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 High-field transport in semiconductor diodes at room temperature is analyzed in the 

reflection-transmission regime. The pseudo-one-dimensional Boltzmann equation with a 

constant electric field is transformed into a pair of carrier flux equations. They are analytically 

solved neither with the relaxation time approximation nor with the perturbation expansion. 

The carrier energy relaxation due to optical phonon emission is essential in high-field 

transport. The current- and velocity-field characteristics are closely related to flux 

transmission through a specific layer, in which the elastic scattering is dominant and the 

optical phonon emission is absent. If the transmission coefficient is much less than unity, the 

proportionality of the current to the field results as the Ohm’s law in high-field range. The 

current and velocity tend to saturate when the coefficient approaches unity (ballistic 

transmission). This result provides simple insight into transport in nanoscale devices.  
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1.  Introduction 

   In semiconductor device theory, high-field transport has been a crucial issue that 

dominates device performance. A half century ago, Ryder1) and Shockley2) investigated the 

current in germanium and silicon and indicated the saturation of carrier velocity at a high field. 

Since then, high-field transport has been studied through various approaches: initially by 

theoretical analysis, and then by Monte Carlo simulation, along with experimental 

investigations. Now devices are on the nanoscale, and the electric field inside them is 

intensified. Clarification of high-field transport is crucial for control as well as proper 

understanding of device operation and performance. 

The drift current density I under a constant electric field E is usually described by Ohm’s 

law:3) 

(1)                                         . 
2

E
m

nqI τ
=  

Here, q, m, and n are the charge, the effective mass, and the density of a carrier, respectively. 

τ is the relaxation time. Equation (1) is often divided into qnvI =  and Emqv )/( τ= , 

where v is the drift velocity. Equation (1) for a homogeneous bulk system, considering the 

carrier distribution in momentum space, is derived from the Boltzmann transport equation 

(BTE).4) The derivation is usually based on two major assumptions. One is the 

phenomenological relaxation time approximation (RTA).4-6) The collision integral of BTE is 

approximated by a simple expression:  
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where fk (f0
k) is the distribution function with the applied field (at thermal equilibrium). This 



 3

assumes that the deviated distribution of the carrier relaxes to thermal equilibrium in 

relaxation time τ [the same τ as in eq. (1), the averaged value over the Fermi surface when the 

carrier distribution is considered]. The RTA is generally thought to be effective when the 

deviation is small. Details of the scattering process, such as whether the scattering is elastic or 

inelastic, or the complicated course of energy relaxation satisfying conservation rules, are all 

neglected. The other inevitable assumption is the perturbation expansion of current density I 

in powers of the field E. The linear eq. (1) is derived for a sufficiently low field. The 

higher-order terms in E are thought to represent the hot carrier effects7,8) in high fields. 

Velocity saturation (actually, current density saturation) shown in Ryder’s data1) is a 

characteristic phenomenon in high-field transport8). It was extensively investigated by 

Shockley 2) and his successors, usually using the balance-of-energy equation of hot carriers 

and assuming RTA. When an electric field is sufficiently large, the optical phonon emission 

constitutes the dominant process of energy relaxation, and carriers emit optical phonons as 

soon as the kinetic energy gained from the field exceeds the optical phonon energy (which is 

denoted by ∗ε  throughout this paper) and reduce their velocity to almost zero. The increase 

in mean carrier velocity is truncated at a value of m2/∗ε  independent of the field.  At 

first, Shockley assumed an infinitely strong interaction between the electron and the optical 

phonon, but later the relative contribution of various scattering mechanisms to the energy loss 

was extensively studied. Reik and Risken9) derived saturation velocity dependent on both 

deformation potentials of the acoustic and the optical phonon scattering by an orthodox 

analysis of BTE. The complexity of the problem, however, forced an approximate discussion 

based on the system’s uniformity and the RTA, and the physical mechanism for the transition 

from the lower-field E-dependence to the high-field velocity saturation was not clear. The 
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saturation velocity in n-silicon remains at 107 cm/s even at a high field of 1.3×105 V/cm10). 

However, the mean carrier velocity during acceleration by the field within a short optical 

phonon scattering time of 5×10-14 s exceeds 2×107 cm/s. Clarification of the transport physics 

based on the kinematical mechanism is desired. 

In our previous paper,11) referred to as Part I hereinafter, the high-field transport without 

energy relaxation was primarily analyzed. In sufficiently low electric fields, the carrier energy 

fully relaxes along the channel. The drift-diffusion current model is proved, and the linear I-E 

relationship in eq. (1) is verified. In the higher-field range of V/cm 500≥E  for silicon, the 

energy relaxation cannot catch up with the energy gain due to the field. The kinetic energy of 

carriers accumulates along the current path, and the quasi-equilibrium collapses. The 

energy-dependent relaxation time produces a deviation from the linear I-E relationship in eq. 

(1), although the experimental curve still maintains linearity. Clarification of the mechanism 

of linearity at high fields is required. 

 As a limiting case, Part I analyzed high-field transport with elastic scattering and without 

energy relaxation as Model 1. The electric current density through the channel region with 

length L, which intervened between the source and the drain electrode, and to which the 

electric field E was applied, was analyzed. The transmission coefficient of carriers from the 

source to the drain was derived as 

(3)                 ,
0
ετ

τ

Lc

c

t
T

→Δ+
=  

where τc is the backscattering time. The value of τc is related to the backscattering probability 

B and the three-dimensional elastic scattering time τe derived from the low-field mobility, 

mq e /τμ = , as τc =1/B=2τe. Here ε
21 xxt →Δ  stands for the traverse time of a carrier, with 
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kinetic energy ε at x=0, from x=x1 to x=x2 accelerated by the electric field E in the absence of 

scattering. Namely, ε
21 xxt →Δ  was evaluated by the constant acceleration motion of a carrier as 

( )
(4)              .

2 12
21 qE

qExqExm
t xx

+−+
=Δ →

εεε  

For a wide field range that satisfies ετ Lc t →Δ<< 0 , the electric current was expressed as 

LEI /∝ . In contrast, for exceedingly large fields corresponding to cLt τε <<Δ →0 , the 

transmission coefficient approaches unity (ballistic transmission), and the electric current 

tends to saturate.  

This paper analyzes high-field transport by combining the elastic scattering in Model 1 

with energy relaxation due to the optical phonon emission12,13) and clarifies the mechanism of 

the linear I-E relationship as well as the physics of velocity saturation. Similar to Part I, the 

pseudo-one-dimensional BTE is transformed into a pair of flux equations, and the transport in 

the reflection-transmission regime is discussed. The two major assumptions in eq. (1), RTA 

and perturbation expansion, are removed, and a consistent solution from the low-field linear 

region toward the high-field velocity saturation is derived.  

Due to the acceleration by the electric field, the carrier motion in our system is not 

uniform along the path. Its velocity increases as it moves along. In contrast, the time flow is 

always uniform. The system’s behavior is characterized by the ratio of the traverse time to the 

scattering time of carriers. The description of the solution is very complicated when expressed 

by spatial position x as in eq. (4), but it reduces to a simple description when expressed by the 

time parameter ε
21 xxt →Δ , as we see in eq. (3). Henceforth, the mathematical evolution in terms 

of the spatial coordinate x may be complicated, but the final result is rewritten with the time 

parameter to simplify the expression and to clarify the physical meaning. 
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The purpose of this theoretical analysis is to identify the primary mechanisms in the 

high-field transport and to develop the underlying physics. The analysis is considered valid if 

the qualitative features as well as the rough magnitude of I-V characteristics are well 

reproduced. This standpoint is contrasted to the numerical simulation, where detailed 

mechanisms of transport are considered in a large-scale calculation, and numerical accuracy is 

pursued. The two approaches complement each other, and both are required in the 

development of nanoscale electronics. In §2, we analyze carrier transport combining the 

elastic scattering and the optical phonon emission, and the current density and the carrier 

velocity are derived. In §3, the physics of the high-field transport is discussed in detail, 

including Ohm’s law and velocity saturation. The conclusion is given in §4. 

 

2. Model 2: Elastic Scattering Combined with Optical Phonon Emission 

2.1 Incorporation of energy relaxation into Model 1 

    We analyze high-field transport through a semiconductor body, referred to as a channel, 

intervening between the source and drain electrodes, similarly to in Part I. A silicon channel 

with a low doping concentration n0=2.5×1014 cm-3 is assumed. A drain bias V is applied with 

respect to the source electrode, and a constant electric field LVE /=  is assumed within a 

channel of length L. In contrast to Part I, we investigate the case with an energy relaxation of 

a fixed amount ε* due to optical phonon emission, in addition to the energy-conserving elastic 

scattering. We assume that the acoustic phonon scattering is included in the elastic scattering. 

Although silicon has a multivalley band structure and optical phonon scattering is allowed as 

intervalley scattering, there is no problem in effectively considering the energy relaxation 

process in our single-valley framework. In Part I, the value of the backscattering probability B 
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is estimated as 2.5×1012 s-1 from the low field mobility, 1430 cm2V-1s-1 14), of high-purity 

silicon. Now we also introduce the transition probability per unit time due to optical phonon 

emission, denoted by D. The optical phonon scattering probability is estimated 15) to be 

roughly similar to that of acoustic phonon scattering for silicon, and here we assume for 

simplicity that 112 s105.2 −×== BD . The optical phonon energy ε* is 63 meV for silicon14) 

and is 2.4 times larger than the thermal energy (26 meV at room temperature). Therefore, the 

transition to higher-energy states by absorption of an optical phonon is presumed to be 

suppressed and can be neglected when compared with the emission. The mean number of 

optical phonons is estimated as [ ] 097.01)026.0/063.0exp(/1 =−=N . The absorption 

probability, which is proportional to N , is only 9% of the emission probability  

proportional to )1( +N , so we neglect it. A similar model has been investigated by 

Baraff.16) 

   As is shown in the potential profile of Fig. 1, a carrier with kinetic energy ε, which we 

assume is less than ε*, is injected from the source to the channel. The energy level of the 

injected carrier is hereafter designated as the incident energy level. When the carrier stays 

within the region qExx /)(0 0 εε −=≤≤ ∗ , the kinetic energy is smaller than ε* and the 

energy relaxation due to optical phonon emission is inhibited. The theory of elastic scattering 

in Part I is applied to carriers within the region. This region is denoted hereafter as the initial 

elastic zone. Beyond the point 0xx = , optical phonon emission is allowed and carriers are 

exposed to energy relaxation to the lower energy level )( ∗− εε . The energy dispersion of the 

optical phonon is neglected, and so it is not necessary to consider momentum conservation. 

The lower energy level at )( ∗− εε  is denoted as the first relaxed level hereafter. Carriers in 

the first relaxed level are only allowed to populate the region 0xx ≥ . Energy relaxation due 
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to optical phonon emission is inhibited for the carrier in the first relaxed level within the 

region 100 xxxx +≤≤ , where  qEx /1
∗= ε . We call this region the first relaxed elastic 

zone. Beyond 10 xxx += , carriers are allowed to relax their energy and undergo a transition 

to the energy level )2( ∗− εε ; this level is denoted hereafter as the second relaxed level. 

Further relaxed levels with lower energy values are similarly defined. The values of 0x  and 

1x  for a thermal carrier in silicon are estimated to be 0.37 and 0.63 μm, respectively, for 

V/cm1000=E . 

Recently, the ballistic or the quasi-ballistic transport in nanoscale devices17-20) has been 

frequently analyzed in the reflection-transmission regime. The concept of the “kT layer” 21-23) 

proposed in the analysis is effective for understanding the underlying physics. This concept is 

contrasted to the “elastic zone” just introduced. 

 

2.2 The incident energy level 

   The general formalism of analysis based on BTE, as well as the phase space that consists 

of the (x,k) plane, is introduced in Part I. The state of a carrier in 0 ≤ x ≤ x0, where only elastic 

scattering is allowed, is described by the theory derived therein. Setting 0xL = , eqs. (8a) and 

(8b) in Part I are rewritten using eq. (4) as 

( )
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Here, F(x) and G(x) divided by Planck’s constant h denote the positive-velocity and the 

negative-velocity fluxes, respectively. In the region xx ≤0 , we add to the BTE the term 
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representing the energy relaxation due to optical phonon emission. The transition from state 

),( kx  is allowed to states )',( kx  and )',( kx −  in the first relaxed level, where 

∗−+= εεqExmk 2/)'( 2h , with equal transition probability D, emitting an optical phonon. 

The frequency of transition is proportional to the product of the transition probability, the 

distribution ),( kxf , and the empty probability of the destination. The empty probability, 

however, is set to unity as discussed in Appendix B of Part I. Since the energy relaxation 

removes a carrier from the incident energy level, the BTE of Model 1, i.e., eq. (3) in Part I, is 

modified to 

[ ] )6(.0),(2),(),(),(),(
=+−−+

∂
∂
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kxf
m
k

k
kxfEq h
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The term ),(2 kxDf  designates the removal of carriers in proportion to ),( kxf . The fluxes, 

F(x) and G(x), in the incident energy level are related to ),( kxf  in the same way as in Part I.   
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Substituting eqs. (7a) and (7b) into eq. (6) and integrating over k, the equations for )(xF  and 

)(xG  in this case are derived as 
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where a matrix representation is used. Diagonalizing the matrix, we see that the solution 

consists of the terms expressed as [ ]qEqExDDBm /)()(22exp ε++± . We solve the 

equation by setting )( 0xF and )(LG  as boundary values. The )(xF and )(xG  obtained are 

linear in )( 0xF and )(LG . We introduce an averaged scattering time DDBave )(/1 +≡τ  
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for convenience. Then the prefactor of )( 0xF  in the expression of )(xF  is transformed to a 

linear combination of the terms ( )aveLxt τε /2exp →Δ−  and ( )aveLxt τε /2exp →Δ . (Quantities are 

converted to the simple expression in time parameters.) Similarly, the prefactor of )(LG  is 

also a linear combination of the terms ( )avexxt τε /2exp
0→

Δ  and ( )avexxt τε /2exp
0→

Δ− . Let us 

compare the magnitudes of these terms. The traverse times ε
Lxt →Δ  and ε

xxt →Δ
0

 are usually 

much larger than the scattering time, and so the magnitude of the argument of these 

exponential factors is much larger than unity. For an applied field of V/cm1010 42 −=E , for 

example, ( ) 05.3305/22 −=+ ∗ qEDDBm ε . Equation (4) implies that these exponential 

factors with a positive argument are much larger than those with a negative argument, except 

for the case Lx ~  or 0~ xx . In addition, the exponential factors with a positive argument 

themselves rapidly decrease as x increases from x0 or decreases from L due to the reduction of 

the traverse time. A similar discussion is possible for the expression of )(xG . Sorting out the 

dominant terms and dividing them by the factor of the denominator (not explicitly shown), we 

finally obtain the expressions for )(xF  and )(xG  as 
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2.3 Carrier transport accompanying energy relaxation 

   In the region 00 xx ≤≤ , eqs. (5a) and (5b), together with T  in eq. (3) where 0xL = , 

yield 
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In the region Lxx ≤≤0 , eqs. (9a) and (9b) are applicable. Using eqs. (10a) and (10b), as 

well as the expression for )( 0xG  derived from eq. (9b), we obtain the expressions for 

)( 0xF , )0(G , and )( 0xG  as a linear combination of 0F  and LGLG ≡)( .  
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As for the flux injection at the boundary of the channel, we have ( )TkqVFG BL /exp0 −= , 

as is suggested by eq. (B13) of Part I. If the bias V between the source and drain is sufficiently 

large, i.e., TkqV B>> , we have 0FGL << , and we can neglect the terms proportional to 

LG  in eqs. (11a)-(11c). Equation (11c) indicates that α represents the carrier reflection from 

the region 0xx > . The value of α depends on the trade-off between the elastic backscattering 

and the energy relaxation within Lxx ≤≤0 , and eq. (12a) indicates that α is independent of 

E. The value amounts to 0.17 for our choice of DB = .  

Equation (11) in Part I suggests that the net electric current Iε from source to drain for the 

incident energy ε is provided by 
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where the modified transmission coefficient T~ is defined by 
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Let us derive the expressions for )(xF  and )(xG  for the incident energy level assuming 

that 0xL >>  and LG  is neglected. In the case of 0=LG , eqs. (5a) and (5b) are rearranged 

with the use of eqs. (11c) and (13) to 

),0(                

)15(.
1

)(

)15(
1

1)(

00

0

0

Lxxx

b
t

q
hIxG

a
t

q
hIxF

c

xx

c

xx

<<≤≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+

−
=

→

→

τα
α

τα
ε

ε

ε

ε

 

   Similarly, we can transform eqs. (9a) and (9b) with the use of eqs. (13) and (14) and 

derive )(xF  and )(xG  in the region xx ≤0  as 

),,(             

)16(.
2

exp
1

 )(

)16(
2

exp
1

1)(

0

0

0

00
ε

ε

ε

ε

ε

τ

τα
α

τα

Lxave

ave

xx

ave

xx

tLxxx

b
t

q
hIxG

a
t

q
hIxF

→

→

→

Δ<<<≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−

−
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
−

−
=

 

The total current density I of the system, considering the contribution of LG , is obtained by 

substituting eq. (12) in Part I, which is reprinted as 

 ,exp
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and also performing a similar substitution for hGL /  in eq. (13). Here the carrier density at 
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the entrance to the channel is assumed to be the same as that in the body of the channel, n0. 

The range of integration over ε is limited to less than ε*, as pointed out in §2.1. For ∗≥ εε , 

the initial elastic zone vanishes, and eq. (14) does not make sense. The contribution of carriers 

with energy larger than ε* cannot be taken into account in our calculation. The ratio of the 

incident flux with the larger energy to the total incident flux is ( )TkB/exp ∗−ε , as suggested 

by eq. (B13) in Part I, and is less than 9%. We neglect that part, since our purpose is to clarify 

the dominant mechanism of transport rather than to achieve numerical accuracy. Thus, for 

0xL > , we obtain  
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Let us examine some plots of numerical examples depicted for silicon. Figure 2 shows 

plots of the transmission coefficient T~  as a function of electric field E. Equations (3) and 

(14) are employed for 0xL ≤  and 0xL ≥ , respectively. We compare this figure with Fig. 4 

in Part I. The remarkable L-dependence in the low-field region is unified to a curve 

independent of L in the high-field region. The curve for a sufficiently large E saturates at a 

value less than unity. Equation (3) suggests that the value of T  for the initial elastic zone 

approaches unity for a field so large that cxt τε <<Δ → 00 , indicating the total or ballistic 

transmission through the zone in 00 xx ≤≤ . The reflection from the region 0xx >  

constitutes the backward injection 00 )( FxG α=  at x0, and degrades the combined 

transmission T~   to saturate at a value of (1－α). Figure 3 shows the distribution of )(xnε  

in the incident energy level shown in arbitrary units. It is evaluated using eqs. (15a), (15b), 

(16a), and (16b). Within the region 00 xx ≤≤  where only elastic scattering occurs, )(xnε  

decreases as x increases, as discussed in Part I. When we proceed into the region xx ≤0 , the 
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optical phonon emission rapidly decreases the carrier density in the incident energy level, and 

)(xnε  vanishes within several tens of nanometers, resulting in transitions to the first relaxed 

level.  

Figure 4 is the total current density derived in eq. (17). The carrier density in the entrance 

part of the channel is assumed to be 2.5×1014 cm-3, similar to that in Fig. 5 in Part I, but the 

behavior is greatly changed. The marked dependence on L is eliminated except for a weak 

symptom in the low-E region. The fade-out of the dependence on L is explained as follows. 

Whereas the current of Fig. 5 in Part I is controlled by backscattering within a wide region of 

0－L, the current in this case is proportional to the modified transmission T~ , which consists 

of the transmission T  through the initial elastic zone between 0 and qEx /)(0 εε −= ∗  and 

the backward injection 0Fα , both of which are independent of L. Of course, the carrier 

injection at the drain edge proportional to ( )TkqEL B/exp −  depends on L, but it is neglected 

for the practical case of TkqEL B>> . For this high E value, eq. (17) is rewritten in the form 
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For ( )αε −<< ∗ 12 2mBqE  (~104 eV/cm), the function γ(E) shows only a weak 

dependence on E, as  V/cm, 10for    54.1)( == EEγ 1.15 for 102 V/cm, 0.70 for 103 V/cm, 

and 0.21 for 104 V/cm. Insofar as the dependence of γ(E) on E is neglected, eq. (18) 

indicates that Ohm’s law is restored; we thus call the field region the Ohm’s law range.  

We see a slight dependence on L remaining in the region of smallest E in Fig. 4. In this 
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region, where both E and L are small and TkqEL B< , L is smaller than x0, and the 

transmission T~ is effectively reduced to T  in Part I. The lowest-order term of I in E derives 

from the T  value of eq. (10) in Part I. When the small ε2 -term in the denominator can be 

neglected, the L-independent eq. (14) in Part I results. However, if the term persists, the weak 

dependence of I on L remains, as we see in Fig. 4. For a sufficiently high E region, the 

current shows saturation. This corresponds to the saturation of the transmission coefficient in 

Fig. 2 and is due to ballistic transmission through the initial elastic zone. The current density 

is expressed as 

( )( ) )20(,,12).1(
2

2 0
20 LxqEmB

m
Tkn

qI B <<<−−≈ ∗ αεα
π

 

in contrast to eq. (18) in Part I. The entire current injected from the source to the channel 

transmits into the region 0xx > , but the part with the ratio α is reinjected into the initial 

elastic zone as a result of competition between elastic backscattering and optical phonon 

emission in that region, so the current density is reduced by a factor of )1( α− . 

 

2.4 The first relaxed level 

     We next analyze flux distribution at the first relaxed level for the case where both the 

channel length L and the applied bias V are sufficiently large and the carrier injection LG  

from the drain is neglected. In the region of 100 xxxx +≤≤ , carriers in the first relaxed level 

are due to elastic scattering, but the energy relaxation by optical phonon emission is inhibited. 

On the other hand, the inflow of carriers from the incident energy level by optical phonon 

emission needs be considered. The BTE for carriers in this level is described as 
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where )',(0 kxf  is the distribution function of the incident energy level, and 

∗+= εmkmk 2/)(2/)'( 22 hh . The term proportional to D denotes the inflow of carriers from 

the incident energy level. In discussing the first relaxed level, we move the origin of the x-axis 

from the original source edge to the point x0 on the original scale. The functions )(xF  and 

)(xG  of the incident energy level with the new origin are designated )(0 xF  and )(0 xG , 

respectively. These functions are basically given by eqs. (9a) and (9b), respectively, except 

that the traverse times [defined in eq. (4)] ε
xxt →Δ

0
 and ε

Lxt →Δ are replaced by 
∗

→Δ ε
xt0  and 

∗

−→Δ ε
)( 0xLxt , respectively. The distribution function )',( 00 kxxf +  [ )',( 00 kxxf −+ ] requires 

the substitution of )(0 xF  [ )(0 xG ] for )(xF  [ )(xG ] in eq. (7a) [eq. (7b)]. The distribution 

function of the first relaxed level is expressed by )(xF  and )(xG  for the level 
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We substitute eqs. (22a) and (22b), and also )',( 00 kxxf +  and )',( 00 kxxf −+ , into eq. (21), 

rearrange it, and then integrate it over k to eliminate the δ-function factor. We finally obtain a 

pair of differential equations for F(x) and G(x) in the first relaxed level, as shown in eqs. 

(A1a) and (A1b) in the Appendix. The point 0=x  is the turning point at which the 

negative-velocity carrier changes to a positive-velocity carrier, and we put )0()0( FG = . For 

the other boundary condition for the flux equation, we use )( 1xG  as a given value. Figure 3 

shows that )(xF  and )(xG  in the corresponding region of the incident energy level 

)( 0 xx ≤  quickly decay within several tens of nanometers, and we designate the decay length 
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as Δx, which is usually much less than x1. Within the region 1xxx ≤<Δ  which constitutes 

most of 10 xx ≤≤ , the functions )',( 00 kxxf +  and )',( 00 kxxf −+  in eq. (21) almost 

vanish. Equation (21) is effectively reduced to eq. (3) in Part I, and similar solutions to eqs. 

(15a) and (15b) are derived. Specifically, the Appendix shows the derivation, and eqs. (A7a) 

and (A7b) are rewritten as 
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Here, 0
1xxt →Δ  is the traverse time for a carrier in the first relaxed level to move from x to 1x . 

For the very narrow region xx Δ≤≤0 , we resort to the original eqs. (A1a) and (A1b). The 

solution is given as eqs. (A3a)―(A3c), but the analytic integration of the expression is not 

available. 

The carrier state in xx ≤1 , where elastic scattering and optical phonon emission need to 

be considered, is controlled by BTE in eq. (6), since the incident energy level is assumed to be 

empty. The flux equation eq. (7) leads to eqs. (A9a) and (A9b) to yield  
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which are similar to eqs. (16a) and (16b), because eqs. (23a) and (23b) are similar to eqs. 

(15a) and (15b). The carrier density distribution in the first relaxed level is similar to that 

shown in Fig. 3. In view of the behavior of carriers in the first relaxed level, we readily 
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conclude that the carrier state in the second relaxed level is described by eqs. (23a), (23b), 

(24a), and (24b) with appropriate modifications. Furthermore, all higher relaxed levels, 

excluding the ones close to the drain, are basically described by these equations with 

appropriate modifications. In the sense that almost the same unit is repeated along the channel 

and that averaging over the unit yields a uniform distribution throughout the bulk, we can say 

that the carrier state is uniform on average, although it varies microscopically and is 

distributed in each relaxed level just as we see in the carrier density of Fig. 3.  

 

2.5 Mean carrier density and mean carrier velocity 

Similar to the case in Fig. 3, in eqs. (23a), (23b), (24a), and (24b) the carrier density 

distribution is not microscopically uniform in the bulk, and neither is the carrier velocity 

distribution. However, the bulk part consists of repetition of the same unit structure with a 

period x1 for each value of incident energy ε, and the unit structure is represented by that in 

the region 10 xx ≤≤  of the first relaxed level. We evaluate the mean carrier density in the 

bulk part. First we evaluate the total carrier number within the region that corresponds to the 

first relaxed elastic zone, i.e., 10 xx ≤≤ , per unit area of cross section. This number consists 

of the contribution Ni from the incident energy level, estimated by eqs. (16a) and (16b), and 

also the contribution Nr from the first relaxed level derived from the solution in the level. Ni is 

obtained by integrating eq. (7) in Part I with )(xF  and )(xG , which are given respectively 

by eqs. (16a) and (16b) over the region 100 xxxx +≤≤ . The evaluation is straightforward by 

first shifting the origin of the incident energy level to that of the first relaxed level, and then 

changing the variable of integration from x to qEqExmz /)(2 ∗∗ += ε , as 
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The expression of Nr, although a little complicated, is derived in eq. (A11).  The mean 

carrier density within the first relaxed elastic zone for a given Iε is 1/)( xNN ri + . The second 

relaxed elastic zone is located beyond the first relaxed elastic zone, and the bulk region is a 

continuous series of elastic zones for successively higher relaxed levels. The values of Ni and 

Nr for higher relaxed levels are all common. The dependence of eqs. (25) and (A11) on ε is 

limited to the factor Iε. To obtain the mean carrier density n  in the bulk region, we need to 

sum the contributions from each Iε. Since Ni and Nr are linear in Iε, the carrier density is 

obtained by replacing Iε in the expression for 1/)( xNN ri +  by the total current density I: 
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   Next we derive the mean carrier velocity. Denoting the summed density of the carrier for 

both the incident energy level and the first relaxed level at x by )(xn , the drift time for a 

carrier to traverse from 0=x  to 1x  opposing multiple scatterings is given by  
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The mean drift velocity v  within the region )0( 1x−  is given by 

[ ]))(/(/1 ri NNIqxv += ε , and eqs. (25) and (A11) yield 
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Notice that v  is independent of the incident energy ε. Then we have vnqI = . Among 

the many terms in eqs. (26) and (28), the exponential terms reflect the influence of )(xF  and 

)(xG  at 10 xxx +=  in the incident energy level as inferred from eqs. (16a) and (16b), and 

they are sufficiently small when avext τ/0
0 1→Δ  is large. The linear term in avext τ/0

0 1→Δ  in the 

braces of eq. (28) is due to the term cxxt τ/0
1→Δ  in eqs. (23a) and (23b); this term represents 

the effect of backscattering and is responsible for the characteristic decrease of carrier 

distribution along the channel. 

In the Ohm’s law range where 

( ) ))/(1(/2/)1(21 0
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2
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DBDtqEmB avex +−Δ=−<< →
∗ ταε , we can assume that 

avext τ/1 0
0 1→Δ<< , and the dominant contributions to n  and v  come from the linear term 

of avext τ/0
0 1→Δ  in the braces of eqs. (26) and (28), insofar as the exponentially decaying 

terms are neglected. Thus we have 
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considering eq. (18), and we can see that 0nn ≈  if we neglect the dependence of )(Eγ  on 

E. Mean carrier velocity also is reduced to 
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Notice that these expressions are in agreement with the homogeneous result of the 
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full-energy-relaxation model discussed in Appendix A in Part I if we consider the relations 

)2/1(~ τB  and Emqvv )/(2/)( τ=− −+ . The common term proportional to cxxt τε /
0→Δ  in 

eqs. (15a) and (15b), or that proportional to cxt τ/0
0 1→Δ  in eqs. (23a) and (23b), makes a 

dominant contribution to the carrier density and also to the drift velocity in the Ohm’s law 

range. We can say that the positive- and negative-velocity components contribute almost 

equally, and that their slight difference yields the net current in the initial elastic zone as well 

as in the bulk region. Such a situation is similar to what was pointed out in the 

full-energy-relaxation model in Appendix A of Part I. However, the distribution is not 

uniform along the channel and shows a spatial periodicity with a period x1 due to the 

transition of carriers to higher relaxed levels. In the opposite limit, where 1/0
0 1

<<Δ → avext τ  

(or 1/0
0 1

<<Δ → cxt τ ) and qEDDBm <<+ ∗ε)(2 , eq. (28) is reduced to 

mDBDv 2/)/()12( ∗++≈ ε , independent of the field. This result is the velocity 

saturation predicted by eq. (28) and corresponds to the case where the transmission coefficient 

through the elastic zone of each relaxed level amounts to unity (ballistic transmission), as 

suggested by eq. (3) with ε= 0. 

  Plotted in Fig. 5 are the normalized mean carrier density 0/ nn  derived from eq. (26), 

the mean drift velocity in eq. (28), the normalized carrier flux 00 // qnInvn = , and 

)(Eγ  in eq. (19) as functions of E. Within the Ohm’s law range, )(Eγ  slowly varies as a 

function of E and deviates from unity. This causes the deviation of 0/ nn  from unity as 

seen in the figure and yields a deficit or excess of the mean charge density compared with the 

background charge density 0qn−  in the bulk region, resulting in a violation of charge 

neutrality. The proportionality of the normalized carrier flux 0/ qnI  to E in the figure seems 

slightly damaged due to the presence of the E-dependent )(Eγ . The mean carrier velocity 
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v  shows a clearer proportionality to the electric field in the region V/cm104≤E .  

In the Ohm’s law range, ( )αε −<< ∗ 12 2mBqE ~104 V/cm, the decay length Δx in the 

incident energy level is much smaller than x1 of the first relaxed level, and a similar relation is 

verified with respect to the pair of the first and second relaxed levels; this pattern continues 

toward higher relaxed levels by turns. After the carrier in the incident energy level has 

completely relaxed to the first relaxed level, the carrier in that relaxed level begins to relax to 

the second relaxed level. A similar situation is realized regarding the first and second relaxed 

levels, and so on toward higher relaxed levels. Carriers are distributed in two energy levels at 

most (two-level distribution), and a procedure for deriving the mean carrier velocity in eq. 

(28) as the bulk value is guaranteed. If the value of Δx exceeds x1, however, the procedure for 

higher relaxed levels in the bulk breaks down. Within the second relaxed elastic zone beyond 

)( 10 xxx +=  in Fig. 1, for example, the flux in the first relaxed level is no longer controlled 

by eq. (6), which describes the scattering inside the level and the transition to the second 

relaxed level, but is also disturbed by the transition from the incident energy level where the 

residual carrier is distributed. Deep in the bulk, carriers are distributed in many energy levels 

within the same spatial region (multilevel distribution). In such a situation, the value n  is 

larger than that obtained from eq. (26) due to contribution from the increased number of 

energy levels. Equation (28) for the two-level distribution predicts an overestimated value 

since the distribution is modified. However, the mechanism of velocity saturation, identified 

as the ballistic transmission through the elastic zone, still works in the multi-level distribution. 

We can roughly estimate the validity range of the two-level distribution by comparing the 

modulus of argument of the exponential factor in eqs. (24a) and (24b) at 12xx =  to unity. 

Thus, eq. (28) is shown to be valid for V/cm105 4×<E .  
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3. Discussion 

In Part I, we have analyzed carrier transport only with elastic scattering as Model 1. Within 

a wide electric field range of qTkV B />> , Model 1 anticipates that LEI /∝ , in contrast 

to Ohm’s law. If the field is not excessively large and ετ Lc t →Δ<< 0  is satisfied, I is 

proportional to the transmission probability ( )[ ]εετ ε −+=Δ≈ → qELmBqEtT Lc
2

0 2//  

from source to drain, but the probability is reduced to be proportional to LE /  if the 

incident kinetic energy ε, which is on the order of kBT, is sufficiently less than qEL . In 

Model 2, it is interesting that the I-E characteristics analogous to Ohm’s law are restored in 

the same field range again, insofar as we neglect the weak dependence of the factor γ(E) on E. 

The optical phonon emission is suppressed within the initial elastic zone where the kinetic 

energy is less than the optical phonon energy. Carriers that have survived the backscattering 

and traversed this zone are exposed to optical phonon emission and immediately relax to the 

first relaxed level. Because they never return to the source, they eventually constitute part of 

the drain current. We can say the effective channel length L is reduced to the width x0 of this 

zone. Since the kinetic energy of the carrier at x = x0 is ε*, the transmission probability is 

reduced to ( )[ ]εετ ε −=Δ≈ ∗
→

2
0 2//

0
mBqEtT xc ; this expression is proportional to E 

without dependence on the total L. After integration over ε, the proportionality of the current 

density to E is maintained. The factor LE /  is reduced to being proportional to E, because 

the zone width x0 is inversely proportional to E. The magnitude of the current density is 

dominated by elastic scattering within the initial elastic zone, as we see in its inverse 

proportionality to B in eq. (18). We note that the expression is similar to eq. (1). The 

parameter τ in eq. (1) is the relaxation time of the distribution function due to acoustic phonon 
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scattering. Here, B is the backscattering probability due to the elastic scattering, but the 

mechanism of transport is completely different, as is clear from the discussion above and in 

Appendix A of Part I. Such a mechanism of current control also works even if the scattering is 

not purely elastic but includes a slight energy relaxation, insofar as the kinetic energy 

accumulates toward the drain. Note that part of the backscattering is actually caused by 

optical phonon emission. The current component injected at the source edge with energy 

larger than ε* is partly backscattered to the source by optical phonon emission and causes the 

net current to decrease. The contribution is small, as was pointed out before, and we neglect it 

in this analysis. 

   At sufficiently high fields, the observed current density is known to saturate. Model 1 

yields the current saturation at such a high field that the traverse time ε
Lt →Δ 0  becomes 

sufficiently smaller than τc and that the total ballistic transmission occurs through the channel. 

Then the current density at saturation is equal to the injected flux from source to channel 

multiplied by the carrier charge, but the field required is exceedingly high unless the channel 

length L is very small. In Model 2, on the other hand, the effective channel length is reduced 

to the width of the initial elastic zone, and the current density saturates when the transmission 

coefficient through this zone amounts to unity. The initial elastic zone is thin, and so the 

required electric field for saturation is reduced to a realistic order of magnitude 104 V/cm. Part 

of the flux, after it has been transferred beyond the initial elastic zone, is backscattered into 

the zone again, surviving the optical phonon emission. The ratio α of backscattering is 

irrelevant to the applied field, and the value of the saturated current is reduced by a factor of 

)1( α−  compared with the original injected flux. The saturated current is eventually provided 

by eq. (20). The current saturation is based on the total transmission of the injected flux 
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through the initial elastic zone and is not a consequence of the carrier velocity truncation 

caused by optical phonon emission. Truncation always works in Model 2, but the current 

increases as the field increases when the transmission is sufficiently small and tends to 

saturate if the transmission approaches unity.  

The carrier velocity in the semiconductor bulk has been measured using the time-of-flight 

technique24). The magnitude of the velocity is confirmed to increase with an increase in the 

applied field and tends toward saturation at the highest field. This theory anticipates that the 

velocity of the carrier injected from the source with fixed energy periodically oscillates in the 

bulk as the carrier is successively transmitted to higher relaxed levels. Within each elastic 

zone, it varies similarly as in Fig. 3 in Part I and does not remain constant. The mean velocity 

v  averaged over the period is uniform throughout the bulk region and is given by eq. (28). 

As shown in Fig. 5, v  is clearly proportional to the electric field and tends to saturate 

toward the high-field region over 104 V/cm. The overall flux distribution within the elastic 

zone of each relaxed level is represented by the simple expression of eqs. (23a) and (23b), 

where the second terms in the brackets on the right-hand side are predominant in the Ohm’s 

law range. The carrier density sharply decreases toward the drain within the elastic zone, 

similar to Fig. 3. The smooth transmission is hindered by the perpetual backscattering, and the 

carrier flow becomes stagnant. As E is increased, transmission through the zone, given by eq. 

(16) in Part I, is increased and the stagnancy of the carrier is relaxed. The mean velocity v  

in eq. (28) is reduced to that in eq. (30), yielding the proportionality to E.  

In contrast, in a sufficiently high field where 1/0
0 1

<<Δ → cxt τ , the transmission coefficient 

through the elastic zone tends toward unity as eq. (3) applied to the zone indicates, and the 

carrier velocity saturates. More precisely, the carrier transport in an energy level is controlled 
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by both backscatterings: one within the elastic zone, and the other back into the elastic zone 

from the region beyond. The backscattering probability within the elastic zone is naturally 

proportional to the traverse time of a carrier across the zone. The traverse time decreases as E 

is increased, leading to the proportionality of I to E. The backscattering probability loses its 

dependence on E when 1/0
0 1

<<Δ → cxt τ  is attained in a sufficiently high field. The region 

beyond the elastic zone has no specific size, contrary to the elastic zone. The scattering effect 

therein depends on the tradeoff between the backscattering time and the energy relaxation 

time, showing no dependence on E. Thus the proportionality to the field in the low-field 

region turns into independence of E in the higher-field region. On the other hand, the carrier 

distribution scheme in an extremely high field changes from the two-level to the multi-level 

distribution as pointed out previously. The qualitative mechanism of velocity saturation 

depicted here is also valid in the multi-level distribution. However, the saturation velocity in 

eq. (28), evaluated in the two-level distribution, is overestimated, as previously discussed. 

The rigorous evaluation of saturation velocity in the multi-level distribution is outside the 

scope of this work. The conventional theory of velocity saturation is based on the 

balance-of-energy equation and predicts that the carrier velocity will saturate if the optical 

phonon scattering ever dominates the energy relaxation. However, our theory indicates that 

the velocity is proportional to E if the transmission is small, even if the optical phonon 

emission is dominant. The mechanism differs between the conventional and proposed 

theories. 

The current-controlling mechanism discussed so far implies that the current density is 

dominated by a very thin zone at the interface to the source electrode. In actuality, however, 

the feedback control from the bulk part regulates the current as follows. The bulk of the 
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channel consists of the repetition of the same unit structure of length x1, which is similar to 

the structure in the initial elastic zone. Once the current is set in the initial elastic zone, the 

flux distribution in the first relaxed level is determined as in eqs. (23a) and (23b), as well as in 

eqs. (24a) and (24b). The flux in the second relaxed level, and also those in the higher relaxed 

levels, are determined similarly. However, the resultant carrier charge distribution may not be 

consistent with the original constant field distribution. For the carrier injection described by 

substitution (12) in Part I, for example, a carrier charge excess ( V/cm200<E ) or deficit 

( V/cm200>E ) results, as the plot of 0/ nn  in Fig. 5 suggests. The carrier charge excess 

(deficit) pushes up (pulls down) the potential profile of the original constant-field curve in the 

bulk, which modifies the barrier height at the source-channel junction, decreases (increases) 

the carrier injection, and compensates for the excess (deficit) of the charge. The potential 

profile in the thin interface region is modified by the feedback from the bulk part. At room 

temperature, a change in the barrier height of only 18 meV modulates the effective carrier 

density at the entrance of the channel by a factor of 2 and modifies the current density by the 

same factor. The steady-state potential profile actually realized is obtained by the 

self-consistent solution of the coupled system of the BTE and the Poisson equation. Does the 

self-consistent solution support the constant field? The solution demands the optimization of 

the system’s electrostatic energy, which is realized by the carrier charge distribution that tends 

to overlap and cancel the dopant charge distribution to eliminate the space charge in the bulk. 

The feedback works toward 0nn = . For carriers with a specific energy ε, the charge 

distribution shows a repetition of the unit structure with a short period 1x , and the repetition 

begins at x=x0 ( ( ) qEx /0 εε −= ∗ ). The position of each unit region shifts as the value of the 

incident energy ε is varied, and the charge distribution tends to be leveled off by integration 



 28

over ε, as a simple estimation can easily verify. Then the dopant charge distribution cancels 

the average carrier charge through the feedback, promoting the constant field distribution. 

 If the feedback controls the current injection and fully neutralizes the average charge in 

the bulk, the current density is described by vqn0  because 0nn = . Two current curves, 

vqn0  (solid line) and vnq  (dotted line), are compared in Fig. 6. In contrast to the 

languishing curve vnq , the curve vqn0  shows a clearer proportionality to E. The 

ultimate proportionality in the field range ( )αε −<< ∗ 12 2mBqE  (Ohm’s law range) is due 

to the feedback from the bulk region. We call this the high-field Ohm’s law, since the 

mechanism supporting the proportionality is distinct from that in the low field.  

In Fig. 6 we check the agreement between the estimated current density as well as the 

carrier velocity and the corresponding experimental data to see if the dominant mechanism of 

transport is correctly captured. The curve with the empty circles shows Ryder’s experimental 

data 1) on the high-field transport of n-type silicon; although these data are a half-century old, 

they remain reliable. They are reproduced from his paper, according to which the 

measurement was obtained at 298 K, and the ordinate scale of his figure suggests that the 

sample’s carrier density was identified as 2.6×1014 cm-3 by the low-field mobility 

measurement. A high-purity sample was investigated in accordance with our set of 

parameters: 314
0 cm105.2 −×=n and 112 s105.2 −×=B . As for the value of parameters used 

for theoretical estimation, the value B given by the low-field mobility offers no other choice, 

but we tentatively use the value D = 1.25×1012 s-1. This choice does not affect the curve in the 

Ohm’s law region controlled by B, but it may improve the part of the curve close to saturation. 

The line with solid triangles shows the drift velocity measured by the time-of-flight 

measurement at 300 K reported by Canali et al.25), and the dashed solid line shows the 
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averaged carrier velocity in eq. (28). The same parameters are also used for the velocity curve. 

The agreement between our curves and the experimental data is satisfactory. The ~10% 

disagreement is modest if we consider that our simple theory does not include the flux 

component with incident energy larger than ε*. The discrepancy in the highest-field region is 

attributed to the fact that the multi-level distribution is outside the scope of our theory. The 

overall features of the experimental data are well reproduced regardless of the use of 

pseudo-one-dimensional BTE, which neglects various secondary effects. The primary 

mechanism of transport is correctly captured in the simple theory. 

One may suspect that the selection of B to fit the low-field mobility automatically implies 

agreement with the current- or the velocity-field curve in the linear region in Fig. 6. However, 

this suggestion may not be correct. The low-field linearity in eq. (1) was guaranteed only in 

the region V/cm 490≤E , and may not apply in higher fields, as discussed in Part I. The 

above agreement indicates a new fact that the linearity is guaranteed also in the high-field 

range where V/cm 500≥E , and that the linearity is controlled by the same low-field 

parameter B despite the difference in the physical mechanism. 

In our analysis, the model’s simplicity is essential for the elucidation of complicated 

transport physics. We briefly discuss the model’s validity. As detailed in Part I, our analysis 

uses the pseudo-one-dimensional model, which is based on the assumption that the 

longitudinal kinetic energy and transverse kinetic energy are separately conserved on average 

in elastic scattering. In actuality, however, an energy exchange occurs between the two energy 

components. The extreme case of close exchange is roughly estimated by assuming that 

one-third of the kinetic energy gain from the longitudinal field is used for the acceleration of 

the longitudinal motion on average. In Model 1, such an effect can be evaluated by 
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substituting (E/3) for E in the basic eqs. (5a) and (5b) of Part I. In Model 2 in addition, the 

values of x0 and x1 remain unaltered regardless of their dependence on E, because the total 

kinetic energy controls the optical phonon emission. Thus, the current 0/ xEI ∝  is 

reduced to 03/ xEI ∝  and the relevant curves in Figs. (4)–(6) require a slight horizontal 

shift of )3ln( . Since this is the extreme case, one can conclude that the qualitative features 

of the result are not damaged by neglect of the three-dimensional effect. 

This analysis neglects carrier transition due to optical phonon absorption. The carrier 

injection from the drain edge is also neglected. Due to neglect of these secondary effects, this 

analysis does not clarify the carrier distribution close to the drain edge.  However, the 

primary features of transport discussed here are valid, except when an extremely short 

channel device is concerned. The analysis employs a parabolic energy band and neglects the 

energy dependence of the scattering probabilities B and D. The premise is justified when the 

transport is described by the two-level distribution model, and the effective energy 

distribution is confined to a narrow region with width less than ~ε*. A highly doped 

semiconductor with degenerate carriers, typically with 31918 cm1010 −−>n  in silicon26), is 

also excluded, since Maxwell-Boltzmann statistics are used.  

The effect of the inelastic electron-electron (EE) scattering is neglected in our analysis. 

According to Pines and Bohm27), EE interaction consists of two components: a long-range 

component associated with the collective plasma excitations (plasmons) and a short-range, 

single-particle component. As for the effect of electron-plasmon interaction, Fischetti28) 

pointed out that the break-even point between Landau damping and collisional damping 

occurs in the range 31817 cm1010 −≤≤ n  in n-type silicon, and that the electron-plasmon 

interaction does not affect the mobility directly in the lower-density region where Landau 
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damping dominates. He also concluded that the short-range EE scattering does not remove 

momentum from the electron ensemble, so that it can affect the current density only indirectly 

by modifying the distribution function. The distribution function is increased by short-range 

EE scattering in the high-energy tail of the energy distribution29). However, the increased 

magnitude is less than 10-5 of the peak distribution when the carrier density is 1017 cm-3, for 

example. We can see that the electric field distribution is dominated by the main body of the 

carrier charge and is not affected by such a low-level increase. To summarize, the effect of EE 

interaction can be neglected for n-silicon when the carrier density is less than 

31817 cm1010 −− . As for the validity range associated with the field strength, the electric field 

must be within V/cm105105 42 ×≤≤× E  in our theory for n-silicon. The lower-field region 

is controlled by the conventional full-energy-relaxation model, and the higher-field region is 

dominated by the multi-level distribution.  

 

4. Conclusions 

A semiconductor system equipped with elastic scattering, as well as inelastic scattering 

due to optical phonons with a comparatively large energy ε*, is analyzed. The acoustic 

phonon scattering is counted in the elastic scattering, as in conventional analysis. In silicon, 

ε*=63 meV, which is much larger than the thermal energy, and the inelastic scattering is 

dominated by energy relaxation due to optical phonon emission. The source electrode injects 

thermal carriers into the channel. While they pass through the initial elastic zone, where the 

kinetic energy of the carrier is less than the optical phonon energy ε*, the transport is 

controlled by the elastic scattering. Beyond the elastic zone, the carrier energy relaxes to the 

first relaxed energy level, emitting an optical phonon. Within the first relaxed energy level, 
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the kinetic energy of the carrier is less than ε* at first (the first relaxed elastic zone), and then 

it relaxes to the lower energy level beyond the zone. The carrier energy relaxes along a 

cascade of energy levels in the bulk of the semiconductor. The current-voltage characteristics 

are closely related to the carrier transmission through these elastic zones. In the electric field 

range in which the transmission coefficient is much less than unity, the proportionality of the 

current to the electric field E results, similar to the conventional Ohm’s law in eq. (1), but the 

mechanism of proportionality is distinct from that in eq. (1). The proportionality arises 

because the elastic zone has a finite width inversely proportional to E, and the transmission 

coefficient is inversely proportional to the square root of the width. In contrast, eq. (1) is for a 

homogeneous borderless system. 

In the higher-field range where the transmission coefficient approaches unity, the current 

density tends to saturate. The saturation of the current density and of the carrier velocity is 

understood as the ballistic transmission of carriers through these elastic zones within the bulk 

of the channel. The averaged carrier velocity increases in proportion to the field when the 

transmission coefficient is much less than unity, and it tends to saturate when the coefficient 

approaches unity. The current density is basically provided by the product of the carrier 

velocity, the carrier charge, and the carrier density equal to the doping concentration of the 

bulk semiconductor. The carrier injection from the source electrode to the channel is 

controlled by the electrostatic feedback from the semiconductor bulk to minimize the 

system’s electrostatic energy. 
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Appendix: Flux States in the First Relaxed Level 

   The flux state within the region 10 xx ≤≤  in the first relaxed level is derived from the 

following pair of flux equations. 
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Changing the variable from x to qEmxz /2≡  and then designating )(xF  and )(xG  as 

)(zΦ  and )(zΓ , respectively, eqs. (A1a) and (A1b) are converted to a simple form: 
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where, according to the definitions of F0(x) and G0(x) in §2.3, we have 
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The point 0=x  ( 0=z ) is the turning point of a carrier where the negative-velocity carrier 

changes to a positive-velocity carrier, and we set ))0(()0()0( F=Γ=Φ . As the other 

boundary condition for eq. (A2), we use  )()( 11 xGz =Γ  where qEmxz /2 11 = . Summing 

the result of eqs. (A2a) and (A2b) yields a differential equation of [ ])()( zz Γ−Φ , and the 



 34

solution is obtained by integrating the result. Similarly, taking the difference in the results of 

eqs. (A2a) and (A2b), we have a differential equation for [ ])()( zz Γ+Φ . After solving this 

equation by substituting the previous solution and then rearranging the result by integration 

by parts, we obtain 
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First we briefly discuss the flux state in xx ≤1 . The carrier density in the incident energy 

level is negligible within this region, as Fig. 3 (in xxx ≤+ 10 ) suggests, and the inflow from 

this level to the first relaxed level may be neglected. The optical phonon emission occurs in 

the first relaxed level and causes the outflow of carriers to the second relaxed level. Therefore, 

the carrier dynamics within this region are described by eq. (6), and the solution is basically 

provided by eqs. (9a) and (9b) appropriately modified. Since the origin here is at the point 0x  

from the source edge, we substitute x1, 0, and )( 0xL −  for x0, ε, and L, respectively. 

Equation (9) indicates that )()( 11 xFxG α=  when G(L-x0) can be neglected. Now we return 

to the carrier state in 10 xx ≤≤ . According to the definition and discussion of Δx in §2.4, the 

function )(zH  in eqs. (A3a)―(A3c) almost vanishes within the region of z corresponding to 

1xxx ≤<Δ . The integration of )(zH  from 0 to a value of z larger than qExm /2 Δ  is 

equivalent to the integration from 0 to z1, because the integration from the value of z to z1 

almost vanishes. Equations (A3a) and (A3b) are reduced to  



 35

( ) )4A(         )(21)(2)( 1

2

0

1

axGqEx
qE
mBzHdzDxF

z

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∗∫ ε  

( )
).(                                         

)4A(                 )(2)(2)(

1

1

2

0

1

xxΔx

bxGqEx
qE
mBzHdzDxG

z

≤<

+−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∗∫ ε

 

Substituting 1xx =  in eq. (A4a) and using )()( 11 xFxG α= , we obtain 
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Some integrals in eqs. (A3a)―(A3c) can be calculated by changing the variable from z to 

22 )/(2 qEmzz ∗∗ += ε . Using )(zH  in eq. (A2c) where )(0 xF  and )(0 xG , respectively, 

are derived from eqs. (16a) and (16b) by substituting 0 and ε* for x0 and ε (moving the origin 

to x0), we can evaluate the integral 
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except in the case of an excessively high field. Substituting these values into eqs. (A4a) and 

(A4b), we obtain 
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For the narrow region xx Δ≤≤0 , we return to the original eqs. (A3a) and (A3b). 

However, one indefinite integral in these equations is not analytically evaluated, and explicit 

expressions for )(xF  and )(xG  are unavailable. The value of [ ])0()0( GF =  is given by 

eq. (A3c), where the first integral on the right-hand side is given in eq. (A6). The second 
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integral is evaluated by changing the variable from z to 

222 )/(2)/(2 qEmqEmzy ∗∗∗ −−= εε  for a realistic value of the electric field satisfying 

( ) 1/22 >>+ ∗ qEDDBm ε . Thus, after some manipulations we obtain the approximation 
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The solution in the region xx ≤1  is basically given by eqs. (9a) and (9b) appropriately 

modified, as mentioned. Terms proportional to )(LG  are neglected. )( 0xF is replaced by 

)( 1xF , and )( 1xF  results by substituting qExx /1
∗== ε  into eq. (A7a). Thus, 
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Lastly, we evaluate the carrier number Nr within the region 10 xx ≤≤  per unit cross section. 

The integration of an expression similar to eq. (7) in Part I is simplified by changing the 

variable from x to z. Substituting Φ(z) and Γ(z) in eqs. (A3a) and (A3b) for )(xF  and )(xG  

into eq. (7) in Part I, and transforming the integral by integration by parts, we obtain 
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The first integral on the right-hand side is given in eq. (A6). The second and third integrals on 

the right-hand side also are evaluated by changing the variable of integration from z to z*. 

Finally we obtain, 
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Figure Captions 

 

Fig. 1.  Potential profile and carrier transport where the elastic scattering and the energy 

relaxation due to optical phonon emission are considered (Model 2). Along the potential 

profile, the carrier energy relaxes stepwise by an amount equal to the optical phonon energy 

ε* toward the drain. The elastic zone denotes regions where the kinetic energy of the carrier is 

less than ε* and the optical phonon emission is suppressed. 

Fig. 2.  Transmission coefficient from source to drain in Model 2 as a function of the applied 

field for various values of L. 

Fig. 3.  Carrier density nε(x) in the incident energy level along the channel. The position x is 

normalized by x0. For 0xx < , the kinetic energy of the carrier is less than ε* and the optical 

phonon emission is suppressed. Distribution of the carrier is caused by elastic scattering. The 

position x1 in the first relaxed level is at )/1( 01 xx+  in this figure. 

Fig. 4.  Current density flowing from the source to the drain in Model 2 as a function of the 

applied field for various values of L. 

Fig. 5.  Mean carrier velocity v  in the bulk, )/( 0qnI , )(Eγ , and 0/ nn , as a function 

of the applied field. )(Eγ  is maintained close to unity in the Ohm’s law range. The deviation 

of 0/ nn  from unity implies a violation of charge neutrality within the bulk region. 

Fig. 6.  Current density vnqI =  without charge neutrality and the modified current 

density vqn0 , where the charge neutrality within the bulk is recovered, compared with the 

experimental data reported by Ryder 1). The averaged velocity v  also is compared with the 

experimental drift velocity reported by Canali et al 25). 
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