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A REMARK ON WELL-POSEDNESS FOR HYPERBOLIC

EQUATIONS WITH SINGULAR COEFFICIENTS

By

Daniele del Santo and Martino Prizzi

Abstract. We prove some Cy and Gevrey well-posedness results for

hyperbolic equations with singular coe‰cients.

1. Introduction

This work is devoted to the study of the well-posedness of the Cauchy

problem for a linear hyperbolic operator whose coe‰cients depend only on time.

We consider the equation

utt �
Xn
i; j¼1

aijðtÞuxixj ¼ 0ð1:1Þ

in ½0;T � � Rn, with initial data

uð0; xÞ ¼ u0ðxÞ; utð0; xÞ ¼ u1ðxÞð1:2Þ

in Rn. The matrix ðaijÞ is supposed to be real and symmetric. Setting

aðt; xÞ :¼
Xn
i; j¼1

aijðtÞxixj=jxj2; ðt; xÞ A ½0;T � � ðRnnf0gÞ;ð1:3Þ

we assume that að� ; xÞ A L1ð0;TÞ for all x A Rnnf0g.

We suppose that the equation (1.1) is hyperbolic i.e.

aðt; xÞb l0 b 0ð1:4Þ

for all ðt; xÞ A ½0;T � � ðRnnf0gÞ.
In the strictly hyperbolic case (i.e. l0 > 0) it is well known that if the
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coe‰cients aij are Lipschitz-continuous then the Cauchy problem (1.1), (1.2) is

well-posed in Sobolev spaces. In the same case if the aij’s are Log-Lipschitz-

continuous or Hölder-continuous of index a, (1.1), (1.2) is well-posed in Cy or

in the Gevrey space gðsÞ for s < 1=ð1 � aÞ respectively (see [1]). In the weakly

hyperbolic case (i.e. l0 ¼ 0) if the coe‰cients are Ck;a then the problem (1.1),

(1.2) is gðsÞ-well-posed for s < 1 þ ðk þ aÞ=2 (see [4]). Some counter examples

show that all these results are sharp (see also [5]).

Recently Colombini, Del Santo and Kinoshita have considered the same

problem for operators having coe‰cients which are C1 on ½0;T �nft0g with a

singularity concentrated at t0. In this situation, under the main assumptions that

jt0 � �jpa 0ð� ; xÞ ¼ bð� ; xÞ A Lyð0;TÞ for all x A Rnnf0g

jt0 � �jrað� ; xÞ ¼ að� ; xÞ A Lyð0;TÞ for all x A Rnnf0gð1:5Þ

it is possible to show that the Cauchy problem (1.1), (1.2) is gðsÞ-well-posed, the

value of s depending on p and r (see [2] and [3]) (here and in the following ‘‘ 0’’

denotes the di¤erentiation with respect to t).

The aim of the present work is to improve the results of [2] and [3] allowing

the function b in (1.5) to be in a Lq space and removing the growth assumption

on a. We make the following assumptions: let 1a qaþy and pb 0 and let

t0 A ½0;T �; suppose that

(H1) að� ; xÞ A 7
e>0

W 1;1ð�0; t0 � e½U �t0 þ e;T ½Þ for all x A Rnnf0g;

(H2) jt0 � �jpa 0ð� ; xÞ ¼ bð� ; xÞ A Lqð0;TÞ for all x A Rnnf0g.

In the weakly hyperbolic case the results are the following.

Theorem 1. Assume that 3a ðpþ 1=qÞ. Then the Cauchy problem (1.1),

(1.2) is gðsÞ-well-posed for 1a s <
ðpþ1=qÞ�3

2

ðpþ1=qÞ�2
. If moreover

jt0 � �j rað� ; xÞ ¼ að� ; xÞ A Lsð0;TÞ for all x A Rnnf0g;ð1:6Þ

with rb 0, 1a saþy and ðrþ 1=sÞa 1, then the Cauchy problem (1.1), (1.2) is

gðsÞ-well-posed for 1a s <
ðpþ1=qÞ�3

2
ðrþ1=sÞ

ðpþ1=qÞ�ðrþ1=sÞ�1
.

Theorem 2. Assume that ðpþ 1=qÞ < 3. Then the Cauchy problem (1.1),

(1.2) is gðsÞ-well-posed for all 1a s < 3
2 .

The result concerning the strictly hyperbolic case are contained in the fol-

lowing theorems.
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Theorem 3. Assume that 1 < ðpþ 1=qÞ < 3. Moreover, assume that l0 > 0.

Then the Cauchy problem (1.1), (1.2) is gðsÞ-well-posed for all 1a s <
ðpþ1=qÞ

ðpþ1=qÞ�1
.

Theorem 4. Assume that ðpþ 1=qÞa 1. Moreover, assume that l0 > 0. Then

the Cauchy problem (1.1), (1.2) is Cy-well-posed.

Remark 1. Adapting to the present situation some counter examples con-

tained in [4], [2], and [3] it is possible to see that the results of Theorems 1–4

are optimal. Let us show this in some detail in the case of Theorem 1. Sup-

pose p0 þ 1=q0 ¼ 3. In this case
ðp0þ1=q0Þ�3

2

ðp0þ1=q0Þ�2
¼ ðp0þ1=q0Þ�3

2
ðr0þ1=s0Þ

ðp0þ1=q0Þ�ðr0þ1=s0Þ�1
¼ 3

2 ; consequently

Theorem 2 in [4] shows that this value of the Gevrey index cannot be improved.

Consider next the case that p0 þ 1=q0 > 3 and ðr0 þ 1=s0Þa 1. Let s > s0 ¼
ðp0þ1=q0Þ�3

2
ðr0þ1=s0Þ

ðp0þ1=q0Þ�ðr0þ1=s0Þ�1
. We fix q1 > q0 and s1 > s0 in such a way that p0 þ 1=q1 > 3,

r0 þ 1=s1 < 1 and s0 < s1 :¼ ðp0þ1=q1Þ�3
2
ðr0þ1=s1Þ

ðp0þ1=q1Þ�ðr0þ1=s1Þ�1
< s. From Theorem 4 in [3] we

have that there exists a function a : ½0; 1½ ! ½1=2;þy½ such that a A Cyð½0; 1½Þ
and

ð1 � tÞp0þ1=q1a 0ðtÞ A Ly; ð1 � tÞr0þ1=s1aðtÞ A Ly;

and there exist u0; u1 A gðsÞ for all s > s1 such that the Cauchy problem

utt � aðtÞuxx ¼ 0; uð0; xÞ ¼ u0ðxÞ; utð0; xÞ ¼ u1ðxÞ;ð1:7Þ

has no solution in W 2;1ð½0; 1�;D 0ðsÞðRÞÞ for all s > s1. Consequently

ð1 � tÞp0a 0ðtÞ A Lq0 ; ð1 � tÞr0aðtÞ A Ls0 ;

u0; u1 A gðsÞ and the Cauchy problem (1.7) does not have a solution in

W 2;1ð½0; 1�;D 0ðsÞðRÞÞ.

Remark 2. Let us remark that Theorem 1 is a nontrivial improvement of

Theorem 2 in [3] also in the case of q ¼ y. In fact the growth condition on a is

removed and the result is sharp (see [3, Th. 4]).

2. Proof of Theorems 1–4

As a preliminary step, let us observe that, since the coe‰cients aij are real

integrable functions, the Cauchy problem (1.1), (1.2) is well posed in A 0ðRnÞ, the

space of real analytic functionals. Moreover, if the initial data vanish in a ball,

then the solution vanishes in a cone, whose slope depends on the coe‰cients aij .
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Therefore it will be su‰cient to show that, under the hypotheses of each theorem,

if u0 and u1 have compact support then the corresponding solution u is not only

in W 2;1ð½0;T �;A 0ðRnÞÞ, but it belongs to a Gevrey space in the x variable. Our

main tools in doing this will be the Paley-Wiener theorem (in the version of [1,

p. 517], to which we refer here and throughout) and some energy estimates.

Denoting by v the Fourier transform of u with respect to x, equation (1.1)

reads

v 00ðt; xÞ þ aðt; xÞjxj2vðt; xÞ ¼ 0:ð2:1Þ

Let e be a positive parameter and for each e let ae : ½0;T � � ðRnnf0gÞ ! R be a

strictly positive real function such that aeð� ; xÞ A W 1;1ð0;TÞ for all x A Rnnf0g.

We define the approximate energy of v by

Eeðt; xÞ :¼ aeðt; xÞjxj2jvðt; xÞj2 þ jv 0ðt; xÞj2; ðt; xÞ A ½0;T � � ðRnnf0gÞ:ð2:2Þ

Di¤erentiating Ee with respect to t and using (2.1) we get

E 0
eðt; xÞ ¼ a 0

eðt; xÞjxj
2jvðt; xÞj2 þ 2aeðt; xÞjxj2 Reðv 0ðt; xÞvðt; xÞÞ

þ 2 Reðv 00ðt; xÞv 0ðt; xÞÞ

a
ja 0

eðt; xÞj
aeðt; xÞ

þ jaeðt; xÞ � aðt; xÞj
aeðt; xÞ1=2

jxj
 !

Eeðt; xÞ:

By Gronwall’s lemma we obtain

Eeðt; xÞaEeð0; xÞ exp

ðT
0

ja 0
eðt; xÞj
aeðt; xÞ

dtþ jxj
ðT

0

jaeðt; xÞ � aðt; xÞj
aeðt; xÞ1=2

dt

 !
ð2:3Þ

for all t A ½0;T � and for all x A Rn, jxjb 1.

Now we are able to give the

Proof of Theorem 1. First of all, observe that condition (1.6) is always

satisfied at least with r ¼ 0 and s ¼ 1 (recall that aij A L1ð0;TÞ).
Since u0; u1 A gðsÞ VCy

0 , the Paley-Wiener theorem ensures that there exist

M; d > 0 such that

jvð0; xÞj2 þ jv 0ð0; xÞj2 aM expð�djxj1=sÞð2:4Þ

for all x A Rn, jxjb 1. To verify that u A W 2;1ð½0;T �; gðsÞÞ it is su‰cient to show

that there exist M 0; d 0 > 0 such that
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jvðt; xÞj2 þ jv 0ðt; xÞj2 aM 0 expð�d 0jxj1=sÞð2:5Þ

for all t A ½0;T � and for all x A Rn, jxjb 1. We consider first the case t0 ¼ T . For

e A �0;T �, we set

aeðt; xÞ :¼
aðt; xÞ þ e2�ðrþ1=sÞðT � tÞ�2 for 0a taT � e

e�ðzþrÞaðt; xÞðT � tÞzþr þ e�ðrþ1=sÞ for T � ea taT

(
ð2:6Þ

where z is any positive number such that

z > maxf1=s; ðpþ 1=qÞ � r� 1g:ð2:7Þ

Then

aeðt; xÞ ¼
aðt; xÞðT � tÞ�r þ e2�ðrþ1=sÞðT � tÞ�2 for 0a taT � e

e�ðzþrÞaðt; xÞðT � tÞz þ e�ðrþ1=sÞ for T � ea taT

(
ð2:8Þ

and

ð2:9Þ
a 0
eðt; xÞ ¼

bðt; xÞðT � tÞ�p � 2e2�ðrþ1=sÞðT � tÞ�3 for 0a taT � e

e�ðzþrÞðbðt; xÞðT � tÞzþr�p � ðzþ rÞaðt; xÞðT � tÞz�1Þ for T � ea taT

(

Our choice of z implies that aeð� ; xÞ A W 1;1ð0;TÞ for all x A Rnnf0g. By (2.8) and

(2.9) we get

ðT
0

ja 0
eðt; xÞj

aeðt; xÞ
dta

ðT�e

0

jbðt; xÞjðT � tÞ�p

e2�ðrþ1=sÞðT � tÞ�2
dt

þ
ðT�e

0

2e2�ðrþ1=sÞðT � tÞ�3

e2�ðrþ1=sÞðT � tÞ�2
dt

þ
ðT
T�e

e�ðzþrÞjbðt; xÞjðT � tÞzþr�p

e�ðrþ1=sÞ dt

þ
ðT
T�e

e�ðzþrÞðzþ rÞjaðt; xÞjðT � tÞz�1

e�ðrþ1=sÞ dt

The choice of z allows us to use Hölder inequality; an easy computation shows

that ðT
0

ja 0
eðt; xÞj

aeðt; xÞ
dtaC 0ð1 þ jlog ejÞe�ð pþ1=qÞþðrþ1=sÞþ1;ð2:10Þ

where C 0 is a constant depending only on C; r; s; p; q and z. On the other hand,

A remark on well-posedness for hyperbolic equations 193



ðT
0

jaeðt; xÞ � aðt; xÞj
aeðt; xÞ1=2

dt ¼
ðT�e

0

e2�ðrþ1=sÞðT � tÞ�2

e1�ð1=2Þðrþ1=sÞðT � tÞ�1
dt

þ
ðT
T�e

e�ðzþrÞaðt; xÞðT � tÞz

e�ð1=2Þðrþ1=sÞ dt

þ
ðT
T�e

e�ðrþ1=sÞ

e�ð1=2Þðrþ1=sÞ dtþ
ðT
T�e

aðt; xÞðT � tÞ�r

e�ð1=2Þðrþ1=sÞ dt:

The first three summands on the right hand side can be estimated again by using

Hölder inequality. In order to estimate the fourth summand, we shall distinguish

the case ðrþ 1=sÞ < 1 and ðrþ 1=sÞ ¼ 1. In the first case, we use once more

Hölder inequality; in the second case, we use the fact that aðt; xÞðT � tÞ�r ¼
aðt; xÞ A L1ð0;TÞ. At the end, we get

ðT
0

jaeðt; xÞ � aðt; xÞj
aeðt; xÞ1=2

dtaC 00ð1 þ jlog ejÞe�ð1=2Þðrþ1=sÞþ1;ð2:11Þ

where C 00 is a constant depending only on C; r; s; p; q and z. By (2.3), (2.10) and

(2.11) we obtain

Eðt; xÞaEð0; xÞ expð ~CCð1 þ jlog ejÞðe�ðpþ1=qÞþðrþ1=sÞþ1 þ jxje�ð1=2Þðrþ1=sÞþ1ÞÞð2:12Þ

for all t A ½0;T � and for all x A Rn, xb 1, where ~CC is a positive constant

depending only on C; r; s; p; q and z.

Now, by (2.2) and (2.6), we have

Eeð0; xÞa ðað0; xÞ þ T�ðrþ1=sÞÞjxj2jvð0; xÞj2 þ jv 0ð0; xÞj2ð2:13Þ

and

Eeðt; xÞbT�2e2�ðrþ1=sÞjxj2jvðt; xÞj2 þ jv 0ðt; xÞj2:ð2:14Þ

Then choosing e :¼ jxj�½ðpþ1=qÞ�ð3=2Þðrþ1=sÞ��1

we deduce

T�2jxj2�ð2�ðrþ1=sÞÞ=ððpþ1=qÞ�ð3=2Þðrþ1=sÞÞjvðt; xÞj2 þ jv 0ðt; xÞj2

a ð ~KK jxj2jvð0; xÞj2 þ jv 0ð0; xÞj2Þ

� expð ~CCð1 þ jlogjxj jÞjxjððpþ1=qÞ�ðrþ1=sÞ�1Þ=ððpþ1=qÞ�ð3=2Þðrþ1=sÞÞÞ:

Using the Paley-Wiener theorem, the well-posedness follows for all 1a s <
ðpþ1=qÞ�3

2
ðrþ1=sÞ

ðpþ1=qÞ�ðrþ1=sÞ�1
.

If t0 ¼ 0, for e A �0;T � we set
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aeðt; xÞ :¼
e�ðzþrÞaðt; xÞtzþr þ e�ðrþ1=sÞ for 0a ta e

aðt; xÞ þ e2�ðrþ1=sÞt�2 for ea taT

�
ð2:15Þ

where z satisfies (2.7). Our choice of z implies that aeð� ; xÞ A W 1;1ð0;TÞ for all

x A Rnnf0g. So, in particular, aeð� ; xÞ is continuous on ½0;T �. Arguing as before,

we obtain (2.12). An easy computation shows that jaðt; xÞja ~KKt1�ðpþ1=qÞ for all

x A Rnnf0g. It follows that

aeð0; xÞ ¼ lim
t!0

aeðt; xÞ ¼ lim
t!0

ðe�ðzþrÞaðt; xÞtzþr þ e�ðrþ1=sÞÞ

a ~KK lim sup
t!0

ðe�ðzþrÞtzþrþ1�ðpþ1=qÞ þ e�ðrþ1=sÞÞ:

By (2.7) we deduce that aeð0; xÞa ~KKe�ðrþ1=sÞ. It follows that

Eeð0; xÞa ~KKe�ðrþ1=sÞjxj2jvð0; xÞj2 þ jv 0ð0; xÞj2:ð2:16Þ

Moreover, we have also

Eeðt; xÞbT�2e2�ðrþ1=sÞjxj2jvðt; xÞj2 þ jv 0ðt; xÞj2:ð2:17Þ

Then, choosing again e :¼ jxj�½ðpþ1=qÞ�ð3=2Þðrþ1=sÞ��1

, we deduce

jxj2�ð2�ðrþ1=sÞÞ=ððpþ1=qÞ�ð3=2Þðrþ1=sÞÞjvðt; xÞj2 þ jv 0ðt; xÞj2

a ð ~KK jxj2þðrþ1=sÞ=ððpþ1=qÞ�ð3=2Þðrþ1=sÞÞjvð0; xÞj2

þ jv 0ð0; xÞj2Þ expð ~CCð1 þ jlogjxj jÞjxjððpþ1=qÞ�ðrþ1=sÞ�1Þ=ððpþ1=qÞ�ð3=2Þðrþ1=sÞÞÞ:

Using the Paley-Wiener theorem, the well-posedness follows again for all 1a s <
ðpþ1=qÞ�3

2
ðrþ1=sÞ

ðpþ1=qÞ�ðrþ1=sÞ�1
.

Finally, if t0 A �0;T ½, it will be su‰cient to solve first the Cauchy problem in

½0; t0�, then to solve the problem in ½t0;T � with the initial data obtained from the

previous one and finally to glue together the two solutions. r

In order to prove Theorem 2, we proceed exactly like in the proof of

Theorem 1. In this case the role of condition (1.6) is played by the estimate

aðt; xÞaC 0jt� t0j�ðpþ1=qÞþ1 for all x A Rnnf0g;ð2:18Þ

which is a direct consequence of condition (H2). The function aeð� ; xÞ is defined

by

aeðt; xÞ :¼
aðt; xÞ þ e3�ðpþ1=qÞðT � tÞ�2 for 0a taT � e

aðT � e; xÞ þ e1�ðpþ1=qÞ for T � ea taT

(
ð2:19Þ
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if t0 ¼ T and by

aeðt; xÞ :¼
aðe; xÞ þ e1�ðpþ1=qÞ for 0a ta e

aðt; xÞ þ e3�ðpþ1=qÞt�2 for ea taT

�
ð2:20Þ

if t0 ¼ 0. Arguing like in the proof of Theorem 1, we getðT
0

ja 0
eðt; xÞj

aeðt; xÞ
dtaC 00ð1 þ jlog ejÞeðpþ1=qÞ�3;ð2:21Þ

and ðT
0

jaeðt; xÞ � aðt; xÞj
aeðt; xÞ1=2

dtaC 00ð1 þ jlog ejÞe�ð1=2Þðpþ1=qÞþ3=2ð2:22Þ

and the conclusion follows by choosing e :¼ jxj�ð2=3Þ½3�ðpþ1=qÞ��1

.

Theorem 3 is the strictly hyperbolic version of Theorem 2. We define again

ae by (2.19) and (2.20), but in this case the positive lower bound for aðt; xÞ allows

us to obtain better estimates for
Ð T

0

ja 0
eðt;xÞj
aeðt;xÞ

dt. Let us consider, for example, the

case t0 ¼ T . First observe that, by rescaling the x variable if necessary, we can

always assume that l0 ¼ 1. Then we can minorize aeðt; xÞ by the constant 1 on

½0;T � eð1=2Þ½3�ðpþ1=qÞ�� and by e3�ðpþ1=qÞðT � tÞ�2 on ½T � eð1=2Þ½3�ðpþ1=qÞ�;T � e�.
So we obtain thatðT

0

ja 0
eðt; xÞj

aeðt; xÞ
dtaC 00ð1 þ jlog ejÞeð1=2Þððpþ1=qÞ�1Þððpþ1=qÞ�3Þ:ð2:23Þ

The conclusion follows by choosing e :¼ jxj�2½pþ1=q��1½3�ðpþ1=qÞ��1

.

Finally, we give the

Proof of Theorem 4. Since u0; u1 A Cy
0 , the Paley-Wiener theorem ensures

that for all z > 0 there exists Mz > 0 such that

jvð0; xÞj2 þ jv 0ð0; xÞj2 aMzjxj�zð2:24Þ

for all x A Rn, jxjb 1. To verify that u A W 2;1ð½0;T �;Cy
0 Þ it is su‰cient to show

that for all h > 0 there exists Mh > 0 such that

jvðt; xÞj2 þ jv 0ðt; xÞj2 aMhjxj�hð2:25Þ

for all t A ½0;T � and for all x A Rn, jxjb 1. We give the details only in the case

t0 ¼ T . If q ¼ 1, then necessarily p ¼ 0. This means that að� ; xÞ A W 1;1ð0;TÞ and

it is well known that this is enough to detect Cy-well-posedness of the Cauchy

problem (1.1), (1.2). If q > 1, for e A �0;T �, we set

Daniele Del Santo and Martino Prizzi196



aeðt; xÞ :¼
aðt; xÞ for 0a taT � e

aðT � e; xÞ for T � ea taT

�
ð2:26Þ

Now observe that

jaðt; xÞja jað0; xÞj þ
ð t

0

ja 0ðt; xÞj dta jað0; xÞj þ
ð t

0

bðt; xÞðT � tÞ�p
dt

a jað0; xÞj þ kbð� ; xÞkLq

ð t
0

ðT � tÞ�pq 0
dt

� �1=q 0

aCð1 þ jlogðT � tÞj1=q
0
Þ

An easy computation shows that

ðT
0

ja 0
eðt; xÞj dtaC 0jlog ej1=q

0
ð2:27Þ

and ðT
0

jaeðt; xÞ � aðt; xÞj dtaC 0ejlog ej1=q
0
:ð2:28Þ

Then we deduce by (2.3) that

jxj2jvðt; xÞj2 þ jv 0ðt; xÞj2ð2:29Þ

a ðað0; xÞjxj2jvð0; xÞj2 þ v 0ð0; xÞj2Þ

� expðC 0jlog ej1=q
0
þ C 0jxjejlog ej1=q

0
Þ:

Here, for simplicity, we have assumed that l0 ¼ 1. Choosing e :¼ jxj�1, we obtain

jxj2jvðt; xÞj2 þ jv 0ðt; xÞj2ð2:30Þ

a ðað0; xÞjxj2jvð0; xÞj2 þ jv 0ð0; xÞj2Þ expðC 0jlogjxj j1=q
0
Þ:

Now, for jxjb e, we have jlogjxj j1=q
0
a jlogjxj j, and hence

jxj2jvðt; xÞj2 þ jv 0ðt; xÞj2 a ðað0; xÞjxj2jvð0; xÞj2 þ jv 0ð0; xÞj2ÞjxjC
0
:ð2:31Þ

By the Paley-Wiener theorem, the well-posedness in Cy
0 follows. r
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