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Source Coding Using Families of Universal Hash Functions

Hiroki Koga, Member, IEEE

Abstract—This correspondence is concerned with new connections be-
tween source coding and two kinds of families of hash functions known
as the families of universal hash functions and N -strongly universal hash
functions, whereN � 2 is an integer. First, it is pointed out that such fami-
lies contain classes of well-known source codes such as bin codes and linear
codes. Next, performance of a source coding scheme using either of the two
kinds of families is evaluated. An upper bound on the expectation of the
decoding error probability is obtained for each family. The expectation of
the decoding error probability is analyzed in detail for the cases of discrete
memoryless sources and sources without the memoryless assumption under
a certain class of decoders.

Index Terms—Bin coding, error exponent, linear coding, strongly uni-
versal hash functions, universal hash functions.

I. INTRODUCTION

The family F of universal hash functions, which was first proposed
by Carter and Wegman [2], is a collection of mappings from a finite
set A to another finite set B, where the cardinalities of A and B, say
A and B, respectively, are assumed to satisfy A � B. Letting f be an
arbitrary mapping in F , we say that collision occurs if f(a) = f(a0)
for some distinct a; a0 2 A. A requirement on collision is imposed on
the family of universal hash functions because collision can cause some
problems in applications of hash functions. Different requirements lead
to various kinds of families of hash functions [2], [8], [17], [18]. While
hash functions are usually used for storage and retrieval of information,
families of hash functions are often studied in several contexts in cryp-
tography such as authentication [8], [17], [18], privacy amplification
[1] and secret-key agreement [15].

However, families of hash functions rarely appear in Shannon theory
or source coding. While Kurosawa and Yoshida [12] construct an iden-
tification code based on a certain family of hash functions, coding the-
orems based on families of hash functions have not been studied. On
the other hand, Muramatsu [16] recently proposed a source coding al-
gorithm in which both an encoder and a decoder share randomness and
synchronously update respective codebooks according to the random-
ness. Muramatsu’s algorithm suggests encoding using hash functions
because the process of encoding can be regarded as a time-varying
hashing. We should also note that a relationship between source coding
and a linear hash function is clearly mentioned in Mackay’s textbook
on information theory [14].

The objective of this correspondence is the investigation of new con-
nections between source coding and families of hash functions. We are
interested in the families known as families of universal hash functions
[2] andN -strongly universal hash functions [18], whereN is an integer
satisfying 1 � N � A. We apply the two families to source coding
and evaluate the decoding error probability. Letting F be a family of
(N -strongly) universal hash functions, an encoder and a decoder share
a hash function f : A ! B in F randomly chosen subject to the uni-
form distribution. Given a source outputX 2 A, the encoder computes
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a codeword Y = f(X) and transmits Y to the decoder. The decoder
can correctly decode Y if no collision occurs, say, the other elements
in A are not mapped to Y . Hence, in order to evaluate the decoding
error probability, we need to evaluate the probability of such collision.

These families of hash functions can be regarded as generalizations
of certain classes of source codes. In fact, in the random coding argu-
ments for establishing the direct parts of coding theorems, we often use
bin coding [3] and linear coding [5]. We point out that, in coding of a
single source, the class of linear codes is one of the families of universal
hash functions. We also see that the class of bin codes is regarded as a
family of N -strong universal hash functions with N = A as well as a
family of universal hash functions. In this correspondence, we give two
upper bounds on the expectation of the decoding error probability. One
of the upper bounds is valid for any family of universal hash functions.
That is, both linear coding and bin coding meet the upper bound. The
other upper bound is smaller and is valid for any family of N -strongly
hash functions under a certain condition on N . In fact, the bin coding
meets this smaller upper bound. We analyze the two upper bounds in
detail for stationary memoryless sources and obtain an attainable error
exponent that is the same as in [5].

The correspondence is organized as follows. In Section II, we de-
fine families of universal hash functions andN -strongly universal hash
functions. Important examples of the families of hash functions are
given. In Section III, we define encoding and decoding of a source
outputX and evaluate the expectation of the decoding error probability
by using a combinatoric argument. Coding of stationary memoryless
sources is discussed in Section IV. An achievable error exponent is ob-
tained by using the methods of the types [7]. In Section V, we consider
sources without the memoryless assumption and evaluate the expecta-
tion of the decoding error probability of a decoder in a wide class. We
take an approach from information-spectrum methods [10] and give a
sufficient condition under which the expectation vanishes as the block-
length increases.

II. FAMILIES OF UNIVERSAL HASH FUNCTIONS

Throughout the correspondence let A and B be finite sets. Denote
the cardinalities ofA and B by A and B, respectively. We assume that
A � B. Let F be a finite set of mappings f : A ! B. Carter and
Wegman [2] defined a family of universal hash functions as follows.

Definition 1: We call F a family of universal hash functions (or,
simply, universal) if for any distinct a1; a2 2 A it holds that

jff 2 F : f(a1) = f(a2)j �
jFj

B
(1)

where j � j denotes the cardinality of the set.

We give two important families of universal hash functions.

Example 1: LetF1 be the set of all the mappings fromA toB. Then,
F1 is a family of universal hash functions.

Example 2: Suppose that A = (GF(q))n and B = (GF(q))k for
some integers n � k � 1, where GF(q) denotes a finite field with q
elements. Then, the set F2 of all the linear mappings from A to B is a
family of universal hash functions.

Example 1 is given in Wegman and Carter [18] not as a family of
universal hash functions but as a family of N -strongly universal hash
functions that will be defined afterward. As is claimed in Proposition 2
below, any family of N -strongly universal hash functions with N � 2
is universal.

Example 2 is due to Csiszár [5] in which linear coding of two cor-
related sources is discussed. We can verify that F2 is universal in the
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following way. Letting xxx 2 A be a row vector and MMM 2 (GF(q))nk

an n-by-k matrix, consider a mapping yyy = xxxMMM , where yyy 2 B is a
row vector. Since F2 is all the collection of linear mappings, there is a
bijection between F2 and the set of all the n-by-k matrices. This im-
plies that jF2j = qnk. Next, we evaluate the number of matrices MMM
satisfying xxx1MMM = xxx2MMM for arbitrarily given xxx1; xxx2 2 A satisfying
xxx1 6= xxx2. Since we have (xxx1�xxx2)MMM = 0 and xxx1�xxx2 6= 0, it suffices
to evaluate the number of matricesMMM = (mij) satisfying xxxMMM = 0 for
an arbitrarily given nonzero vector xxx 2 A. Notice that xxxMMM = 0 holds
by adequate choice of mi j ; j = 1; 2; . . . ; k, where i� means one of
indices of nonzero components of xxx. The other (n� 1)k components
of MMM can be chosen arbitrarily. Therefore, it holds that

jff 2 F2 : f(xxx1) 6= f(xxx2)gj = q
(n�1)k =

qnk

qk
=
jF2j

B

which shows that F2 is universal.
Wegman and Carter [18] introduced a family ofN -strongly universal

hash functions as follows:

Definition 2: Let N be an integer satisfying 1 � N � A. We call
F a family of N -strongly universal hash functions (or, simply, N -SU)
if for any distinct a1; a2; . . . ; aN 2 A and for any b1; b2; . . . ; bN 2 B
it holds that

jff 2 F : f(ai) = bi for all i = 1; 2; . . . ; Ngj �
jFj

BN
: (2)

Wegman and Carter [18] give the following two families as examples
of N -SU hash functions.

Example 3: The class F1 in Example 1 is N -SU for every 1 �
N � A.

It is easily checked that, if F = F1, the left-hand side of (2) equals
BA�N . This means that (2) holds with equality.

Example 4: Suppose that both A = B = GF(q). For a fixed
(�0; �1; . . . ; �N�1) 2 (GF(q))N we define f : A ! B as the
mapping

f : x 7! �0 + �1x+ �2x
2 + � � �+ �N�1x

N�1

where the above additions and multiplications are the operations of
GF(q). Then, F3 = ff : (�0; �1; . . . ; �N�1) 2 GF(q)Ng is N -SU.

The family F3 in Example 4 is valid for an arbitrarily fixed 1 �
N � A under the requirement of A = B. However, it is not clear
whether or not there exists a family F 6= F1 of N -SU hash functions
that is defined for the case ofA > B and makes sense for an arbitrarily
given 1 � N � A. In order to guarantee the existence of such a
family, we extend Definition 2. Letting J be a finite set of indices,
let F = ffjgj2J be a collection of mappings fj : A ! B. We can
use the following definition Instead of Definition 2.

Definition 3: Let N be an arbitrary integer satisfying 1 � N �
A. A collection of mappings F = ffjgj2J is called a family of
N -strongly universal hash functions in the extended sense (N -ESU
hash functions for short) if for any distinct a1; a2; . . . ; aN 2 A and
for any b1; b2; . . . ; bN 2 B it holds that

jfj 2 J : fj(ai) = bi; for all i = 1; 2; . . . ; Ngj �
jJ j

BN
: (3)

Note that, if F = ffjgj2J is N -ESU, then fj may be equal to fj
for some j0 6= j. In other words, a family F of N -ESU hash functions
is N -SU if all fj ; j 2 J , are distinct.

We give an example of a family of N -ESU hash functions. A rough
idea of this example can be found in [18], though clear definition is not
given.

Example 5: Lettingn and k be arbitrary integers satisfying 0 < k <

n, we set A = GF(2n) and B = f0; 1gk. Fix an integer N satisfying
1 � N � 2n. For a fixed (�0; �1; . . . ; �N�1) 2 GF(2n)N we define
a mapping fj : A ! B by

fj : x 7! LSBk[�0 + �1x+ �2x
2 + � � �+ �N�1x

N�1]

where j = (�0; �1; . . . ; �N�1) and LSB[y]k for y 2 GF(2n) means
the k least significant bits of y when y is expressed in the binary form.
Then, F4 = ffjgj2J is N -ESU with J = (GF(2n))N .

It is easily checked thatF4 Example 5 isN -ESU. Let a1; a2; . . . ; aN
be arbitrary distinct elements of A and b1; b2; . . . ; bN arbitrary ele-
ments in B. For each i = 1; 2; . . . ; N we define ~bi as an arbitrary el-
ement of GF(2n) satisfying bi = LSBk[~bi]. Since for each i there are
2n�k choices of such~bi’s, there are 2N(n�k) choices of~b1;~b2; . . . ;~bN .
It is important to notice that the system of N linear equations

~bi = �0 + �1ai + � � �+ �N�1a
N�1
i ; i = 1; . . . ; N

has a unique solution (�0; �1; . . . ; �N�1) because the associated Van-
dermonde matrix is always invertible for any distinct a1; a2; . . . ; aN .
Thus, the left-hand side of (3) turns out to be equal to 2N(n�k), which
is equal to the right-hand side of (3) because jJ j = 2Nn and B = 2k .

Hereafter, for notational convenience, we regard families of N -ESU
hash functions as an extended (but implicit) interpretation of families
of N -SU hash functions. In the following sections we will give results
on families of N -SU hash functions. All of such results are valid for
families of N -ESU hash functions as well. However, giving rigorous
proofs for the results on families of N -ESU hash functions are easy
and therefore omitted.

We give a simple proposition on families of N -SU hash functions.

Proposition 1: LetN andN 0 be integers satisfying 0 < N 0 < N �
A. If F is N -SU, then F is N 0-SU.

Proof: It suffices to prove that F is (N � 1)-SU if F is
N -SU. Let a1; a2; . . . ; aN�1 be arbitrary distinct elements in A and
b1; b2; . . . ; bN�1 arbitrary elements in B. The following relationship
is a key to the proof

ff 2 F : f(ai) = bi for all i = 1; 2; . . . ; N � 1g

=
b 2B

ff 2 F : f(ai) = bi for all i = 1; 2; . . . ; Ng: (4)

Note that all the sets on the right-hand side of (4) are disjoint. Then, it
follows from (4) that

jff 2 F : f(ai) = bi for all i = 1; 2; . . . ; N � 1gj

=
b 2B

jff 2 F : f(ai) = bi for all i = 1; 2; . . . ; Ngj

�
jFj

BN�1

where the inequality follows from (2).

We can also establish the following proposition by using the same
idea as in the proof of Proposition 1.

Proposition 2: If F is N -SU for some N � 2, then F is universal.
Proof: Proposition 1 guarantees that F is 2-SU. Hence, for any

distinct a1; a2 2 A it holds that

jff 2 F : f(a1) = f(a2)gj

=
b2B

jff 2 F : f(a1) = f(a2) = bgj

�
jFj

B

where the inequality holds because F is 2-SU.
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Stinson [17] gives two families of 2-SU hash functions. Proposition 2
tells us that the two families are universal as well.

III. SOURCE CODING USING FAMILIES OF HASH FUNCTIONS

In this section we apply a family F of universal hash functions or
N -SU hash functions to source coding. Let X be a random variable
taking values in A. Denote the probability distribution of X by PX .
Let F be a family of (N -strongly) universal hash functions.

We define encoding and decoding of X . Suppose that an encoder
and a decoder share an f 2 F that is randomly chosen subject to the
uniform distribution. Let T be an arbitrary nonempty subset of A and
a0 an arbitrary element ofA chosen in advance by the decoder. Denote
by T the cardinality of T . We use the notation f�1(b) = fa 2 A :
f(a) = bg for f 2 F and b 2 B. The encoder computes a codeword
Y

def
= f(X) and transmits Y to the decoder, while the decoder outputs

X̂ 2 X that is equal to the unique element of f�1(Y )\T if jf�1(Y )\
T j = 1 and a0 otherwise.

In the above coding scheme, the coding rate is logB, where
throughout this correspondence all the logarithms are to the base 2.
Denote by Pe the decoding error probability PrfX 6= X̂g. We have
the following theorem on Pe.

Theorem 1:
A) Let F be an arbitrary family of universal hash functions. Then,

for any nonempty subset T of A it holds that

E[Pe] � PrfX =2 T g+ PrfX 2 T g
T � 1

B
(5)

where E[ � ] denotes the expectation with respect to the random
choice of f 2 F subject to the uniform distribution.

B) Let F be an arbitrary family of N -SU hash functions. Then, for
any subset T of A with 1 � T � N it holds that

E[Pe] � PrfX =2 T g+ PrfX 2 T g 1� 1�
1

B

T�1

(6)

where E[ � ] denotes the expectation with respect to the random
choice of f 2 F subject to the uniform distribution.

Theorem 1-A) and -B) give upper bounds on E[Pe] that are depen-
dent on PX and T . Each upper bound consists of two terms. The first
term corresponds to the probability that the source outputs an element
not belonging to T . The second term corresponds to the probability of
X that belongs to T but is not correctly decoded because of collision.

Let us compare the two upper bounds. Lettingm � 1 be an arbitrary
fixed integer, we can easily prove the inequality 1� (1� u)m � mu
for any u 2 (0; 1). Thus, the upper bound in (6) is smaller than the
upper bound in (5) when the same T is used in decoding. This means
that E[Pe] can be smaller if we use a family of N -SU hash functions.
However, note that Theorem 1-B) says nothing when we use T � A
with T > N . While T must satisfy 1 � T � N in Theorem 1-B), T
can be an arbitrary subset of A in Theorem 1-A).

If we encode a source output X by bin coding [3], we first randomly
assign an element ofB to every element ofA subject to the uniform dis-
tribution. This random assignment corresponds to the random choice
of f 2 F1 subject to the uniform distribution. Note that, for the case
of f 2 F1 the claim of Theorem 1-B) is valid for any T � A. The-
orem 1-B) tells us that the existence of a class of codes with a property
similar to the bin code.

Of course, an immediate consequence of Theorem 1-A) (respec-
tively, Theorem 1-B)) is the existence of an f 2 F such that Pe is
bounded by the right-hand side of (5) (respectively, (6)).

We use the following lemma in the proof of Theorem 1-A).

Lemma 1: Let F be an arbitrary family of universal hash functions.
Let T be an arbitrary nonempty subset of A with the cardinality T .
Then, for any a 2 T it holds that

jff 2 F : f(a) = f(a0) for some a0 2 T and a0 6= agj

jFj
�

T � 1

B
:

(7)
Proof: Since (7) is trivial if T = 1, we can assume that T � 2.

Fix F and T arbitrarily. Define

�f (a; a
0) =

1; if f(a) = f(a0)

0; otherwise
(8)

��f(a) =
1; if f(a) = f(a0) for some a0 2 T ; a0 6= a

0; otherwise
(9)

for f 2 F and a; a0 2 T . Then, in view of the definitions of �f(a; a0)
and ��f(a), we have

��f(a) �
a 2T ;a 6=a

�f(a; a
0); for all f 2 F and a 2 T : (10)

In addition, since F is universal, it holds that

f2F

�f(a; a
0) = jff 2 F : f(a) = f(a0)gj �

jFj

B
;

for all a; a0 2 T and a0 6= a: (11)

Hence, in view of (10) and (11) we have

jff 2 F : f(a) = f(a0) for some a0 2 T and a0 6= agj

=
f2F

��f(a)

�
f2F a 2T ;a 6=a

�f(a; a
0)

�
a 2T ;a 6=a

jFj

B

� jFj
T � 1

B

which is equivalent to (7)

We use the following lemma in the proof of Theorem 1-B). We prove
this lemma by using a combinatoric argument.

Lemma 2: LetF be an arbitrary family ofN -SU hash functions. Let
T be an arbitrary subset of A with the cardinality T . If 1 � T � N ,
then for any a 2 A it holds that

jff 2 F : f(a) = f(a0) for some a0 2 T and a0 6= agj

jFj

� 1� 1�
1

B

T�1

: (12)

Proof: We consider the case of T � 2 because (12) is trivial
if T = 1. Set A = fa1; a2; . . . ; aAg and B = fb1; b2; . . . ; bBg.
Without loss of generality, we can assume that T = fa1; a2; . . . ; aT g
and a = a1. Define

E = ff 2 F : f(a1) = f(ai) for some i = 2; 3; . . . ; Tg

Ej = ff 2 E : f(a1) = bjg; j = 1; 2; . . . ; B:
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Clearly, Ej ; j = 1; 2; . . . ; B, form a partition of E . Therefore, it holds
that

jEj =

B

j=1

jEj j: (13)

We evaluate jE1j first. Letting fTjgBj=1 be an arbitrary partition of T ,
define

F fTjg
B
j=1

= ff 2 F : f(a) = bj for all a 2 Tj and j = 1; 2; . . . ; Bg:

Since F is assumed to be N -SU and therefore T -SU from Proposition
1 and T � N , we have

F fTjg
B
j=1 �

jFj

BT
(14)

from Definition 3. It is important to notice the fact that E1 is the union of
F(fTjg

B
j=1) with respect to the partitions fTjgBj=1 satisfying a1 2 T1

and jT1j � 2.
We can enumerate the number of such partitions of T . In fact, a

simple observation tells us that the number of such partitions is equal
to BT�1 � (B � 1)T�1. To see this, we consider a partition f ~TjgBj=1
of T nfa1g and set T1 = ~T1 [ fa1g and Tj = ~Tj for j = 2; 3; . . . ; B.
Notice that the number of all the partitions f ~TjgBj=1 is equal to BT�1

and the number of all the partitions f ~TjgBj=1 satisfying ~T1 = � is equal
to (B� 1)T�1. Since jT1j � 2 if and only if j ~T1j � 1, and all the par-
titions fTjgBj=1 of T satisfying a1 2 T1 and jT1j � 2 are obtained in
this way, we can conclude that the number of all the partitions fTjgBj=1
satisfying a1 2 T1 and jT1j � 2 is equal to BT�1 � (B � 1)T�1.
Hence, it follows from (14) that

jE1j �
jFj

BT
[BT�1 � (B � 1)T�1]

=
jFj

B
1� 1�

1

B

T�1

: (15)

Obviously, the argument that establishes (15) is valid for evaluation
of jEj j for j = 2; 3; . . . ; B. Therefore, we have

jEj j �
jFj

B
1� 1�

1

B

T�1

; j = 1; 2; . . . ; B: (16)

Then, (13) and (16) yield

jEj �

B

j=1

jFj

B
1� 1�

1

B

T�1

= jFj 1� 1�
1

B

T�1

which establishes the claim of this lemma.

Proof of Theorem 1: First, we evaluate E[Pe] in the following
form:

E[Pe] =
f2F

1

jFj
a2A

PX(a)PrfX̂ 6= X jX = ag

� PrfX =2 T g

+
f2F

1

jFj
a2T

PX(a)PrfX̂ 6= X jX = ag: (17)

Notice that PrfX̂ 6= X jX = ag � ��f (a) for any given f 2 F and
a 2 T , where ��f (a) is defined in (9). Then, the second term on the
right-hand side of (17) is evaluated as

f2F

1

jFj
a2T

PX(a)PrfX̂ 6= X jX = ag

�
f2F

1

jFj
a2T

PX(a)��f(a)

=
a2T

PX(a)
jF(a)j

jFj
(18)

where F(a)
def
= ff 2 F : f(a) = f(a0) for some a0 2 T and

a0 6= ag.
Now, suppose that F is universal. Then, in view of Lemma 1, (18)

leads to

f2F

1

jFj
a2T

PX(a)PrfX̂ 6= X jX = ag � PrfX 2 T g
T � 1

B
:

(19)
By combining (17) with (19), we obtain the claim of Theorem 1-(A).
Similarly, application of Lemma 2 to the right-hand side of (18) yields
the claim of Theorem 1-(B).

Let us apply Theorem 1 for coding of a stationary discrete mem-
oryless source. Let X be a finite alphabet and X a random variable
on X subject to a probability distribution PX . Denote by H(X) the
entropy of X . Suppose that Xn = (X1;X2; . . . ; Xn) 2 Xn is a se-
quence of length n generated from the source. We set A = Xn and
B = f1; 2; . . . ; d2nReg for someR > 0, whereR specifies the coding
rate. Then, Theorem 1 yields the following corollary.

Corollary 1: Let 
 > 0 be an arbitrary constant. Let F be an ar-
bitrary family of universal hash functions defined for all n � 1. If
R > H(X), then there exists an integer n0 such that E[P

(n)
e ] � 
 for

all n � n0, where P (n)
e denotes the decoding error probability of Xn.

This corollary is easily obtained from Theorem 1-A). Since R >
H(X), we can choose an " > 0 satisfying R > H(X) + 2". We
define T as the typical set A(n)

" defined by

A(n)
" = xn 2 Xn :

1

n
log

1

PX (xn)
�H(X) � " :

It is well-known that PrfXn =2 A
(n)
" g ! 0 as n ! 1 and A

(n)
"

satisfies jA(n)
" j � 2n(H(X)+") for all n � 1 [4]. Hence, it follows

from Theorem 1-A) that

E P (n)
e � Pr Xn =2 A(n)

" + Pr Xn 2 A(n)
"

A
(n)
"

d2nRe

� Pr Xn =2 A(n)
" + 2�n"

! 0; as n!1: (20)

On the other hand, if F is 2n� -SU for some � > H(X), then we
can obtain the following smaller upper bound form Theorem 1-B)

E P (n)
e � Pr Xn =2 A(n)

"

+Pr Xn 2 A(n)
" 1� 1�

1

d2nRe

jA j

(21)

which goes to zero as n ! 1 because the right-hand side of (21) is
upper bounded by the right-hand side of (20).
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Corollary 1 can be extended to wide classes of sources with finite
alphabets. If Xn is an output from a stationary ergodic source, we can
also choose the typical set as T . For the case that Xn is an output of a
general source XXX = fXng1n=1 [10], the claim of Corollary 1 holds if
R > H(XXX), where

H(XXX) = p-lim sup
n!1

1

n
log

1

PX (Xn)
(22)

is the spectrum sup-entropy rate [10]. Here, for a sequence of real-
valued random variables fZng1n=1 the limsup in probability is defined
by

p-lim sup
n!1

Zn = inf � : lim
n!1

PrfZn � �g = 1

[10]. We can prove the result for a general source similarly to Corollary
1. We actually choose

Tn = x
n 2 Xn :

1

n
log

1

PX (xn)
� H(XXX) + " :

as T and use the fact that jTnj � 2n(H(XXX)+"), where " > 0 is a
constant satisfying R � H(XXX) + 2". Recall here that H(XXX) has the
operational meaning as the infimum of achievable rates of fixed-to-
fixed length coding with the vanishing decoding error probability [10].

IV. PERFORMANCE OF THE MINIMUM-ENTROPY DECODER

The encoder treated in the preceding section encodes a source output
X to a codeword Y = f(X) by using an f 2 F shared by the encoder
and the decoder. While F does not depend on the probability distri-
bution PX of X , a subset T used by the decoder depends on PX in
general for making E[Pe] small. In this section, we consider coding of
a discrete memoryless source and evaluate asymptotic behavior of the
decoding error probability under a universal decoder.

To this end, we fix a discrete memoryless source with a finite al-
phabet X determined by a probability distribution PX on X . For a
blocklength n � 1 denote the type of xn 2 Xn by Px . Let F be an
arbitrary family of universal hash functions, where every f 2 F is a
mapping from Xn to B

def
= f1; 2; . . . ; d2nReg.

Suppose that an encoder and a decoder share an f 2 F chosen
randomly subject to the uniform distribution. We use the same en-
coder given in the preceding section. In this section, however, we use
the minimum-entropy decoder [6]. That is, for a transmitted codeword
Yn

def
= f(Xn) the minimum-entropy decoder outputs

X̂
n = arg min

x 2f (Y )
H(Px )

where H(Px ) denotes the entropy of the type Px of xn. Ties can be
broken arbitrarily.

Denoting by P the set of all the probability distributions on X , we
define

G(R;PX) = min
Q 2P

[D(QX kPX) + jR�H(QX)j+]

where jtj+ = maxft; 0g, H(QX) denotes the entropy of QX 2
P and D(QX kPX) denotes the divergence. The function G(R;PX)
is known as an attainable error exponent of the bin coding [3], [6]
and the linear coding [5] for a single source. It is easily verified that
G(R;PX) > 0 if R > H(PZ) and G(R;PX) = 0 if R � H(PX).

The following theorem claims that the same attainable error expo-
nent appears in coding of a memoryless source based on an arbitrary
family of universal hash functions.

Theorem 2: LetF be an arbitrary family of universal hash functions.
Then, for any n � 1 it holds that

E P
(n)
e � (n+ 1)2jXj2�nG(R;P ) (23)

where E[ � ] denotes the expectation with respect to the random choice
of f 2 F subject to the uniform distribution.

Before giving the proof of Theorem 2, we briefly review well-known
properties of the types. See [4], [7] for more details of arguments using
the types. LetPn denote the set of all the types of elements in Xn. The
cardinality of Pn is known to satisfy

jPnj � (n+ 1)jXj: (24)

For any QX 2 Pn, denote the type class of QX by T (QX). Then, it
is known that jT (QX)j satisfies

1

(n+ 1)jXj
2nH(Q ) � jT (QX)j � 2nH(Q )

: (25)

Denote the probability that Xn 2 T (QX) by PX (T (QX)). Then,
we have

1

(n+ 1)jXj
2�nD(Q kP ) � PX (T (QX)) � 2�nD(Q kP )

:

(26)
Now, we are ready to prove Theorem 2.

Proof of Theorem 2: For given f 2 F and xn 2 Xn define

�f(x
n) =

1; if f(~xn) = f(xn) for some ~xn 2 Xn

satisfying ~xn 6= xn and H (P~x ) � H(Px )

0; otherwise
Then, it follows that

E P
(n)
e �

f2F

1

jFj
x 2X

PX (xn)�f(x
n)

=
x 2X

PX (xn)
jF(xn)j

jFj

�
x 2X

PX (xn)min
jLn(x

n)j

2nR
; 1 (27)

where

F(xn) = ff 2 F : f(~xn) = f(xn) for some ~xn 2 Ln(x
n)

and ~xn 6= x
ng

Ln(x
n) = f~xn 2 Xn : H(P~x ) � H(Px )g

and the first and the second inequalities in (27) follow from the def-
inition of the minimum entropy decoder and Lemma 1, respectively.
Since a standard argument on the type yields

jLn(x
n)j =

Q 2P :H(Q )�H(P )

jT (QX)j

� (n+ 1)jXj2nH(P ) (28)

(27) and (28) lead to

E P
(n)
e

�
Q 2P x 2T (Q )

PX (xn)

�min
(n+ 1)jXj2nH(P )

2nR
; (n+ 1)jXj

� (n+ 1)jXj

Q 2P

2�nD(Q kP )2�njR�H(Q )j

� (n+ 1)2jXj2�nG(R;P ) (29)
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where the last inequality in (29) follows from (26). This establishes
(23).

Next, consider the case where an arbitrarily family of jX jn-SU hash
functions, sayF1 in Example 1, is used asF in Theorem 2. Recall here
that Theorem 1-B) holds for any subset T for such a class. Obviously,
we can obtain

E P (n)
e �

x 2X

PX (xn) 1� 1�
1

d2nRe

jL (x )j

(30)

by applying Lemma 2 to the last inequality in (27). Then, a natural
question arises whether we can obtain an attainable error exponent that
is greater thanG(R;PX) or not. Unfortunately, the answer to this ques-
tion is negative. Letting Fn be the right-hand side of (30), we can ac-
tually prove that

lim
n!1

�
1

n
logFn = G(R;PX) (31)

which means that no attainable error exponent greater than G(R;PX)
is obtained from this approach. See the Appendix for the proof of (31).
By taking Examples 2 and 3 into account, we can intuitively understand
the reason why the attainable error exponent of bin coding coincides
with the attainable error exponent of linear coding.

V. PERFORMANCE OF OTHER DECODERS FOR A GENERAL SOURCE

In the preceding section we have analyzed the expectation of the de-
coding error probability of the minimum-entropy decoder for a discrete
memoryless source. In this section we consider a wide class of decoders
including universal decoders under no assumption on the source.

Hereafter, we use terminologies of information-spectrum methods
[10]. Let XXX = fXng1n=1 be a general source with a finite alphabet
X . Here, a general source is defined as a sequence of probability dis-
tributions on Xn not required to satisfy the consistency condition. En-
coding and decoding are defined for each n � 1. For defining an en-
coder and a decoder of blocklength n, we arbitrarily fix a family of
universal hash functions F . We assume that an encoder and a decoder
share an f 2 F that is chosen randomly subject to the uniform distri-
bution. We consider the same encoder as in Sections III and IV. That
is, for an output Xn from a source, the encoder outputs a codeword
Yn = f(Xn) 2 B

def
= f1; 2; . . . ; d2nReg and transmits Yn to the de-

coder, where R > 0 is a constant that determines the coding rate.
In this section, we define a decoder of blocklength n by using an

arbitrary mapping 'n : Xn ! f0; 1g�, where f0; 1g� means the set
of all the binary sequences of finite length. Denote by l('n(xn)) the
length of 'n(xn). We assume that 'n satisfies the Kraft inequality

x 2X

2�l(' (x )) � 1: (32)

We consider a decoder that outputs

X̂n = arg min
x 2f (Y )

l('n(x
n))

where ties can be broken arbitrarily.
The following gives an upper bound ofE[P

(n)
e ] that is dependent on

PX ;  n and R.

Theorem 3: LetXn be an arbitrary random variable taking values in
Xn. Let 'n be an arbitrary mapping from Xn to f0; 1g� satisfying the
Kraft inequality (32). Suppose thatF is an arbitrary family of universal

hash functions. If we use the encoder and the decoder described above,
then the decoding error probability P (n)

e satisfies

E P (n)
e �

x 2X

PX (xn)2�jnR�l(' (x ))j (33)

where E[ � ] denotes the expectation with respect to the random choice
of f 2 F subject to the uniform distribution.

Proof: Basic ideas for the proof of this theorem have already ap-
peared in the proofs of Theorems 1 and 2. In fact, similarly to (27) we
can obtain

E P (n)
e �

x 2X

PX (xn)min
jL' (xn)j

2nR
; 1 (34)

where

L' (xn) = f~xn 2 Xn : l('n(~x
n)) � l('n(x

n))g:

Notice here that we have

jL' (xn)j � 2l(' (x )); for all xn 2 Xn (35)

owing to the assumption that 'n satisfies the Kraft inequality (32). In
fact, it is easily checked that

1 �
~x 2X

2�l(' (~x ))

�
~x 2L (x )

2�l(' (~x ))

�
~x 2L (x )

2�l(' (x ))

� jL' (xn)j 2�l(' (x ))

for every xn 2 Xn, which yields (35). Thus, the combination of (34)
and (35) establishes the claim of this theorem.

Next, we explore a sufficient condition under whichE[P
(n)
e ] in The-

orem 3 converges to zero as n ! 1. To this end, for a sequence of
mapping '''

def
= f'ng

1
n=1 we define

L(XXX) = p-lim sup
n!1

1

n
l('n(X

n))

[11]. Then, Theorem 3 yields the following corollary.

Corollary 2: If R > L(XXX), then E[P
(n)
e ] converges to zero as

n ! 1.
Proof: By assumption, there exists a 
0 > 0 satisfying R �

L(XXX) + 2
0. Define

Vn = xn 2 Xn :
1

n
l('n(x

n)) � R� 
0 :

Then, in view of the definitions of L(XXX) and 
0 it holds that

PrfXn 2 Vng � Pr
1

n
l('n(X

n))� L(XXX) + 
0 ! 1;

as n!1

which implies that

lim
n!1

PrfXn =2 Vng = 0: (36)
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By using Theorem 3 we can evaluateE[P
(n)
e ] in the following manner:

E P (n)
e �

x 2V

PX (xn)2�jnR�l(' (x ))j

+
x =2V

PX (xn)2�jnR�l(' (x ))j

� 2�n
 PrfXn 2 Vng+PrfXn =2 Vng (37)

where the second inequality follows because nR � l('n(x
n)) �

n
0 > 0 for all xn 2 Vn and jnR � l('n(x
n))j+ � 0 for all

xn =2 Vn. Then, the claim of this corollary is immediate from (36)
and (37).

It is shown in [11] that if ''' = f'ng
1
n=1 is mean-optimal, i.e., '''

satisfies

lim
n!1

1

n
E[l('n(X

n))]�
1

n
H(Xn) = 0 (38)

then we haveL(XXX)=H(XXX), whereH(XXX) is defined in (22). Note that
the assumption on the uniform integrability of f 1

n
log 1

P (X )
g1n=1 is

satisfied becauseX is a finite alphabet. There are several examples of'
with the mean-optimality. The Shannon-Fano code (e.g., [4]) satisfies
(38) even ifXXX is a general source. For the case thatXXX is stationary and
ergodic, (38) is satisfied by a universal code such as the LZ78 code [19].
If XXX is stationary and memoryless, we can use the Lynch-Davisson
code [9], [13] as 'n. In this case, we can obtain a result similar to
Theorem 2 because 1

n
l('n(x

n)) � H(QX)+ jXj
n

log(n+1)+ 2
n

for
all xn 2 T (QX) and QX 2 Pn.

VI. CONCLUSION

The objective of this correspondence is the investigation of new con-
nections between source coding and two kinds of families of hash func-
tions known as the families of universal andN -strongly universal hash
functions. We have given a coding scheme using one of the two families
and have obtained an upper bound on the expectation of the decoding
error probability for each family. In particular, for the case of discrete
memoryless sources, we have developed an attainable error exponent
under the minimum-entropy decoder that coincides with the attain-
able error exponent by linear coding. We have also discussed coding
of sources without the memoryless assumption. A sufficient condition
under which the expectation of decoding error probability goes to zero
for a decoder in a certain class.

APPENDIX

PROOF OF (31)

Proof: We prove (31) by establishing both

lim inf
n!1

�
1

n
logFn � G(R; PX) (39)

lim sup
n!1

�
1

n
logFn � G(R;PX): (40)

Inequality (39) follows immediately. In fact, owing to the inequality
1 � (1 � u)m � mu for any integer m � 1 and u 2 (0; 1), the
right-hand side of (30) is upper bounded by the right-hand side of (27).
Hence, Theorem 2 guarantees that Fn � (n + 1)2jXj2�nG(R;P ),
which implies (39).

We need preparation for establishing (40). LetQ�X be the probability
distribution on X that attains the minimum of G(R;PX). Notice that
we can choose a sequence fQ(n)

X g1n=1 of probability distributions on
X satisfyingQ(n)

X 2 Pn for all n � 1 andQ(n)
X ! Q�X as n!1. In

particular, for each n � 1 we can choose Q(n)
X satisfying jQ(n)

X (x)�

Q�X(x)j � 1
n

for allx 2 X . Then, it holds that jH(Q
(n)
X )�H(Q�X)j =

O( 1
n
) under such a choice of fQ(n)

X g1n=1.
Now, we establish a lower bound of Fn in (31). Since Fn can be

written as

Fn =
Q 2P x 2T (Q )

PX (xn) 1� 1�
1

d2nRe

jL (x )j

and every term in the above summations is nonnegative, we have

Fn �

x 2T (Q )

PX (xn) 1� 1�
1

d2nRe

jL (x )j

: (41)

Notice that a standard argument using the types yields

jLn(x
n)j � T (Q

(n)
X )

�
1

(n+ 1)jXj
2nH(Q ); for all xn 2 T (Q(n)

X ) (42)

where the second inequality follows from (25). Then by combining
(41), (42), and (26) we have the following lower bound of Fn:

Fn �
1

(n+ 1)jXj
2�nD(Q kP )

� 1� 1�
1

2nR+1

2

: (43)

Hereafter, we consider the two cases A) R � H(Q�X) and B)
R < H(Q�X). Consider case A) first. By using the inequality
(1� u)m � exp[�mu] for all m � 0 and 0 � u � 1, we have

1� 1�
1

2nR+1

2

� 1� exp �
1

(n+ 1)jXj
2�n(R�H(Q ))�1

�
1

(n+ 1)jXj
2�n(R�H(Q ))�2 (44)

for all sufficiently largen, where the second inequality follows from the
inequality exp[�x] � 1 � x

2
for all 0 � x � ln 2. Here, notice that

1

(n+1)
2�n(R�H(Q ))�1 becomes arbitrarily close to zero even for

the case of R = H(Q�X) due to the choice of Q(n)
X ; n � 1. Therefore,

the combination of (43) and (44) yields

Fn �
1

(n+ 1)2jXj
2�n[D(Q kP )+R�H(Q )]�2

which, together with the continuity of D(QX kPX) + R � H(QX)
with respect to QX , establishes (40) for case A).

Next, we consider case B). In this case, since

2nR+1 �
1

(n+ 1)jXj
2nH(Q )

for all sufficiently large n, it holds that

1� 1�
1

2nR+1

2

� 1� 1�
1

2nR+1

2

! 1�
1

e
; as n!1:
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Hence, there exists a constant C > 0 such that

Fn �
C

(n+ 1)jXj
2�nD(Q kP )

; for all sufficiently large n

which, together with the continuity of D(QX kPX) with respect to
QX , establishes (40) for case (B).
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On Defining Partition Entropy by Inequalities

Ping Luo, Guoxing Zhan, Qing He,
Zhongzhi Shi, Senior Member, IEEE, and Kevin Lü

Abstract—Partition entropy is the numerical metric of uncertainty within
a partition of a finite set, while conditional entropy measures the degree of
difficulty in predicting a decision partition when a condition partition is
provided. Since two direct methods exist for defining conditional entropy
based on its partition entropy, the inequality postulates of monotonicity,
which conditional entropy satisfies, are actually additional constraints on
its entropy. Thus, in this paper partition entropy is defined as a function
of probability distribution, satisfying all the inequalities of not only par-
tition entropy itself but also its conditional counterpart. These inequality
postulates formalize the intuitive understandings of uncertainty contained
in partitions of finite sets. We study the relationships between these inequal-
ities, and reduce the redundancies among them. According to two different
definitions of conditional entropy from its partition entropy, the convenient
and unified checking conditions for any partition entropy are presented, re-
spectively. These properties generalize and illuminate the common nature
of all partition entropies.

Index Terms—Conditional entropy, inequality, partition entropy,
uncertainty.

I. INTRODUCTION

Learning is an important cognitive process that allows the making
of correct decisions and improves performance. From an information
theory point of view, learning can be seen as a reduction of uncertainty
and the amount by which the uncertainty is reduced can be an indicator
of the speed of learning [1]. Thus, partition entropy [2], measuring un-
certainty and impurity in a given partition of a finite set, is an important
concept in cognitive and computer science.

Conditional Entropy [2], defined based on its partition entropy, is
another significant concept. It describes the degree of difficulty in pre-
dicting a decision partition by a condition partition. It is also the mea-
sure of uncertainty left in a decision partition after a condition parti-
tion is provided. This concept is widely used in the field of Machine
Learning, as heuristics to guide the greedy search for suboptimal solu-
tions. For example, [3, Algorithm C4.5 ], which is a popular algorithm
for building a decision tree, uses the Shannon conditional entropy as
a metric to select the local “optimal” attribute to branch. In the algo-
rithm for attribute reduction of information view [4], the Shannon con-
ditional entropy is also selected as the measure of attribute importance
for decision predicting. In these algorithms, the one with the minimal
conditional entropy among all available options is chosen to continue
the following steps. Thus, only the relative magnitude of entropies for

Manuscript received November 23, 2005; revised December 18, 2006. This
work is supported by the National Science Foundation of China (No. 60435010,
90604017, 60675010), the 863 Project (No. 2006AA01Z128), National Basic
Research Priorities Programme (No. 2003CB317004), and the Nature Science
Foundation of Beijing (No. 4052025).

P. Luo is with the Key Laboratory of Intelligent Information Processing, Insti-
tute of Computing Technology, Chinese Academy of Sciences, Beijing 100080,
China (e-mail: ping.luo@gmail.com). He is also with the Graduate University
of the Chinese Academy of Sciences.

G. Zhan is with the Academy of Mathematics and Systems Sciences, Chinese
Academy of Sciences, Beijing 100080, China. He is also with the Graduate Uni-
versity of the Chinese Academy of Sciences.

Q. He and Z. Shi are with the Key Laboratory of Intelligent Information
Processing, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing 100080, China.

K. Lü is with the Brunel University, Uxbridge UB8 3PH, U.K.
Communicated by V. A. Vaishampayan, Associate Editor for At Large.
Digital Object Identifier 10.1109/TIT.2007.903124

0018-9448/$25.00 © 2007 IEEE

Authorized licensed use limited to: Tsukuba Univ Lib. Downloaded on March 26, 2009 at 01:38 from IEEE Xplore.  Restrictions apply.


