

Blended Tailoring in Compositional Web-based Applications

Doctoral Program in Engineering
University of Tsukuba

2003, July

Igor Mejuev

Blended Tailoring in Compositional Web-based Applications

2003, July

Igor Mejuev

A dissertation submitted in partial fulfillment of requirements
for the degree of Doctor of Philosophy in Engineering

Institute of Information Sciences and Electronics
Doctoral Program in Engineering

University of Tsukuba, Japan

Abstract

A tailorable computer system allows customization within the context of its use and permits

modifications of the program code during its execution. Tailorability allows coping with

flexibility requirements, decreasing maintenance cost of software products and

accommodating participative software process models that have been applied for the

development of interactive Web-based applications. However, the initial cost of developing

deeply tailorable systems is considered to be the main reason why tailorability is missing

from the majority of currently deployed software products.

This dissertation describes a new methodology of developing component-based

applications that allow runtime tailoring. This work envisions the horizontal integration of

multiple tailoring interfaces (“blended tailoring”) as a way of increasing reusability in the

implementation of component-based tailorable systems and correspondingly reducing the

applications development costs.

A proposed architectural solution that makes the integration feasible uses nested

compositional markup specifications for representing fragments of a tailorable application.

This work demonstrates that the decoupling of tailoring interfaces from runtime

components allows implementing a generic (application-independent) framework for

tailoring that can be utilized in distinct application domains.

The proposed methodology is discussed in the context of a reusable development

framework (VEDICI) that has been implemented using Java 2 SDK. The case studies,

demonstrating the feasibility of the proposed approach have been carried out using

development of a Web-based distance learning application and remote monitoring

application in the field of accelerator physics.

 1

Acknowledgements

First of all I would like to sincerely thank Professor Seiichi Nishihara, my adviser, for

guiding me through the doctoral program as well as members of the refereeing committee,

Professors Hisao Kameda, Nobuo Ohbo, Jiro Tanaka and Yukio Fukui for a number of

useful suggestions.

I am also thankful to Professors Yoshihiko Ebihara and Homare Endo of Tsukuba

University and to Dr. Akira Kumagai of Tokyo Electron for providing help and support in

ways too numerous to mention.

Editors and anonymous referees of journal “Software – Practice and Experience” and

IS’2000 conference provided a wide range of constructive comments that contributed to

improving the content of this work.

Finally, I would like to thank my family and friends for always cheering me up.

 2

Contents

Abstract...1

Acknowledgements ..2

Contents..3

List of Figures ..5

Chapter 1 Introduction..6

1.1 Background .. 7

1.2 Objectives and Contributions .. 8

1.3 Dissertation Structure ... 9

Chapter 2 Concepts and Terminology ..10

2.1 Software Process Models.. 10

2.1.1 Waterfall.. 10

2.1.2 Evolutionary Models... 11

2.2 End-User Programming ... 12

2.3 Runtime Tailorability.. 13

2.4 Compositional Markup Specifications ... 14

2.4.1 Compositional Development ... 14

2.4.2 Markup Languages.. 15

Chapter 3 Blended Tailoring ..16

3.1 Scope ... 16

3.2 Authoring versus Runtime Tailoring ... 18

3.3 The Problematic ... 19

3.4 Modules of a Generic Tailoring Framework ... 20

3.5 The “Visualizer” Pattern .. 21

3.6 Framework Implementation.. 22

3.6.1 VEDICI Runtime .. 23

3.6.2 Application Repository ... 25

3.6.3 Component Repository ... 26

 3

3.6.4 Sample Application ... 26

3.7 Summary .. 30

Chapter 4 Case Studies..31

4.1 Remote Monitoring Application ... 31

4.1.1 Background... 31

4.1.2 Requirements.. 32

4.1.3 Implementation.. 34

4.1.4 Summary... 35

4.2 Distance Learning Application.. 35

4.2.1 The Problematic ... 36

4.2.2 Implementation.. 37

4.2.3 Summary... 38

Chapter 5 Related Work..40

5.1 Alternatives to Component-Based Tailoring... 40

5.2 Component-Based Frameworks.. 41

5.2.1 OVAL... 42

5.2.2 ICE.. 42

5.2.3 EVOLVE.. 43

5.3 Summary .. 43

Chapter 6 Conclusions and Perspectives..45

6.1 Adaptive Tailorable Frameworks ... 46

6.2 Implicit Usability Inspections .. 48

Bibliography ..49

Publications..53

 4

List of Figures

Figure 1.1: “TAO Project” Outline.. 7

Figure 2.1: Evolutionary Software Process Model ... 11

Figure 3.1: Authoring and tailoring interfaces.. 18

Figure 3.2: Blended tailoring. .. 20

Figure 3.3: The “visualizer” pattern. .. 21

Figure 3.4: Composition of VEDICI.. 23

Figure 3.5: VEDICI Editor and Repository Explorer.. 24

Figure 3.6: Explorer with EJB/Oracle repository. .. 25

Figure 3.7: The composition and a screenshot of a sample application. 26

Figure 3.8: Customization scenario for a sample application... 28

Figure 4.1: Outline of Remote Monitoring System... 33

Figure 4.2: Tailorable Remote Monitoring Application... 34

Figure 4.3: Distance Learning Application.. 38

Figure 6.1: Software Process for an Adaptive Tailoring Framework. 47

 5

Chapter 1

Introduction

A tailorable software system can continue its evolution after deployment in order to adapt to

particular work situation and diverse needs of the users. Tailorability allows coping with

flexibility requirements, decreasing maintenance cost of software products and actively

involving users on the process of software development and testing. The early and well-

known examples of applications incorporating some degree of tailorability are the EMACS

editor [Stallman 1981] and Macintosh HyperCard system [Williams 1987].

From the HCI (Human Computer Interaction) perspective, tailoring activity is an

activity of modifying a computer application within the context of its use. Tailoring can be

also considered as further development of an application during use to adapt it to the

requirements that were not accounted for in the original design [Mørch et al. 1998].

Tailorability is a natural way to deal with the flexibility requirements and it has a

direct impact on the application maintenance cost - an essential property of software

products with enterprise deployment. An evaluation [Keen 1991] shows that each dollar

spent in the IT industry on new development will yield 0.60¢ of maintenance per year

during the lifecycle of the application. However, the increased initial cost of the

development of tailorable systems may be the reason why so little tailorability is currently

available in products [Appelt et al. 1998].

The increased implementation cost is stipulated by low degree of reuse in the

implementations of existing tailorable systems. The existing systems also lack generic

functionality to be truly effective across multiple application domains.

 6

1.1 Background

The topic of this thesis stems from a research project supported by Telecommunication

Advancement Organization of Japan (TAO) on the development of distributed multimedia

systems for distance education. The research targeted the development of better tools in

support of Web-based remote education and resulted in a preliminary implementation

[Mejuev et al. 2000; Shimanaka et al. 2000; Mejuev et al. 2001] of the framework described in

the Section 3.6.

The outline of the project is represented in the Figure 1.1. The objective of the system

was to support distributed component application building on the Internet. The content

developed and refined using the networked clients can be published on a standalone media

or executed by portable handheld devices.

AUTHORING CLIENT STANDALONE RUNTIME

publishing

SERVERcreate/deploy REPOSITORY

MIDDLEWARE AGENT
run/tailor

content integration

APPLET RUNTIME MIDDLEWARE

Figure 1.1: “TAO Project” Outline

Later developments on the reusable framework for runtime tailoring allowed

extending the application domains to a wider area, such as Scientific and Engineering

Computing, taking the development of large-scale control systems in accelerator physics as

an example.

 7

1.2 Objectives and Contributions

This dissertation examines tailorable computer systems from software engineering

perspectives, the problematic of software development process and the ways of increasing

reusability in the implementation of component-based tailorable systems. Additionally, this

work proposes an application independent framework for delivering of tailorable Web-

based systems with high degree of cross-platform portability. The contributions of this work

to the current state of the art in Software Technology are as follows:

1. the proposed approach of blended tailoring capable of reducing the development cost of

deeply tailorable compositional systems through increasing the reusability of framework

modules and software components across the boundaries of proprietary application

domains

2. the investigation on software architecture, or the ways of implementing the horizontal

integration of multiple tailoring interfaces practically by representing tailorable

application fragments with object-scripting technique, based on nested compositional

markup specifications

3. the development framework (VEDICI – Visual Environment for DIstributed Content

Integration), which allows integrating multiple interfaces within a single application

instance and can be used for experiments and exploratory study of efficiency of

particular tailoring interfaces

The case studies that have been carried out in this work also made the following

contributions to the fields of Computer Supported Distance Education as well as Scientific and

Engineering Computing:

1. an application framework and a set of reusable components for the development of

Web-based learning systems, customizable by end-users

2. the consideration of runtime tailorability as a solution for bridging the gap between

dynamicity and complexity of requirements in the development of software for large

scale control systems in accelerator physics

 8

1.3 Dissertation Structure

Chapter 2 defines basic concepts and terminology related to software process models for

Web applications, compositional development, end-user programming, runtime tailoring

and compositional markup specification languages.

Chapter 3 introduces the problematic of tailorable software development, develops the

concept of blended tailoring and describes an implementation framework (VEDICI) used to

verify the proposed approach in practice.

Chapter 4 gives an overview of case studies performed using the development of

tailorable remote monitoring and distance learning applications.

Chapter 5 compares VEDICI with existing applications/platforms for runtime

tailoring; discusses the results of case studies and usability of the proposed approach in

practice.

Chapter 6 presents the conclusions and outlines some perspectives for future work.

 9

Chapter 2

Concepts and Terminology

This chapter defines basic concepts and terminology used in the rest of the thesis. First, the

existing classification of software process models applicable to the development of Web-based

applications is introduced; taking into consideration the problematic associated with each

model. Further, the concept of end-user programming is discussed as a way to involve the

end-users in the software development process. The runtime tailorability is considered as a

valuable property of software systems that support the paradigm of end-user programming.

Finally, the chapter introduces the concept of compositional development and describes

existing XML-based compositional markup specification languages that implement the facilities

for object scripting and serialization.

2.1 Software Process Models

Software process models [Sommerville 1996] have arisen in order to bring control to the

process of software development. The software process consists of the activities and

associated information that are required to develop a software system.

2.1.1 Waterfall

Waterfall model is suitable for large implementation projects where there is a clear goal and

software developers or teams work on the system in parallel. The waterfall model partitions

the system development into a series of phases and assumes that each phase is completed

before the next phase begins. The waterfall declares that the whole system is delivered

 10

monolithically at the end of software process lifecycle. The lifecycle phases are defined as

follows:

1. Requirements specification

2. Design

3. Implementation and unit testing

4. Integration and system testing

5. Operation and maintenance

The drawback of the waterfall model is the difficulty of accommodating a change after

the process is underway. In practice, there is always some interaction (feedback) between

phases of the model.

Incremental models are further developments of the waterfall model. Incremental

development is the development of a system in a series of partial products that are

implemented and delivered to the end-users one by one.

2.1.2 Evolutionary Models

VERSIONS PROCESS

FINAL

INTERMEDIATE

DRAFT SPECIFICATIONS

VALIDATION

DEVELOPMENT DRAFT
SPECIFICATIONS

Figure 2.1: Evolutionary Software Process Model

The objective of evolutionary development is to work closely with customers and to

evolve a final system from an initial draft specification (Figure 2.1). The initial prototype can

 11

be reused in the final version (exploratory prototyping) or its goal can be just the

clarification of poorly specified initial requirements (throw-away prototyping).

The strategy of evolutionary development is to deliver a preliminary version of the

system to the end-users as soon as possible. Further, the software process is going through a

series of intermediate versions, evaluated and validated jointly with end-users. The

participative model of evolutionary software design [Floyd et al. 1989] is developed around

the concept that the requirements are not given and therefore are established gradually

through interaction between users and developers.

Taking into account the highly interactive and dynamic nature of applications for the

Web, the choice of appropriate software process models for these applications often leads to

evolutionary and participative models. For the purposes of this work, an application is

considered to be Web-based if it relies on URL-addressable resources and may be accessed

via a Web-browser providing integration with built-in browser facilities. Web-based

applications play an increasingly important role in software technology related to online

services, internet portals, online monitoring, personal information retrieval and storage

systems.

The problems of evolutionary development model that affect Web-based development

include lack of overall process visibility, poor software structuring and reusability, as well as

the need for particular skills to be acquired by developers, such as the knowledge of special

languages for fast prototyping. In particular, the problem of additional development skills

underlines the need to study system-analysis approaches and implementation techniques

that allow acquiring and incorporating the evolving requirements directly from the end-

users.

2.2 End-User Programming

At the development stage it is extremely difficult to take into account all the details of the

tasks performed by end-users. In an attempt to cover a wide audience the programs are

often packaged with hundreds of features users never know and use. In this context

 12

providing the possibility for end-user customization could make the use and development

of software much simpler.

However, practical implementation of such a possibility is not trivial. The system

design must permit the acceptance of customizations coming from end-users in appropriate

places. There must be a way to support differentiation, persistence and management of the

applied changes. The expressiveness and generality of traditional programming languages

should be shaded by appropriate metaphors capable of increasing the usability. The

metaphors can utilize a variety of techniques, such as learning-by-example, visual

programming or domain-specific approaches [Cypher 1993].

2.3 Runtime Tailorability

Runtime tailorability allows incorporating the end-user programming techniques into a

running application. User interface tailorability has been extensively researched from HCI

perspectives. The research established categorizations of tailorability functions, classification

of users that would use tailorability tools and produced a number of research prototypes.

Different levels of tailorability can be distinguished, corresponding to the different

aspects of a computer application [Mørch 1997]:

1. customization: manipulating switches

2. integration: changing application composition

3. extension: changing underlying implementation code

The following classification of the end-users doing tailoring has already been

established; [MacLean et al. 1990] this classification takes into account the level of

understanding of a system of a given user, rather than a user’s level of computing skills:

1. workers: just need some work to be done, have no expectations of tailoring functionality,

2. tinkerers: power users, want to explore tailoring functions, but may lack understanding

of the system,

 13

3. programmers: can specify production rules or object classes, fully understand the system

they use.

There is also a corresponding consideration and experiment on “tailoring culture”

where users can feel in control of a system and in which tailoring is a norm [MacLean et al.

1990].

Research prototypes targeting tailorability in a particular application domain range

from desktop applications [MacLean et al. 1990] to collaborative Web workspaces [Appelt et

al. 1998]. There exist increasing interest in implementing tailorability for CSCW (Computer

Supported Cooperative Work) applications [Mørch et al. 1998], including the ongoing

development of the generic tailoring platform for CSCW [Stiemerling et al. 1999]. The syntax

of CAT-files (Component Architecture for Tailoring) – part of EVOLVE platform

[Stiemerling et al. 1999] can be considered as an example of developments related to

proprietary specification languages for tailorable applications.

2.4 Compositional Markup Specifications

Compositional markup specification (CMS) languages use markup syntax, such as XML [W3C

2000] to represent the composition and links among components of an application. The use

of XML as a foundation for defining scripting languages is motivated by the availability of

standardized APIs [W3C 1998; Migginson and Brownell 2002], interfaces and tools to

process XML documents. Moreover, the integration of XML into popular frameworks such

as Java SDK made it possible to reuse the scripting techniques for long-term serialization of

object states.

2.4.1 Compositional Development

The construction of compositional applications from reusable components, integrated by

means of scripting, can resolve some deficiencies in applying object-oriented languages to

component-based development. Defining rich public interfaces in OOPL makes the

composition more difficult; moreover object-oriented languages typically provide a very

 14

limited binding technology for composing software – it is necessary to program new objects

to integrate the existing ones.

In general, component-scripting technology allows shifting from individual and

monolithic application development to the development of standard components, interfaces

and tools [Nierstrasz et al. 1991].

2.4.2 Markup Languages

Current examples of compositional markup languages are introduced below.

BML (Bean Markup Language) – a wiring XML-based language for Java Beans, which

directly represents the Java Beans’ component model. BML includes a language grammar

specification, represented by XML Document Type Definition (DTD) as well as API that is

used to process XML documents composed in accordance with BML DTD [Johnson 1999].

The design goals of BML include offering full support for Java Beans’ specifications and

providing means for configuring arbitrary bean sets.

The java.beans.XMLDecoder class [Sun 2002] has been released with Java SDK 1.4 as an

improvement of the built-in Java serialization API. The implementation is based on the

"archives are programs" concept that replaces recording an object's internal state with

reconstituting the state using public APIs (archiving vs. marshaling). This approach

incorporates a mechanism which eliminates redundant statements and improves serializing

performance and fault-tolerance [Milne 1999]. Java 1.4 also provides the corresponding

java.beans.XMLEncoder class that can be used to create a textual, XML-based representation

of an arbitrary graph of JavaBeans.

While representing compositional languages for beans scripting, the above languages

“as is” do not allow delivery of a controllable degree of granularity (nesting) and support for

visualization tools. These are essential requirements for specifying the composition of

tailorable applications.

 15

Chapter 3

Blended Tailoring

This chapter introduces a methodology and implementation framework, which can be

reused as a foundation for developing a variety of component-based tailorable applications.

First, the chapter considers the scope the proposed approach, summarizes the

differences between tailoring and authoring interfaces and the problematic of developing

tailorable applications for the Web. Further, the detailed consideration is presented on the

methodology of developing compositional tailorable applications (blended tailoring) and

implementation platform (VEDICI), which proves the feasibility of the proposed

methodology.

3.1 Scope

Taking into account the highly interactive and dynamic nature of modern applications for

the Web, the choice of appropriate software process for these applications naturally leads to

evolutionary and participative models. The same consideration is true for development of

tailorable Web-based applications.

This work assumes that the increment of the evolutionary development process for a

tailorable Web application comprises the following steps:

1. Identifying the necessary degree of tailorability by summarizing the assumptions about the

needs of intended users’ community.

 16

2. Identifying the architectural solution or the way of implementing the necessary degree of

tailorability.

3. Performing a usability inspection of deployed system.

The careful selection of test users involved into design process is considered to be the

key issue in capturing the diversity and evolution of requirements and in identifying the

required degree of tailorability [Stiemerling et al. 1997].

This work addresses the issue (2) and focuses on component-based systems that

implement tailorability “by integration”. It is further assumed that component-based

tailoring activity is performed by configuring the properties of existing components,

incorporating new components, or assembling the components in a new way.

The building block examples include objects, views, agents and links in OVAL

[Malone et al. 1992], information, collaboration and interface objects in ICE [Farshchian

1998], and FLEXIBEANS in EVOLVE [Stiemerling et al. 1999]. A user can manipulate a

composition of building blocks by means of generic visual programming techniques such as

form-based programming, data-flow programming, or use a proprietary technique for a

given application domain.

The need to place tailoring interfaces into a distinct subset of user interfaces (UI) is

motivated by the fact that deep tailoring may affect the presentation and/or business logic

of a running application. The users need to be aware of this mode of operation since it

requires a distinct cognitive view of a task being performed.

This dissertation suggests that the high initial development cost of end-user tailorable

systems originates in low degree of reusability, particularly as applied to the UI that a

system offers to the end-users for doing tailoring. Tailorable applications are often seen as

domain-specific environments for authoring (end-user programming, rapid application

development) - a view that does not admit a system development methodology perspective.

 17

3.2 Authoring versus Runtime Tailoring

User interfaces for runtime tailoring can visually look very similar to the ones used for

authoring, however there are important differences that should be taken into consideration

in order to distinguish between software designs for software development and for runtime

tailoring.

Figure 3.1: Authoring and tailoring interfaces.

An authoring interface, such as Integrated Development Environment (Figure 3.1, left)

is typically employed by developers of a software system. The interface can utilize

techniques such as visual programming or form-based programming, in order to speed up

the process of development. The authoring system is required to provide full control of the

application and available APIs, display the composition of the system in a consistent way,

and provide integration with runtime and deployment modules. The software process

comprises iterative steps such as deploying the application’s template, identifying the

required modifications through the communication with users, modifying the application,

deploying the new version, and so on. Typically the users and developers of the system

represent distinct and geographically distributed groups.

Contrary to the above, the purpose of a tailoring interface is to enable users to

customize an application while it is running. An example of tailoring interface is a text

processing application with customizable toolbar (Figure 3.1, right). In the case of tailoring,

modifications are performed by end-users and within the execution environment. For

 18

shared applications or applications deployed on the Web, the system should support

persistence and authentication of changes made by each user.

The incorporation of tailoring interfaces at runtime imposes an additional complexity

on the implementation of a system that supports runtime customizations. The

implementation, therefore, should rely on corresponding techniques such as computational

reflection.

3.3 The Problematic

The main problems faced by a designer of a compositional tailorable system for the Web

identified in this work are as follows:

1. Selection of appropriate application decomposition and visualization techniques can not

be fixed at the design phase without imposing limitations on the usability of the final

product. In general, the proper choice of components and visualization techniques is

domain-dependent and user requirements and preferences regarding them continue

evolving throughout the project lifecycle.

2. Complex applications do not anticipate a ”universal” style of tailoring interfaces.

Building from a ”minimal” set of components may be sufficient for developers, but they

might be rejected by end-users or lead to increased learning costs. Moreover, complex

applications require a mixture of tailoring interfaces to be supported. For example, a

front-end of a data analysis application would require one visualization style for

tailoring the visual preferences of the UI (e.g. property sheets) but a different style for

tailoring the data-processing logic (e.g. data-flow).

In order to address the issues of implementing tailorable applications for the Web, this

work proposes shifting from a fixed specification of how the tailoring should be performed

to a flexible specification, which allows delivering end-user systems without having to

”freeze” the UI for tailoring in the design phase. Moreover, the integration of multiple

tailoring interfaces can be implemented “horizontally” - a proposed framework allows not

only switching tailoring interfaces to match the level of a user (worker, tinkerer,

 19

programmer), but also employing multiple tailoring UIs simultaneously, in order to

visualize different aspects of an application with appropriate tailoring interfaces (Figure 3.2).

USERS

TAILORING INTERFACES

APPLICATIONS

COMPONENTS

Figure 3.2: Blended tailoring.

3.4 Modules of a Generic Tailoring
Framework

The primary purpose of a tailoring framework is to provide a set of tools and libraries for

software developers, however, applications usable for all categories of end-users can be

based on it [Mørch 1997]. A framework that implements compositional tailoring and allows

the delivery of systems in real-world-application domains needs to provide the following

infrastructure:

1. Integrating runtime that would enable dynamic recomposing of applications and support

for multiple tailoring interfaces.

2. APIs for de-serializing composite components that runtime employs. The serialized

presentation can range from high-level compositional languages to binary serialization

in an extreme case.

 20

3. Persistence of customized applications in a Web-based system requires the

implementation of an application repository with authorization and access control in

order to differentiate the changes applied to the applications by end-users.

4. Application-specific or reusable primitive components and concrete implementations of

tailoring interfaces.

Application repository, runtime and de-serializing APIs are application-independent

elements of the above infrastructure and they can be used to form a generic framework for

the development of tailorable Web-based applications.

3.5 The “Visualizer” Pattern

Object (Component) PlayerRuntime children

tailor() propertyChange(e) tailor()

children

object = e.getNewValue() Object

object
Client Player

firePropertyChange(..,object) tailor()
Visualizer

setDocument()
CMSgetDocument()

Figure 3.3: The “visualizer” pattern.

Architecture for recomposing applications at runtime is presented in Figure 3.3 using a

modified OMT notation introduced in [Gamma et al. 1995]. In terms of modules of a generic

framework for tailoring, this figure describes “integrating runtime” that utilizes

compositional markup specifications (CMSs) as serialized presentations of composite

components. The runtime employs a nested hierarchy of wrappers for composite

components (players) with the ability to associate a tailoring entity (visualizer) with each

player. A player holds a CMS, which defines a composite component and recompiles the

component if any modifications on the CMS are made by its associated visualizer. Mappings

between players and visualizers are assigned as modifiable properties of players enabling

 21

support for multiple tailoring interfaces per application and, moreover, enabling the

visualizers to be dynamically reassigned at runtime, if necessary.

Tailoring is initiated by a component of an application or by a framework by

dispatching the corresponding event (”tailor”) to a player. Having received the ”tailor”

event, a player instantiates its associated visualizer parameterized with the CMS held by the

player. The visualizer provides a user interface for CMS authoring and asynchronously

returns the updated CMS back to the player. The player recompiles its composite

component creating a corresponding application object and uses a standard JavaBeans

notification mechanism by firing a ”propertyChange” event for its bound ”object” property.

The ”propertyChange” event can be caught by components in the parent player and trigger

application-dependent actions, such as repainting of the UI. To prevent overlapping

updates, the concurrent opening of multiple visualizers for a player is not allowed. An object

reference from visualizer to its player allows implementing ”change locks” and provides

visualizer with the ability to access the current properties of components in a player

verifying consistency of their composition, if necessary. The described flow of events can be

controlled programmatically by application developers or, it can be executed by framework,

propagating the ”tailor” event through a root player to a player that needs to be tailored.

Since this scenario requires recompiling only one nested composite component at a time, the

states of other components are preserved, allowing an application to be modified while it is

still running and for a pool of visualizers to be applied, which can provide distinct styles of

tailoring interfaces at the appropriate places.

3.6 Framework Implementation

VEDICI is an implementation of the architecture described in the previous sections, using

the Java 2 Platform1. VEDICI is intended for Java developers who need a framework for

delivering end-user tailorable Web-based applications. An outline of this environment is

presented in Figure 3.4. Following is a description of VEDICI modules and their interactions.

1 The total metrics of source code for reusable system modules: LOC ≈ 11500, McCabe Cyclomatic
Complexity (logical branching) ≈ 1700.

 22

CORPORATE INTRANET OR INTERNET

runtime services

Distributed active content
 CORBA wrappers
 plug-ins media

Component Repository
 custom components
 custom visualizers
 resources. (images, help sets, etc.)

nested scripts

VEDICI Runtime

Remote Application Repository
 templates
 personalized applications
 personalized data

Local
Repository

Applet clients Standalone clients

Figure 3.4: Composition of VEDICI.

3.6.1 VEDICI Runtime

VEDICI Runtime is an UI front-end that implements the ability to dynamically assemble a

tailorable Web-based application from primitive components (JavaBeans), visualizers and

nested compositional markup scripts. The runtime is implemented to run either as a

standalone application or with a Java plug-in supported by all major browsers and

platforms.

The runtime uses reflection (java.lang.reflect package) and a BML API that has been

extended with support for applications-nesting, asynchronous data exchange between

applications running in parallel and nesting and support for the application life cycle. BML

has been selected among other toolkits available for processing of CMSs, primarily due to its

robustness. Primitive application components can access APIs, provided by the environment

to use the facilities of the client’s Web-browser (e.g. interfacing with Netscape plug-ins or

OCX controls in MSIE) and, repository services (see below) in order to save or load

 23

personalized information, such as configuration data, for the current user. The application

components can optionally access CORBA interfaces through the Gatekeeper, provided by

VisiBroker ORB.

VEDICI Runtime includes a set of documented abstract classes and interfaces to

support the development of custom visualizers, application repositories and primitive

components that make use of runtime APIs. The runtime UI allows execution and tailoring

of a single application loaded from a URL or application repository. The UI and user

interaction scenario for VEDICI Runtime is described in greater details in the section 3.6.4

below.

In order to facilitate framework utilization by end-users with various levels of skills

and work-style preferences, two alternative UI front-ends are available (Figure 3.5) in

addition to the VEDICI Runtime (Figure 3.7):

Figure 3.5: VEDICI Editor and Repository Explorer.

1. VEDICI Editor is an authoring tool with the look and feel of a standard IDE which allows

loading/saving application scripts from/to a repository, editing the script sources, and

application execution and tailoring.

2. VEDICI Explorer implements an ”explorer” UI that allows browsing the content of an

application repository as well as application execution and tailoring.

 24

3.6.2 Application Repository

The scripts can be loaded from and saved to an Application Repository. The framework

includes the following repository classes that can be employed at the discretion of

developers:

1. CGIRepository – provides remote interfaces to a Web-server file system. Server-side of

this repository is implemented as a Perl/CGI script. CGI repository access requires an

authorization by username and password that allows differentiating the changes applied

to the scripts by the end-users.

2. LocalFileReposiory – interfaces directly with a local file system on a client’s computer and

is suitable for stand-alone, non-shared applications.

3. Integration of a custom repository is also supported. Support for custom repositories is

implemented using the ”Strategy” pattern [Gamma et al. 1995]. The name of a Java class

providing custom repository implementation may be specified either as an applet

parameter or as a command line option. Additionally, initial versions of the scripts

(templates) can be loaded from a given URL.

An example of utilizing the

custom repository facility is

EJBRepository (Figure 3.6) which

emulates a virtual file system interface

using relational database tables. Server-

side of this repository is implemented

as an EJB running in Oracle

JServer/Aurora container; it uses

Oracle database accounts for

authorization. This design allows

utilizing obligatory encryption of user

passwords and optional encryption of all the information transferred over a network.

EJBRepository also implements a virtual, read-only folder which is accessible to all of the

repository users. In Oracle terminology the shared folder is represented by a “public

Figure 3.6: Explorer with EJB/Oracle repository.

 25

synonym” (Vedici_Pub) which is owned by an "administrative account" schema.

Correspondingly, only the administrative account is allowed to modify the shared files.

3.6.3 Component Repository

Component Repository holds a collection of primitive components of VEDICI applications.

The repository contains a set of archive files in JAR format. Each JAR file includes a set of

logically related Java Beans together with all resources required by beans. In implementation

terms, the component repository interface allows VEDICI Runtime to dynamically form a

Java “class loader” which enables referencing all of the repository beans from nested CMSs.

3.6.4 Sample Application

A sample application demonstrates a basic use of the "visualizer" pattern introduced in

Figure 3.3. This application implements a text editor with customizable toolbar. The

composition and a screenshot of the sample application are presented in Figure 3.7.

VEDICI Runtime Visualizer
UI

TextEditorToolbar.bml Toolbar
UITextEditor.bml Root: javax.swing.JtoolBar

Root: javax.swing.JPanel
Visualizer: HierarchyBrowser Visualizer:

ToolbarCustomizer
TextEditor
UI

VisualHolder VEDICI
Runtime
toolbar

Figure 3.7: The composition and a screenshot of a sample application.

The root application object (a javax.swing.JPanel instance) is defined by TextEditor.bml

script that uses a nested toolbar definition (TextEditorToolbar.bml) to obtain a toolbar object

(javax.swing.JToolBar instance). A simplified outline of the TextEditor.bml markup is

presented below:

 26

<?xml version="1.0"?>
<bean class="javax.swing.JPanel" id="frame">
 ...
 <bean class="vedici.runtime.VediciPlayer" id="toolbar"/>
 <property name="url" value="apps/igor/TextEditorToolbar.bml"/>
 <property name="visualizer"

value="vedici.demos.ToolbarCustomizer"/>
 ...
 <bean class="vedici.tailor.VisualHolder" id="holder">
 <property name="player">
 <bean source="toolbar"/>
 </property>
 </bean>
 ...
 <bean class="vedici.runtime.VediciPlayerStub" id="stub">
 <property name="visualizer"

value="vedici.tailor.HierarchyBrowser"/>
 </bean>
 ...
 <bean class="javax.swing.JTextArea" id="textArea"/>
 ...
 <add>
 <bean source="textArea"/>
 <string value="Center"/>
 </add>
 <add>
 <bean source="holder"/>
 <string value="North"/>
 </add>
...
</bean>

A nested TextEditorToolbar.bml script is loaded by a vedici.runtime.VediciPlayer

instance and assigned an application-specific visualizer (Toolbar Customizer). The toolbar is

wrapped into an instance of vedici.tailor.VisualHolder, which can handle the differences in

visual component rendering between Java AWT and Swing UI libraries and which can also

implement dynamic UI-recomposing in a library-independent fashion.

The parent application (TextEditor.bml) is assigned a reusable visualizer (Hierarchy

Browser), which allows browsing the structure of an application and calling nested

visualizers for tailoring particular aspects of the application. The association is done via a

vedici.runtime.VediciPlayerStub instance that permits accessing the properties of a player that

is compiling a script from within the script being compiled. The rest of the TextEditor.bml

script defines additional application components and UI layouts in a container. A

customization scenario for the sample application is presented in Figure 3.8:

 27

1 2

3 4

5 6

Figure 3.8: Customization scenario for a sample application.

1. An end-user initiates an application customization via a "Tailor" action on the VEDICI

Runtime toolbar. A confirmation dialog "Do you want to customize this application?" is

shown, the user clicks "Yes".

2. A visualizer for the root application player is instantiated (Hierarchy Browser). Using

the Hierarchy Browser UI the user selects a nested toolbar player and initiates tailoring

for that player.

 28

3. A visualizer for toolbar player is instantiated (Toolbar Customizer).

4. Using the Toolbar Customizer UI, the user adds a "Clear" button to the text editor

toolbar.

5. The user closes visualizers and initiates the "Save" action on the VEDICI Runtime

toolbar. A confirmation dialog "Do you want to save customized application?" is shown,

the user clicks "Yes".

6. An authorization dialog for the VEDICI repository is shown.

Once the authorization is complete, a customized version of the whole application is

saved to the user's personal storage space in the VEDICI repository. Later, the user can load

the customized application via the "Load" action on the VEDICI Runtime toolbar.

In addition to the above, the TextEditorToolbar.bml script implements a "Tailor"

button, which invokes the "tailor" method of the toolbar player and directly takes the user to

step (3) in the above scenario, without displaying the UI of the Hierarchy Browser:

<?xml version="1.0"?>
<bean class="javax.swing.JToolBar" id="tb">
 ...
 <bean class="vedici.runtime.VediciPlayerStub" id="stub"/>
 ...
 <add>
 <bean class="javax.swing.JButton" id="tailor">
 ...
 <event-binding name="action">
 <script>
 <call-method target="stub" name="tailor"/>
 </script
 </event-binding>
 </bean>
 </add>
</bean>

Cross-referencing between scripts located in users' personal folders provides the

possibility for implementing centralized tailoring. For instance, the TextEditor.bml script

loads the toolbar definition from the URL "apps/igor/TextEditorToolbar.bml" - this URL

corresponds to a user's personal folder managed by remote repository and is simultaneously

accessible via a Web server. If a folder's owner makes changes to the toolbar script, it will

affect initial versions (templates) of the toolbar application for all other users.

 29

It should be noted that the Text Editor application itself does not include any facilities

for toolbar customization; instead, it relies on a reusable framework, which can potentially

provide the tailoring facilities needed for arbitrary component-based applications and

support persistence of changes made by each user.

3.7 Summary

This chapter described a methodology of implementing component-based applications that

can be tailored at runtime and a generic framework intended for developers of customizable

Web-based applications. A simple implementation of a tailorable text editor has been

presented in order to illustrate the framework design and its interaction with the end-users.

The following chapter introduces case studies on the practical applications of the proposed

framework.

 30

Chapter 4

Case Studies

This chapter describes case studies on the practical applications of the proposed framework

that was introduced above. Contrary to the sample application described in the previous

chapter, applications in real-world domains require a higher degree of nesting as well as a

wider selection of reusable and application-dependent components, visualizers and scripts.

In general, the scope of tailoring does not have to be limited to the user interface

customization, e.g. the data-processing logic can be customized in the same way. Moreover,

a visualizer instance can interface with the end-user via a series of dialogs, without

employing a distinct window to handle all of the interaction.

4.1 Remote Monitoring Application

4.1.1 Background

The application of runtime tailoring can solve the contradiction between dynamicity of

requirements and inherent complexity of software present in some application domains.

An accelerator control system is an example of such a domain – the dynamicity and

flexibility are the essential requirements for scientific experiment environment, however the

amount of hardware and I/O channels involved demands applications of computer control

to achieve the consistency of experimental setup. Thus, the accelerator control system

environment stipulates interdisciplinary research including the methodology of end-user

programming in order to handle the problems of large-scale control software development

[Mejuev et al. 2001].

 31

One way to deal with this problem is to apply the techniques of domain modeling and

form-based programming [Mejuev et al. 1995; Mejuev et al. 1997], however this approach

would probably require certain skills of the end-users, including the knowledge of object-

oriented programming paradigm and rule-based specifications, which is not always

acceptable.

On the other hand accumulated experience with software maintenance for

experimental physics shows that the most frequent modification requests are targeting

relatively small GUI of application logic updates. These modifications could be done by end-

users themselves if the appropriate tools are provided.

In this section it is proposed to introduce the notion of tailoring interface in the process

of developing software in the accelerator control system environment. A feasibility

evaluation was performed with Web-based monitoring applications for 12 GeV Proton

Synchrotron at KEK (High Energy Accelerator Research Organization). Using this example

the issues of design and implementation of tailorable applications for accelerator control are

considered.

The application of technology of end-user tailoring can significantly reduce the time

required to perform software modifications during control hardware and software upgrades

and correspondingly decrease the overall system maintenance costs, which are high for large

installations in the experimental physics.

4.1.2 Requirements

 Online monitoring application for KEK Proton Synchrotron should provide display for the

beam parameters, accessible in the Java applet environment. The requirements on the design

of monitoring application are summarized as follows:

1. The applet should provide a high degree of cross-platform portability, thus it should not

rely on native libraries or OS-specific APIs

2. The monitoring system must provide integration with third-party commercial software:

Wonderware InTouch, which is widely deployed at KEK Proton Synchrotron.

 32

3. The required degree of tailorability for monitoring application is identified as the

possibility for the end-users to dynamically reassign mappings of GUI components to

I/O channels and customize visual preferences (color, layout) for the components. Some

I/O channels are required to display permanently, so that the tailoring functionality

should be disabled for the corresponding GUI objects.

The layout of the remote monitoring system is represented in Figure 4.1. The front-

end of data acquisition system is represented by PLCs (Programmable Logic Controller).

PLC data are accessible through the commercial software – InTouch I/O server that allows

data retrieval via NetDDE connections for Windows clients. The Scout Outpost implements

a CGI interface accessible from multiplatform Web-based clients. Having received a CGI

GET query, the Outpost retrieves the data from I/O server via NetDDE and replies the

results in the form of HTML table, including “tag” names, error codes and current values for

the “tags”, identifying the I/O channels.

JAVA CLIENTS

KEK backbone Ethernet

INTOUCH
I/O SERVER

WONDERWARE
SCOUT OUTPOST

PLC Network

Figure 4.1: Outline of Remote Monitoring System

 33

4.1.3 Implementation

The implementation of dynamic monitoring components was reused from earlier

development made with Java 1.0 for the JLC X-band High Field Experiment [Mejuev et al.

1998; Higo et al. 1998]. The reuse required the conversion of Java 1.0 class libraries into Java

Beans, conforming to updated APIs in Java 1.3. The data update is performed by a dedicated

component, which wraps Scout Outpost interface and provides a refresh manager for

dynamic monitoring components with approximately 1Hz refresh rate. The update manager

performs data polling by sending batch requests to the Scout Outpost server.

The monitoring application allows customization of the visual preferences for the UI

widgets (color, layout) at runtime and mappings of I/O channels to the widgets. The

monitoring application enables each user to define his or her personal view, which includes

only the beam parameters of interest. Application developers can optionally disable

tailoring functionality for particular groups of widgets of the monitoring application by

assigning "visualizer stubs" to the corresponding application fragments.

Figure 4.2: Tailorable Remote Monitoring Application

An example of end-user tailoring is presented in Figure 4.2. The application is

organized into a hierarchy of nested players each representing an UI panel that contains

 34

logically related groups of widgets. In the figure the user is customizing the color of a UI

component I n a panel (1) via the "Property Editor" visualizer (2). This visualizer displays all

of the player's components in a tree view (3) and allows customization of each component's

properties via a corresponding property sheet (4). The property editor is a generic (reusable)

visualizer that supports common data types in Java such as String, Boolean, numbers and

Color (5).

4.1.4 Summary

The feasibility study described in this section has been performed with WWW-based

monitoring application; however the same technique is applicable to the design of control

and data-acquisition applications, by extending the framework with a wider set of

components. Current implementation uses polling of CGI server that creates redundant

traffic in the laboratory network. In the future version it seems reasonable to consider

replacing the polling with server “push” interface, which is based on the existing Java

implementation of shared data channels [Mejuev and Abe 1997].

4.2 Distance Learning Application

Interactivity and tailorability are considered to be the features required for adding real value

to traditional distance learning [Benyon et al. 1997; Laurillard et al. 1998]. Typically, students

study in different environment and they have a variety of browsers with different facilities.

To increase the quality of learning, developers of multimedia courseware for the Internet

need to provide students with the possibility to be involved into the educational process,

rather than simply browse. Interactivity of courseware can be interpreted as a functionality

implementation similar to a lecturer posing questions directly to a student and tailorability –

as the activity by which a student is able to receive personalized representation of

educational content.

 35

4.2.1 The Problematic

The problems with developing multimedia courseware for the Internet or offline study

originate in the insufficiency of existing general-purpose software technologies as well as in

the mismatch between the learning scenario supported by software tools and traditionally

practiced methodologies of academic training. The main problems can be summarized as

follows:

1. Interoperability – the software systems are often developed to support only particular

lecture or training course, without paying any attention to the possibilities for future

reuse elsewhere.

2. Standardization – existing standards on the learning media [Edutool.com 1999; IMS] are

rather generic in an attempt to cover a wide range of systems – that makes it difficult to

adopt the standards to the real needs of the educators and learners.

3. “User resistance” issues [Hirschheim and Newman 1988], such as scapegoating, a

tendency to blame a computer system for any troubles encountered in the process of

exploitation of a distance learning systems (“I could not succeed because this system is

not efficient”).

4. The tendency to limit the objectives of a software development project to a simple

hypertextualisation of the existing teaching materials, neglecting the new possibilities

offered by emerging technologies.

It should be noted that providing guidelines usable for the development of

educationally sound multimedia courseware is a complicated issue, involving the problem

of developing socio-technical frameworks within a given educational institution [Laurillard

et al. 1998].

 36

4.2.2 Implementation

A Web-based distance-learning application, developed with VEDICI, covers an introduction

to object oriented design concepts and is organized into a hierarchy of nested lectures. Each

lecture is defined in a separate CMS and contains an ordered set of slides managed by an

instance of the eLearning.Sequencer class. The Sequencer can associate an instance of VEDICI

player with each slide, so that the player launches its script when the slide is shown.

Associations of players with the slides can enhance a lecture with video, simulations and

implement the nesting of lectures. Sequencer also defines a set of conditional and

unconditional links among the slides that allows dynamically modifying the order in which

the slides are displayed. Conditional links specify dialogs that are shown to the user if a

corresponding slide is activated. At runtime, the user's responses (choices) can be

memorized in the internal state of the Sequencer and later used to activate other conditional

links without repeatedly putting the same question to the user. The policy for memorizing

users' choices is specified as an attribute of a condition - it can be either "permanent" (user

asked once) or "temporary" (user asked always). Definitions of links, conditions and

available choices are specified in the CMS of a given lecture. The internal state of a

Sequencer is manipulated through getters and setters of its "state" property, the type of this

property is a string of proprietary format inherited from a legacy system.

An example of user interaction with the application is presented in Figure 4.3. A dialog

defined by a conditional link associated with a slide (1) presents a question "Where do you

want to go next?" providing a set of buttons with chapter titles (2) to choose from. The

problem with this approach to implementing interactivity is that there is no way to undo or

modify the state of a permanent condition once it has been chosen. Moreover, it does not

allow visualizing the state of all conditions in a given lecture. These problems are addressed

in the following way - at runtime, the user can initiate tailoring for a given lecture applying

a visualizer called "Sequence Customizer" (3) to the CMS of the lecture. The Sequence

Customizer analyses the CMS in order to locate definitions of the conditions and choices

available for each condition. This visualizer then retrieves current condition states by

parsing the "state" property of Sequencer and provides a UI for modifying the states of the

conditions. The proprietary format of the Sequencer "state" property requires the

implementation of a customized persistence scheme for this application - in addition to

 37

CMSs, VEDICI Repository stores a "state file" per each Sequencer. The Repository is also

used in this application to store users' personal notes (4).

Figure 4.3: Distance Learning Application

4.2.3 Summary

As it is commonly acknowledged, in order to improve the effectiveness of a distance

learning application, the entire system must be considered as a socio-technical framework.

In this context, the practical application of end-user tailoring technology toward the delivery

of pedagogically sound courseware requires the building of a conceptual knowledge base

covering the pedagogical aspects of distant education. This knowledge base should include

interaction models simulating those that occur in traditional lectures and seminars or an

investigation of new forms, specific for distance learning. In the case of end-user tailorable

applications the expected result of this consideration is the ability to identify the required

degree of tailorability in the distance learning domain.

 38

The challenging part of efficiency consideration, in this sense, is that evolving trends of

distance learning related technology appears to be causing a shift in the structure of

academic teaching from that of a supervisor with personal responsibility for a group of

students to that of a knowledge facilitator tasked with providing expert input to a software

production team [Laurillard et al. 1998].

Regarding the social aspects of distance learning, the application of runtime tailoring

and personalization technology can help to reduce or eliminate the extremely high dropout

rates typical of early Web-based distance learning programs [Wright and Lee 1999].

 39

Chapter 5

Related Work

This chapter identifies alternatives to the approach presented in this work and compares

VEDICI to systems of related scope. The systems described here are significantly different in

design, required implementation efforts and areas of applications, which complicate a direct

comparison. Additionally, there is no commonly accepted quantitative metric applicable for

measuring the efficiency of tailoring interfaces and for verification of necessity of tailoring

functionality in a particular application domain in general. Correspondingly, the systems are

compared based on their capabilities to support smooth evolution of tailoring interfaces

through the application lifecycle, integrate multiple tailoring interfaces within an application

instance and availability for reuse in the application domains different from the originally

intended ones.

5.1 Alternatives to Component-Based
Tailoring

The first alternative that should be pointed out is the use of a hardcoded implementation of

tailoring functionality for delivering a particular application instead of building a generic

tailoring framework. The "ad hoc" implementation may be preferable if the development is

not targeting a sufficiently wide class of systems and the chances are high that appropriate

tailoring interfaces will be delivered in the first working version of the application. Contrary

to the above, delivering tailorable applications as instances running in a more or less generic

compositional framework avoids the duplication of development efforts in the long-term

 40

perspective and allows refining some components that may be reused by applications and,

potentially, across multiple application domains.

Once the need for a generic compositional framework is established, there is an issue

of how the compositional tailoring is implemented in the framework. An alternative to the

component-based composition used by VEDICI is feature composition [Teege 2000]. From

the users' point of view, a feature is added to the system by simply specifying its presence.

This approach reduces the complexity of tailoring; however it discards the ability to specify

the relations between components. Tailoring of UIs is considered as an example where

feature composition is not directly applicable. A hybrid approach considered as a remedy

[Koch and Teege 1999] makes features applicable to several or all existing components.

VEDICI does not sup port feature composition directly, but it can be emulated by

application-specific visualizers, although they require significant implementation efforts. For

instance, considering the distance-learning application described above, we could define a

"video" feature as an availability of video associated with a lecture. Users accessing the

application via a slow connection would want to turn the video off globally or, for

individual slides. A custom visualizer with this facility should traverse the hierarchy of

nested compositional markup specifications, identifying those responsible for video and

applying the corresponding changes.

5.2 Component-Based Frameworks

While comparing VEDICI to component-based frameworks that support end-user tailoring,

three typical representatives of existing classes of these systems have been considered: a

tailorable tool for cooperative work implemented as a "native" application (OVAL), a Web-

based tailorable system with HTML forms interface (ICE) and a Java framework for

component based tailorability of Computer Supported Cooperative Work (CSCW)

applications (EVOLVE).

 41

5.2.1 OVAL

OVAL [Malone et al. 1992] is a radically tailorable tool for cooperative work that was

implemented with Macintosh Common LISP for the Macintosh operating platform. OVAL

applications are composed from objects, views, agents and links. The appearance and

functionality of OVAL is similar to that of Lotus Notes, where documents are represented as

semi-structured templates with user-definable views. However, in comparison with Lotus

Notes, OVAL is more generic and customizations in OVAL can be performed by end-users,

with minimal skills required.

OVAL focuses on providing end-users with the possibility to re-design working

applications rather than on supporting runtime tailoring. Case studies introduced in

[Malone et al. 1992] have been carried out with groupware systems and required

modifications in the underlying OVAL framework to fully accommodate each system.

Contrary to this, the applications of VEDICI described in this thesis are running within an

invariant framework which interfaces with application-dependent code (visualizers,

repositories) via a set of fixed APIs and provides abstract classes and documentation to

simplify application programming.

 5.2.2 ICE

ICE [Farshchian 1998], is a Web-based system in support of collaborative environments on

the Web. ICE is accessible via Web browsers, so no installation is required on the client side.

Using ICE, the Internet users can compose groupware applications from information,

collaboration and interface objects.

ICE uses an HTML-based user interface and in this sense VEDICI Runtime can provide

a better quality UI since it uses JavaBeans. VEDICI facilitates integration with Web browsers

and can be used to emulate some of the functionality of ICE. In addition, the building blocks

and tailoring interface in ICE are predefined, thus restricting the reusability of the entire

system.

 42

5.2.3 EVOLVE

EVOLVE [Stiemerling et al. 1999] was developed in support of distributed CSCW

applications. In order to avoid runtime code generation, a component model in EVOLVE has

been redefined from JavaBeans to a platform-specific FLEXIBEANS model. The composition of

FLEXIBEANS in EVOLVE is specified by a proprietary configuration language (CAT files).

It has been reported [Stiemerling et al. 1999] that EVOLVE employs visual

programming techniques to be used for end-user tailoring and that the usability of the

platform has been studied in a users’ workshop environment. The workshop identified the

need to experiment with different styles of visual programming in order to identify the ones

that are acceptable to end-users. However, this need is not directly addressed by the

architecture of EVOLVE; in addition, tailorable applications in the real-world often require a

proprietary tailoring interface to be integrated into a framework. A simple example of this is

a text editor with customizable toolbar. In this case, a well-known metaphor of moving the

buttons between two lists would be preferable to the contrary fully-fledged visual

programming technique.

5.3 Summary

Advantages of the approach proposed in this work can be summarized as follows:

1. In VEDICI the tailoring framework is defined as an external entity, which can reflect on

the structure of a compositional application and invoke the tailoring interfaces (defined

independently from the framework) to modify the composition and attributes of

primitive components. This decoupling of tailoring interfaces and runtime components

can be considered as a key point in achieving the reusability of proposed framework

across the boundaries of application domains.

2. The applications are partitioned into a hierarchy of composite components, representing

entry points available for applying multiple tailoring techniques, rather than strict

binding between the components’ structure and tailoring interfaces.

 43

3. Common services such as persistence, nesting and integration with the execution

environment (Web browser) are implemented in an application independent fashion,

simplifying the migration of framework to other domains.

4. Framework implementation is based on standard technologies and is easy to deploy and

extend.

The case studies, performed in this work showed the feasibility of implementing

tailorable applications based on VEDICI in the domains of distance learning and remote

monitoring in experimental physics. The fact that the same framework could be applied for

making working systems in these completely different fields proves the reusability and

generic nature of the proposed framework.

 44

Chapter 6

Conclusions and Perspectives

This thesis examined a process of developing tailorable Web applications and identified the

problems relating to this development. The use of compositional markup specifications and

the integration of multiple tailoring interfaces have been proposed as measures for dealing

with problems of the development. The thesis introduced the composition and modules of a

generic reusable platform for tailoring and described the application of this platform in the

development of multimedia courseware for the Internet and remote monitoring applications

in accelerator physics.

VEDICI currently employs a customized component-scripting language to instantiate

primitive application components and to define bindings among components. However, the

problem of preserving the intrinsic states of objects is not inherently addressed within

compositional markup specification languages, which replace recording of object internal

states with reconstituting the states with public APIs. The problem with intrinsic states can

become severe when dealing with legacy component libraries, or implementing bean

wrappers for legacy Java code. This problem can be solved with additional implementation

efforts by introducing a "state" property and, implementing export and import of intrinsic

state in its getter and setter methods. Another possible solution is to open the component

"black box" using meta-protocol techniques [Kiczales 1996], a solution that would require the

introduction of a proprietary component model for the framework. Deviation from

JavaBeans compatibility would in turn require the implementation of wrappers for each

component that can be used within the framework, including Java AWT and Swing UI

components.

The biggest obstacle to a tailorable software system being adopted by a given

organization, however, does not relate to the problems of software technology. It is the

 45

difficulty of integrating the system into its social context and system compatibility with

already established behavioral patterns. A tailorable system has an additional potential to

solve the issues related to system adaptation and evolution, but it only works if the end-

users are sufficiently motivated to carry out tailoring in the first place. An explicit request

originating from the end-users for tailoring facilities allows the assumption that such a

motivation exists a priori. In addition to a well-known CSCW, this thesis represents a

software environment of a large-scale experiment in accelerator physics where tailoring is

explicitly required and planned for. The development of Problem Solving Environments

(PSE) for scientific computation and engineering can be seen as another potential domain

where scripting "Webware" and interactive interface development technologies are

demanded [Rice and Boisvert 1996].

Following sections introduce future perspectives for applications of the proposed

framework to the development of adaptive tailorable systems and for carrying out implicit

usability inspections.

6.1 Adaptive Tailorable Frameworks

Application of tailoring frameworks in general (and VEDICI in particular) to the

development of customizable applications for the Web creates a set of options to support the

evolution of an application after deployment. This evolution is certainly driven by the needs

of end-users; however the developers of the system retain full control on the process of

modifications. The key factor motivating a change in the composition of a deployed

application is the intent to meet the requirements of a larger community of users,

minimizing the differences between personalized applications and initial templates (both are

stored in an application repository in the case of VEDICI).

Thus, the deployment of a tailorable application can not be clearly separated from the

development, it rather states for field evaluation. The incremental phases of

development/deployment software process allow reusing tailoring framework for the tasks

ranging from relatively small ergonomic UI updates to the most extreme incremental

approach, defining the increments from the top of the software life cycle.

 46

The representation of such a deployment process in terms of evolutionary software

process model, described in the Chapter 2 identifies the following phases:

1. Introducing a functional model that does not have to consider deeply the HCI aspects of

the future system.

2. Deployment of the prototype on the Web, where it becomes accessible for the target

audience.

3. Development and clarification of the user interaction model through the usability

evaluations, which rely on the analysis of tailoring activity of the end-users.

The procedure described above can be potentially applied to the design of adaptive

tailorable systems, where the changes are performed (semi)automatically, requiring a

minimum intervention from professional developers. It would require however a well

understood and fixed functional model. Figure 6.1 represents a revised evolutionary process

model, which integrates the development and deployment processes, feasible within a

generic tailoring framework.

DEVELOPMENT/
DEPLOYMENT

VEDICI REPOSITORY

STATISTICAL
ANALYSIS

TEMPLATES
REFINEMENT

COMPONENTS
REFINEMENT

TAILORING HISTORY

TEMPLATES

END-USER
TAILORING

DYNAMIC
APPLICATION
ASSEMBLY

PRIMITIVE COMPONENTS
AND VISUALIZERS

RUNTIME

Figure 6.1: Software Process for an Adaptive Tailoring Framework.

 47

6.2 Implicit Usability Inspections

Composition of applications from monolithic components by means of scripting allows a

certain degree of flexibility. In a component-scripting application an equal functionality can

be achieved in several ways, for example by changing the degree of granularity (producing

larger scripts) or by extending component interfaces, so that some functionality previously

embedded into script can be accessed by a call to a component’s method.

However the scripting applications with equal functionality in the sense described

above does not provide at all times equal efficiency (implement an optimal way to achieve a

given goal) and usability (provide all required support for the users). To verify that the

current decomposition is appropriate, the developers can rely on the analysis of the content

of VEDICI repository, which contains all the necessary information for performing of

implicit usability inspections.

Usability inspections [Nielsen 1994] represent an essential part of software lifecycle.

The discovery of a mismatch between the capabilities of currently deployed software system

and ergonomic or functional requirements of the end-users (user interaction model) is a

driving force for a software change. However the explicit requests from the end-users

cannot be collected in all cases, especially for an application deployed on the Web.

VEDICI provides the possibility to collect the users’ feedback implicitly – through the

analyzing an individual modification history and statistics over the data available in the

server side repository. Data in the repository represent a snapshot revealing the severity of

usability problems and the way the problem is being addressed by the end-users. From this

point of view tailoring activity can be considered as an indication of a minor or major design

mismatch.

Moreover, VEDICI allows collecting a structured feedback, in the form of XML-based

application source scripts, modified as a result of tailoring activity. The modification

histories can also be applied in usability engineering as a supplement for traditional

methods of collecting users' feedback, such as questionnaires, video recording or eye-

tracking.

 48

Bibliography

[Appelt et al. 1998] Appelt, W., Hinrichs, E., Woetzel, G., Effectiveness and efficiency: the

need for tailorable user interfaces on the Web, in: Proceedings of Seventh International World

Wide Web Conference, Brisbane, Australia, 1998.

[Benyon et al. 1997] Benyon, D., Stone, D., Woodroffe, M., Experience with developing

multimedia courseware for the World Wide Web: the need for better tools and clear

pedagogy, International Journal of Human-Computer Studies, 47 (1), Academic Press Inc., 1997,

pp. 197-218.

[Cypher 1993] Cypher, A., ed., Watch What I Do: Programming by Demonstration, MIT Press:

Cambridge MA, 1993.

[Edutool.com 1999] Edutool.com, Learning Technology Systems Architecture (LTSA);

http://edutool.com/ltsa/ (1999).

[Farshchian 1998] Farshchian, BA., ICE: An object-oriented toolkit for building collaborative

Web applications, Proceedings of the IFIP TC8/WG8.1 Working Conference on Information

Systems in the WWW Environment, Chapman & Hall: Beijing, 1998, pp. 70-86.

[Floyd et al. 1989] Floyd, C., Reisen, F.-M., and Schmidt, G., STEPS to Software Development

with Users, in: Lecture Notes in Computer Science, Vol 387: ESEC '89, ed. C. Ghezzi and J. A.

McDermid, Springer-Verlag, 1989, pp. 48-64.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Higo et al. 1998] Higo, T., Dong, D., Fang, H., Nie, J., Gao, M., Kadokura, E., Mejuev, I.,

Sakai, H., and Takata, K., High Field Experiment of 1.3m-Long X-Band Structure; in:

Proceedings of the First Asian Particle Accelerator Conference, March 23-27, 1998, KEK, Tsukuba,

Japan, pp. 169-171.

[Hirschheim and Newman 1988] Hirschheim, R., Newman, M., Information Systems and

User Resistance: Theory and Practice, The Computer Journal, 31 (5), 1988, pp. 398-408.

[IMS] IMS Global Learning Consortium Inc.; http://www.imsproject.org/

 49

[Johnson 1999] Johnson, M., Bean Markup Language, JavaWorld, August 1999.

[Keen 1991] Peter G. W. Keen, Shaping the Future: Business Design Through Information

Technology, Boston: Harvard Business School Press, 1991.

[Kiczales 1996] Kiczales, G., Beyond the Black Box: Open Implementation, IEEE Software,

1996; 13 (1), pp. 8-11.

[Koch and Teege 1999] Koch, M., Teege, G., Support for Tailoring CSCW Systems:

Adaptation by Composition, in: Proceedings of 7th Euromicro Workshop on Parallel and

Distributed Processing, IEEE Press: Funchal, Portugal, 1999, pp. 146-152.

[Laurillard et al. 1998] Laurillard, D., Preece, J., Shneiderman, B., Neal, L., Wærn, Y., Distance

Learning: Is it the End of Education as Most of Us Know It? in: Proceedings of the CHI 98

summary conference on CHI 98 summary: human factors in computing systems, ACM Press: New

York, 1998, pp. 86-87.

[MacLean et al. 1990] MacLean, A., Carter, C., Lövstrand, L., Moran, T., User-tailorable

systems: Pressing the issues with buttons, Chew, J. C., Whiteside, J., (eds.), in: Proceedings of

CHI '90, ACM Press: New York NY, 1990, pp. 175-182.

[Malone et al. 1992] Malone, Th., Fry, Ch., Lai, K.-Y., Experiments with OVAL: A Radically

Tailorable Tool for Cooperative Work, in: Proceedings of the Conference on Computer-Supported

Cooperative Work, ACM Press: New York, 1992, pp. 289-297.

[Megginson and Brownell 2002] D. Megginson, D., Brownell, D., Simple API for XML,

http://www.saxproject.org/ (2002).

[Milne 1999] Milne, P., Long Term Persistence for JavaBeans Technology, Sun’s 1999

Worldwide Java Developer Conference (JavaOne), June 15-18, 1999, San Francisco, USA.

[Mejuev et al. 1995] Mejuev, I., Abe, I., and Nakahara K., Object-Oriented Control System

Development Using Smalltalk Language; in: Proceedings of The 1995 International Conference

on Accelerator and Large Experimental Physics Control Systems; October 25 - November 3, 1995,

Chicago, USA, p. 713.

[Mejuev and Abe 1997] Mejuev, I., Abe, I., Java Application for Creating a Shared Object

Cash, in: Proceedings of The 1997 International Conference on Accelerator and Large Experimental

Physics Control Systems; November 3-7, 1997, Beijing, China.

 50

[Mejuev et al. 1997] Mejuev, I., Abe, I., Nakahara, K., Application of Smalltalk Language for

Accelerator Control; Nuclear Instruments & Methods in Physics Research, A 389 (1997), pp. 38-

41.

[Mejuev et al. 1998] Mejuev, I., Kumagai, A., Takahashi, M., Kadokura, E., Higo, T., and

Takata, K., Status of Control and Data Acquisition System for JLC X-Band High Field

Experiment; in: Proceedings of The 23rd Linear Accelerator Meeting in Japan; September 16-18,

1998, Tsukuba, Japan, p. 367.

[Mejuev et al. 2000] Mejuev, I., Higashida, M., Shimanaka T., Makino, N., Integration of

Multiple Tailoring Interfaces in Compositional Web Applications, in: Proceedings of 2000

International Conference on Information Society in the 21st Century: Emerging Technologies and

New Challenges, November 5-8, 2000, The University of Aizu, Japan.

[Mejuev et al. 2001] Mejuev, I., Higashida, M., Shimanaka, T., Makino, N., Integration of

Multiple Tailoring Interfaces in Compositional Web-Based Applications, in Enabling Society

with Information Technology, Jin., Q., Li, J., Zhang, N., Cheng, J., Yu, C., Noguchi, S. (eds.),

Springer-Verlag: Tokyo, 2001, pp. 111-121.

[Mejuev et al. 2001] Mejuev, I., Kumagai, A., Kadokura, I., Tailorable Software Architectures

in the Accelerator Control System Environment, in: VII International Workshop on Advanced

Computing and Analysis Techniques in Physics Research, AIP Conference Proceedings, vol. 583:

ACAT’2000, Bhat, P., Kasemann, M., (eds.), Melville: New York, 2001, pp. 119-121.

[Mørch 1997] Mørch, A. Three Levels of End-User Tailoring: Customization, Integration, and

Extension; in: Computers and Design in Context, eds. Kyng M, Mathiassen L.; The MIT Press:

Cambridge, MA, 1997; pp. 51-76.

[Mørch et al. 1998] Mørch, A., Stiemerlieng, O., Wulf, V., Tailorable Groupware, ACM

SIGCHI Bulletin, Vol. 30, No. 2, April 1998.

[Nielsen 1994] Nielsen, J., Usability Inspection Methods, in: Proceedings of CHI '94 Conference

Companion on Human factors in computing systems, 1994, pp. 413-414.

[Nierstrasz et al. 1991] Nierstrasz, O., Tsichritzis, D., de Mey, V., Stadelmann, M.,

Objects+Scripts=Applications, in: Proceedings of Esprit 1991 Conference, Kluwer Academic

Publishers, 1991, pp. 534-552.

 51

[Rice and Boisvert 1996] Rice J., Boisvert R., From Scientific Software Libraries to Problem

Solving Environments, IEEE Computational Science and Engineering, 3 (3), 1996; pp. 44-53.

[Shimanaka et al. 2000] Shimanaka, T., Mejuev, I., Higashida, M., Makino, N., VEDICI: A

Framework for Developing Distributed Component-Based Applications, in: Proceedings of

SEA Software Symposium’2000, June 21-23, 2000, Kanazawa, Japan, pp. 16-19 (in Japanese).

[Sommerville 1996] Sommerville, I., Software Process Models, ACM Computing Surveys, Vol.

28, No. 1, March 1996, pp. 269-271.

[Stallman 1981] Stallman, R., EMACS, the extensible, customizable, self-documenting

display editor, in: Proceedings of ACM SIGPLAN SIGOA Symposium on Text Manipulation,

Portland OR, 1981.

[Stiemerling et al. 1997] Stiemerling, O., Kahler, H., Wulf, V., How to Make Software Softer -

Designing Tailorable Applications, in: Proceedings of DIS'97, Amsterdam, August 18 - 20,

1997, pp. 365-376.

[Stiemerling et al. 1999] Stiemerling, O., Hinken, R., Cremers, Armin B., Distributed

Component-Based Tailorability for CSCW Applications, in: Proceedings of the ISADS '99,

IEEE Press: Tokyo, Mar. 20-23, 1999, pp. 345-352.

[Sun 2002] http://java.sun.com/j2se/1.4/docs/api/java/beans/XMLDecoder.html (2002).

[Teege 2000] Teege, G., Users as Composers: Parts and Features as a Basis for Tailorability in

CSCW Systems, Computer Supported Cooperative Work (CSCW), 2000 (9), pp. 101-122.

[W3C 1998] World Wide Web Consortium (W3C), Document Object Model (DOM), W3C

Recommendation, http://www.w3.org/DOM/ (1998-2003).

[W3C 2000] World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0

(Second Edition), W3C Recommendation, http://www.w3.org/TR/REC-xml (2000).

[Williams 1987] Williams, G., HyperCard: HyperCard extends the Macintosh user interface

and makes everybody a programmer, Byte, 12: 109-117, Dec. 1987.

[Wright and Lee 1999] Wright, S. W. Y., Eleonor Lee, Distance Learning, Community College

Week, 11(22), 1999, pp. 6-9.

 52

 53

Publications

A Java-based EPICS Archive Viewer with SOAP Interface for Data Retrieval; Furukawa, K.,

Sato, M., Mejuev, I.; The 2003 International Conference on Accelerator and Large Experimental

Physics Control Systems, Gyeongju, Korea (under review).

Developing end-user tailorable Web applications using a compositional framework; Mejuev,

I.; Software – Practice and Experience, Wiley (in press).

Integration of Multiple Tailoring Interfaces in Compositional Web Applications; Mejuev, I.,

Higashida, M., Shimanaka, T., Makino, N.; Proceedings of The 2000 International Conference on

Information Society in the 21st Century: Emerging Technologies and New Challenges, November 5-

8, 2000, The University of Aizu, Japan, pp. 169-175

Also published in a book: Enabling Society with Information Technology, eds., Q. Jin, J. Li, N.

Zhang, J. Cheng, C. Yu and S. Noguchi, Springer-Verlag, Tokyo, 2001, pp.111-121.

Tailorable Software Architectures in the Accelerator Control System Environment; Mejuev,

I., Kumagai, A., Kadokura, E.; VII International Workshop on Advanced Computing and

Analysis Techniques in Physics Research, AIP Conference Proceedings, vol.583: ACAT'2000,

eds. P. Bhat and M. Kasemann, Melville, New York, 2001, pp.119-121.

Application of Smalltalk Language for Accelerator Control; Mejuev, I., Abe, I., Nakahara, K.;

Nuclear Instruments & Methods in Physics Research, Section A, 389(1-2), Elsevier, 1997, pp. 38-

41.

Modeling the Behavior of Complex Systems Using Statistical Regularities; Mejuev, I.,

Dudikhin, V.; NTI, Ser. 2, Informational Processes and Systems, №10 (1994), pp. 27-29. (in

Russian)

	Abstract
	Acknowledgements
	Contents
	List of Figures
	Chapter 1��Introduction
	1.1 Background
	1.2 Objectives and Contributions
	1.3 Dissertation Structure

	Chapter 2��Concepts and Terminology
	2.1 Software Process Models
	2.1.1 Waterfall
	2.1.2 Evolutionary Models

	2.2 End-User Programming
	2.3 Runtime Tailorability
	2.4 Compositional Markup Specifications
	2.4.1 Compositional Development
	2.4.2 Markup Languages

	Chapter 3��Blended Tailoring
	3.1 Scope
	3.2 Authoring versus Runtime Tailoring
	3.3 The Problematic
	3.4 Modules of a Generic Tailoring Framework
	3.5 The “Visualizer” Pattern
	3.6 Framework Implementation
	3.6.1 VEDICI Runtime
	3.6.2 Application Repository
	3.6.3 Component Repository
	3.6.4 Sample Application

	3.7 Summary

	Chapter 4��Case Studies
	4.1 Remote Monitoring Application
	4.1.1 Background
	4.1.2 Requirements
	4.1.3 Implementation
	4.1.4 Summary

	4.2 Distance Learning Application
	4.2.1 The Problematic
	4.2.2 Implementation
	4.2.3 Summary

	Chapter 5��Related Work
	5.1 Alternatives to Component-Based Tailoring
	5.2 Component-Based Frameworks
	5.2.1 OVAL
	5.2.2 ICE
	5.2.3 EVOLVE

	5.3 Summary

	Chapter 6��Conclusions and Perspectives
	6.1 Adaptive Tailorable Frameworks
	6.2 Implicit Usability Inspections

	Bibliography
	Publications

