - % Wy(t), (3.29)

where
—b2by (14 1) w(2)| 13 if 6=1and ¢, <0,
201 (1+ 1) w(n)]22

+ Cie(bo) (1 + 1)y, Jry e(t, x)w(z, x)2dx if o=1and |¢| < y,.c,
Wa(t) =9y, w(o)l|7 if0<o<1andc¢ <0,
Pullw(®)]7:

+ Cig(bo)(1+ 1)y, [ c(t, x)w(t,x)* dx if 0 <o <1

and |Cl‘| < VeC-

(ii) Estimate of X (¢,x). We use the same notation as in Section 2 (ii). By
(3.24), we find 4,B >0 and C > b3(hy — o) > 0. Therefore, it follows

2

B o
A =25 = Ciplbo,0)(1+1) i (3.30)

with Cy7(bo,0) = (1 — &)b3(1 — 1/2(bg — o)) > 0. Similar arguments give
2

B
C—a = Clg(bo,d) (3.31)

with Cig(bo,a) = (b3/4)(by — o —1/(1 —¢)) > 0. It then follows from the argu-
ments as in Section 2 (iii), (3.30) and (3.31) that
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J X (1,x) dx = Cip(bo, 0)(1+ 1) w()| + Cig(bo, o) [w(D)[[ 7. (3.32)
RY
On the other hand, the following is easily obtained:
J , \X(07x)| dx < C19(||Wo||§11 + HWlHiz) = Cy (3.33)
R}\/

for a positive constant Cig.
(iii) Derivation of (1.6). Integrating (2.9) on 7€ [0,7] and using (3.29), (3.32)
and (3.33) we have

- Hw() |22
Cirfb,0)(1+ 07 w0} + CosCho, (O + Corlbusbr o) | 52 g
0

t Cialbo,0) )|wi(0)||2
# [ oo

+ D 17 (@l + | el iwie0? dx) } e

0

where

0 (0' = 1761 < 0),

Ci6(bo) (1 + 1) y.(2) [ €(t, x)w(t, x)* dx if o=1and |¢/| < 7y.c,
Wate) = {7y (OIw(0) s if } <o <1andc <0,

7y (D w()][72

+ Ci6(bo)(1 +¢) ”H (1) Jgv (2, x)w(z x) dx, }<o<1land|¢|<y.c
and

b2bs

Cx(bo, by) =< 2~ if 0=
0 f0<o<l.

In the following, we consider only the case 1/2 < o <1 and |¢/| < y.c since the
other cases are more easily treated than this case. Put

. [Cia(by,a) Cis5(bg,0
Czlzmln{ 14(20 ), ]5(20 );C17(b070')7C18(b070)aC21(b0ab2)}7
ngzmax Clé(bo),Cm and C23 22
2 Gy
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It then follows from the inequality above that

.| 2 .
1+ 07wl + w07 + {fé(l +0) ()G de i o=1
0 fo<o<1

#[ oo+ a0 (19w + [ etronten? ax) } ae

< G(1), (3.34)
where
G(1) = C23{1 + Jo(l 4 T)““yc(f) JRN c(r, x)w(f,x)z dxdt + Jo j/l//(‘[)HW(T)HZLz dr}.

From this we find

(1407 J et w(n,x)? dx < 26(0) (3.35)

and
Iw(®)||72 < G(1). (3.36)
Therefore it holds that
G'(1) < Coa{2p.(1) + 7, (1)} G(1)
and we conclude
G(r) < C23€Cz4
with
!
Caa = Cn [ 2000+ 0} .
0
This and (3.34) give (1.6).
(iv) Derivation of (1.7). Since the same arguments as in Section 2 (iv) give the

desired result (1.7), we omit the detailed proof.
(v) Derivation of (1.8). If o =1, we find from (3.34) that

r(l + 0)|w,(2)|3> dr < oo (3.37)
0

and
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r(l + 1) w(t)|7 dt < 0. (3.38)
0

It then follows from (3.38) that

L. 2
liminf w(z)[[7. = 0.

So, we have only to show that {||w(t)||iz}t20 becomes a Cauchy sequences with
respect to ¢ € [0, o).
Integrating from # to 6, (0<1 <1, < )

W) IE2) = 20000, wi(0)

we have
2 2
| Hw(lz)HLz - HW(ZI)”L2|

< 2j2 (00(0), wil1)) 2] di

n

<2([ a0 ol dr)l/z ([ a+ oo dr)m —0

n 14

as ?1,tp — +oo by (3.37) and (3.38). This proves (1.8).

4. Final Remarks

In the last section, we state several results without the proof for (i) the
generalization of Theorem 1.2, (ii) the initial-boundary value problem, and for
(iii) the case » depends on ¢ and x.

(i) Generalizations of Theorem 1.2 with ¢(z,x) = 0.

Consider (1.1) with ¢(¢,x) =0 under the assumption (1.3). Without the
condition on the size of by as in Theorem 1.2, we obtain the following:

THEOREM 4.1.  Assume (1.3). If p > 0 satisfies

. by by DL/ (b1+ 1) —4by
0 < u < mins by, g + min 50p 3 )
1

then the following inequality holds
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(L 0w (Dl + (140"~ w(D)|72
t
+ L{(l + 0" w@) + 1+ 0" w(@)|7:} de

2 2
< Cos([[w(0) [ + [Iw(0)I72)
for some positive constant Cys. Therefore, we obtain

lim (1 + 2)*||w(2)||3 = 0.

1— 00
REMARK 4.1. In the above theorem, we have u < 2.

(ii) Exterior initial-boundary value problem.
Assume N > 1 and let Q = R\, where ¢ is some bounded domain with
smooth boundary d0¢. We consider the equation:

Wi — Aw + b(t, x)w, + c(t,x)w =0 (¢, x) € (0, 0) x Q,
Wa +a(t,x)w =0 (1,x) € (0, 00) x 0Q,
W(Oa X) = WO(X)7 Wt(07 X) =W (X) X € Q7

where n denotes the outer unit normal of dQ. We state the assumption on a(z, x):

0<a(t,x) <ap< o, (t,x)e(0,00)x0Q, (4.39)
a(t,x) <0, (t,x)€e(0,00) x oQ (4.40)

and
la,(1,x)| < p,(0)a(t,x), (1,x) € (0,0) x 0Q, (4.41)

where ag is some constant and y, e L'((0,0)). In the following, we use the
notation

||w(t)|\i~(g) = ;{ L2(11/,(z7 x)2 4 [Vw(t, x)|* + e(t, x)w(t, x)*) dx

+ LQ a(t, x)w(t, x)* dS}

and

nwme:Lymm%m
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THEOREM 4.2. (1) Assume (1.2) for N, b and ¢, and (4.39), (4.40) for a. Then
we have for some Cys > 0,

(L4 Dlw(D) I + w0720

t
+ L {(1 + D) w72 + IVW()][720) + J “e(t, x)w(t,x)* dx

RJ\

+J a(t, x)w(t, x)* dS} dt < Cx
o0

and

}an(l + l)HW(t)lef(Q) =0.

(i) Assume (1.3) for N and c, the condition as in Theorem 1.2 for b and (4.39),
(4.41) for a. Then we have for some Cy; >0,

t
(1+ )7 w(0) @) + WD 720 + JO (1+ )W) 220

+(1+ r)"{ HVW(‘L’)”%z(Q) + JQ e(t, x)w(t, x)? dx + LQ

a(t, x)w(z, x)* dS}

+2(0)(1+0) 7 W) |2y | dT < Cor,

Tim {(1+ 1) (D) 30 + (@) [W(D)][ 720} = 0.

REMARK 4.2. We can obtain the similar results for Dirichlet or Neumann
problem.

(iii) The case where dissipation » depends on ¢ and x.
For the sake of simplicity, we state the results only for the equation of the
form:
Wy — Aw +b(t,x)w, =0 (1,x) € (0,00) x Q,
w=0 (t,x) € (0, 00) x 0Q,
w(0,x) = wo(x), wi(0,x) =wi(x) xeQ,

where Q is the same exterior domain as in (i).

THEOREM 4.3. Assume N > 1,
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bo(1+ |x|+ )" <b(x,t) <bi(14|x|+1)7*
and
by (1 + x| + 1) < —b,(t,x) < ubs(1 + |x| 4+ 1)+

Sor any (1,x) € [0, 00) x Q, where pe [0,1] and by, by, by and by are some positive
constants.
(i) If the data satisfy

(1+|x))'Vwo,  wo, wi € L2(Q),

then there exists a positive number o such that

pmu+gj (1+ |x| + )7 ((Vw(t, x)|* + wi(t,x)?) dx =0,

RrRY

where o =1 if u<1 and c=1 if ¢ > 0.
(ii) If the data satisfies (wo,w1) € HL(Q) x L*(Q), then there exists a positive
number o such that

. o 2
Jim (14 0)7[w (1) 30 = 0

where

1
WWWEQZEJOVMLMV+MUJVMH
Q

is the total energy and

by .
i if u<l,

2
o= mm{mfﬁ“ Wj>”@4“} if u=1and by #2,

2
bi+3— (bl_zl) +4(by—by) _ & lf u= 1 and bO =2

for any ¢ > 0.

COROLLARY 4.1. If (wo,wy) € H'(Q) x L*(Q) and by = by, we have

Tim (14 0 w(D)l|pq =0 if u<1,

lim (1+ )™ |w()| 3 =0 if u=1 and by #2,

1—o0

and for any fixed ¢ >0, y=1 and by =2

. 2—¢ 2 —
tlgg(l + ) w() |z = 0.
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REMARK 4.3. u =1 and by = 2 of Corollary 4.1 is the critical case, and such
a pair of critical numbers appears in the estimate (3.32). If b(z,x) = 2(r+ 1)},
that is, 4 =1 and by = 2, then it is possible that the energy decays exponential
order with a pair of initial data and boundary condition. Indeed, if N =1, Q =
[0, 00), wo(x) = e, wi(x) = —2¢~* and w(r,0) = (1 +1)'e™’, then the solution
is explicitly represented by w(z,x) = (1 4+ £)'e~'. This implies that the energy
decays exponential order.
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