CHARACTERIZING MANIFOLDS MODELED ON CERTAIN DENSE SUBSPACES OF NON-SEPARABLE HILBERT SPACES

By

Katsuro SAKAI and Masato YAGUCHI

Abstract. For an infinite set Γ , let $\ell_2^f(\Gamma)$ be the linear span of the canonical orthonormal basis of the Hilbert space $\ell_2(\Gamma)$, that is,

 $\ell_2^f(\Gamma) = \{ x \in \ell_2(\Gamma) \mid x(\gamma) = 0 \text{ except for finitely many } \gamma \in \Gamma \}.$

We denote $\ell_2^f = \ell_2^f(N)$. Let $Q = [-1, 1]^{\omega}$ be the Hilbert cube. In this paper, we give characterizations of manifold modeled on the following spaces: $\ell_2(\Gamma) \times \ell_2^f$, $\ell_2^f(\Gamma)$ and $\ell_2^f(\Gamma) \times Q$, where $\ell_2(\Gamma) \times \ell_2$ and $\ell_2(\Gamma) \times Q$ are homeomorphic to $\ell_2(\Gamma)$. Our results are obtained by suitable alteration and modification of the separable case due to Bestvina and Mogilski.

1. Introduction

Given a space E, an E-manifold is a topological manifold modeled on E, that is, a paracompact Hausdorff space such that each point has an open neighborhood which is homeomorphic to (\approx) an open set in E. In [16] (cf. [17]), Toruńczyk gave a characterization of $\ell_2(\Gamma)$ -manifolds, where $\ell_2(\Gamma)$ is the Hilbert space of square-summable real-valued function on an infinite set Γ . Let $\ell_2^f(\Gamma)$ be the linear span of the canonical orthonormal basis of $\ell_2(\Gamma)$, that is,

$$\ell_2^f(\Gamma) = \{ x \in \ell_2(\Gamma) \, | \, x(\gamma) = 0 \text{ except for finitely many } \gamma \in \Gamma \}.$$

In case $\Gamma = N$, we denote $\ell_2^f(N) = \ell_2^f$ as well as $\ell_2(N) = \ell_2$. Let $Q = [-1, 1]^{\omega}$ be

¹⁹⁹¹ Mathematics Subject Classification. 57N20.

Key words and phrases. Infinite-dimensional manifold, ANR, strong Z_{σ} -space, strongly universal, $\ell_2(\Gamma), \ \ell_2^f(\Gamma), \ \ell_2^f(\Gamma) \times Q, \ \ell_2(\Gamma) \times \ell_2^f.$ The results in this paper are contained in the mather's thesis of the second author.

Received September 12, 2001.

Revised January 30, 2002.

the Hilbert cube. As well-known, the separable Hilbert space ℓ_2 is homeomorphic to the psuedo-interior $s = (-1, 1)^{\omega}$ of Q,

$$\ell_2^f \approx \sigma = \{x \in s \mid x(i) = 0 \text{ except for finitely many } i \in N\} \text{ and}$$
$$\ell_2^f \times Q \approx \ell_2^Q = \{x \in \ell_2 \mid \sup_{i \in N} |ix(i)| < \infty\}$$
$$\approx \Sigma = \{x \in Q \mid \sup_{i \in N} |x(i)| < 1\} \approx B(Q) = Q \setminus s.$$

Notice that ℓ_2^Q is a dense subspace of ℓ_2 . By Mogilski [8], ℓ_2^f - and $\ell_2^f \times Q$ -manifolds were characterized. Furthermore, these were generalized to manifolds modeled on various dense subspaces of ℓ_2 by Bestvina and Mogilski [1]. In particular, $\ell_2 \times \ell_2^f$ -manifolds were characterized in addition to ℓ_2^f - and $\ell_2^f \times Q$ -manifolds.

In this paper, these results are extended to the non-separable case, that is, we characterize $\ell_2(\Gamma) \times \ell_2^f$, $\ell_2^f(\Gamma)$ - and $\ell_2^f(\Gamma) \times Q$ -manifolds for an arbitrary infinite set Γ . One should note that $\ell_2(\Gamma) \times \ell_2^f$ and $\ell_2^f(\Gamma) \times Q$ are regarded as dense subspace of $\ell_2(\Gamma)$. In fact, since $X \times \ell_2(\Gamma) \approx \ell_2(\Gamma)$ for any completely metrizable AR X with weight $w(X) \leq \operatorname{card} \Gamma$ [13], we have

$$\ell_2(\Gamma) \approx \ell_2(\Gamma) \times \ell_2 \approx \ell_2(\Gamma) \times Q.$$

For each open cover \mathscr{U} of Y, two maps $f, g: X \to Y$ are \mathscr{U} -close (or f is \mathscr{U} -close to g) if each $\{f(x), g(x)\}$ is contained in some $U \in \mathscr{U}$. A closed set $A \subset X$ is called a (*strong*) Z-set in X provided, for each open cover \mathscr{U} of X, there is a map $f: X \to X$ such that f is \mathscr{U} -close to id_X and $f(X) \cap A = \emptyset$ (cl $f(X) \cap A = \emptyset$). When X is an ANR, a closed set A is a Z-set in X if and only if every map $f: \mathbf{I}^k \to X$ ($k \ge 0$) can be approximated by maps $g: \mathbf{I}^k \to X \setminus A$ (i.e., for each open cover \mathscr{U} of X, there is a map $g: \mathbf{I}^k \to X \setminus A$ which is \mathscr{U} -close to f). The union of countably many (strong) Z-sets in X is called a (strong) Z_{σ} -set in X. A Z-embedding is an embedding whose image is a Z-set.

A space X is said to be universal for a class \mathscr{C} (simply, \mathscr{C} -universal) if every map $f: C \to X$ of $C \in \mathscr{C}$ is approximated by Z-embeddings. It is said that X is strongly universal for \mathscr{C} (simply, strongly \mathscr{C} -universal) when the following condition is satisfied:

 $(\mathfrak{su}_{\mathscr{C}})$ for each $C \in \mathscr{C}$ and each closed set $D \subset C$, if $f : C \to X$ is a map such that f|D is a Z-embedding, then, for each open cover \mathscr{U} of X, there is a Z-embedding $h : C \to X$ such that h|D = f|D and h is \mathscr{U} -close to f. The following is our main result:

MAIN THEOREM. Let X be a connected metrizable space and Γ an infinite set with card $\Gamma = \tau$.

- (1) X is homeomorpic to $\ell_2(\Gamma) \times \ell_2^f$ (or an $\ell_2(\Gamma) \times \ell_2^f$ -manifold) if and only if X is an AR (or an ANR) with $w(X) = \tau$, X is a σ -completely metrizable strong Z_{σ} -space and strongly universal for the class of completely metrizable spaces with weight $\leq \tau$.
- (2) X is homeomorpic to $\ell_2^f(\Gamma)$ (or an $\ell_2^f(\Gamma)$ -manifold) if and only if X is an AR (or an ANR) with $w(X) = \tau$, X is a strongly countable-dimensional σ -locally compact strong Z_{σ} -space and strongly universal for the class of strongly countable-dimensional locally compact metrizable spaces with weight $\leq \tau$.
- (3) X is homeomorpic to $\ell_2^f(\Gamma) \times Q$ (or an $\ell_2^f(\Gamma) \times Q$ -manifold) if and only if X is an AR (or an ANR) with $w(X) = \tau$, X is a σ -locally compact strong Z_{σ} -space and strongly universal for the class of locally compact metrizable spaces with weight $\leq \tau$.

The above result can be obtained by suitable alteration and modification of [1]. However, one should remind that some arguments in [1] depend on separability (e.g., Lemma 1.4, Propositions 1.7 and 2.3). Thus, we need to take different approaches to obtain non-separable versions of some results in [1].

2. Preliminaries

Throughout of the paper, let τ be an infinite cardinal and Γ an infinite set with card $\Gamma = \tau$.

Let \mathfrak{M} be the class of all metrizable spaces. For a class $\mathscr{C} \subset \mathfrak{M}$, we denote by $\mathscr{C}(\tau)$ the subclass of \mathscr{C} consisting of all spaces $X \in \mathscr{C}$ with weight $w(X) \leq \tau$. It is said that

- \mathscr{C} is topological if $X \in \mathscr{C}$, $X \approx Y \Rightarrow Y \in \mathscr{C}$,
- \mathscr{C} is closed (resp. open) hereditary if $X \in \mathscr{C}$, $A \subset X$ is closed (resp. open) in $X \Rightarrow A \in \mathscr{C}$,
- \mathscr{C} is additive if $X = X_1 \cup X_2$ and $X_1, X_2 \in \mathscr{C}$ are closed in $X \Rightarrow X \in \mathscr{C}$.

By \mathscr{C}_{σ} , we denote the class consisting of all metrizable spaces which can be expressed as countable unions of closed subspaces contained in \mathscr{C} .

It is convenient to use the notation of [13]:

$$E_1(\Gamma) = \ell_2(\Gamma), \quad E_2(\Gamma) = \ell_2(\Gamma) \times \ell_2^f,$$

$$E_3(\Gamma) = \ell_2^f(\Gamma), \quad E_4(\Gamma) = \ell_2^f(\Gamma) \times Q,$$

 \mathfrak{M}_1 = the class of completely metrizable spaces,

 \mathfrak{M}_2 = the class of metrizable spaces which are countable unions of completely metrizable closed sets,

- \mathfrak{M}_3 = the class of metrizable spaces which are countable unions of locally compact, locally finite-dimensional closed sets,
- \mathfrak{M}_4 = the class of metrizable spaces which are countable unions of locally compact closed sets.

The classes \mathfrak{M}_1 , \mathfrak{M}_2 , \mathfrak{M}_3 and \mathfrak{M}_4 are topological, closed hereditary and additive. For each i = 1, 2, 3, 4, the following hold:

2.1. $X \in \mathfrak{M}_i(\tau)$ if and only if X can be embedded into $E_i(\Gamma)$ as a closed set [13, 1.1].

2.2. $X \times E_i(\Gamma) \approx E_i(\Gamma)$ for every $AR \ X \in \mathfrak{M}_i(\tau)$ [13, Theorem 3.2].

2.3. *X* is an $E_i(\Gamma)$ -manifold if and only if $X \in \mathfrak{M}_i(\tau)$ is an ANR and $X \times E_i(\Gamma) \approx X$ [13, Proposition 4.5].

The following classes are also topological, closed hereditary and additive:

 \mathfrak{M}_0 = the class of locally compact metrizable spaces and

 \mathfrak{M}_0^f = the class of locally compact, locally finite-dimensional metrizable spaces.

Observe that $\mathfrak{M}_2 = (\mathfrak{M}_1)_{\sigma}$, $\mathfrak{M}_3 = (\mathfrak{M}_0^f)_{\sigma}$ and $\mathfrak{M}_4 = (\mathfrak{M}_0)_{\sigma}$.

We list the necessary results of *non-separable* infinite-dimensional manifolds (cf. Preliminaries of [9]).¹ In the following, let *E* be a locally convex linear metric space such that $E \approx E^{\omega}$ or $E \approx E_f^{\omega}$, where

 $E_f^{\omega} = \{ (x_i)_{i \in \mathbb{N}} \in E^{\omega} \mid x_i = 0 \text{ except for finitely many } i \in \mathbb{N} \}.$

2.4 (TRIANGULATION). For each E-manifold M, there exists a locally finitedimensional simplicial complex K such that $M \approx |K| \times E$, where |K| has the metric topology [14, Theorem 3.4].

A *near-homeomorphism* is a map which can be approximated by homeomorphisms.

2.5 (STABILITY). For every E-manifold M, the projection of $M \times E$ onto M is a near-homeomorphism, hence $M \times E \approx M$ [12].

¹These are discussed in [11].

It is said that $A \subset X$ is *E-deficient* if there exists a homeomorphism $h: X \to X \times E$ such that $h(A) \subset X \times \{0\}$.

2.6. For a closed set K in an E-manifold M, the following are equivalent ([2, Theorem 1] and [17, A1]):

- (1) K is a Z-set in M,
- (2) K is a strong Z-set in M,
- (3) K is E-deficient in M.

For an open cover \mathscr{U} of Y, two maps $f, g: X \to Y$ are \mathscr{U} -homotopic (or f is \mathscr{U} -homotopic to g) if there is a homotopy $h: X \times \mathbf{I} \to Y$ such that $h_0 = f, h_1 = g$ and each $h(\{x\} \times \mathbf{I})$ is contained in some $U \in \mathscr{U}$ (h is called a \mathscr{U} -homotopy).

2.7 (*Z*-SET UNKNOTTING). Let *K* be a *Z*-set in an *E*-manifold *M* and \mathcal{U} an open cover of *M*. If a *Z*-embedding $h: K \to M$ is \mathcal{U} -homotopic to id then *h* extends to a homeomorphism $\tilde{h}: M \to M$ which is st \mathcal{U} -close to id.

2.8 (NEGLIGIBILTY OF Z_{σ} -SETS). In case $E \in \mathfrak{M}_1$, if K is a Z_{σ} -set in an E-manifold M, then the inclusion of $M \setminus K$ into M is a near-homeomorphism [4], [2].

A map $f: X \to Y$ is a *fine homotopy equivalence* if, for each open cover \mathscr{U} of Y, there is a map $g: Y \to X$ (called a \mathscr{U} -homotopy inverse) such that gf is \mathscr{U} -homotopic to id_Y and gf is $f^{-1}(\mathscr{U})$ -homotopic to id_X .

2.9. Every fine homotopy equivalence between E-manifolds is a near-homeomorphism [6, Theorem 3.4].

3. Alteration of Bestvina-Mogilski's Paper [1]

In this section, we make alteration of §§ 1–5 of [1]. In order to treat nonseparable spaces, we generalize the Strong Discrete Approximation Property. For each $n \in N$, we say that X has the τ -discrete *n*-cells property if, for each open cover \mathscr{U} of X, every map $f : \mathbf{I}^n \times \Gamma \to X$ is \mathscr{U} -close to a map $g : \mathbf{I}^n \times \Gamma \to X$ such that $\{g_{\gamma}(\mathbf{I}^n)\}_{\gamma \in \Gamma}$ is discrete in X, where $g_{\gamma} : \mathbf{I}^n \to X$ is defined by $g_{\gamma}(x) =$ $g(x, \gamma)$. When X has the τ -discrete *n*-cells property for every $n \in N$, it is said that it has the τ -discrete cells property. The Strong Discrete Approximation Property is no other than the \aleph_0 -discrete cells property. One should note that if $X \in \mathfrak{M}$ has the τ -discrete 0-cells property then $w(X) \geq \tau$.

Recall that a map $f: X \to Y$ is *closed over* $A \subset Y$ if, for each $a \in A$ and each neighborhood U of $f^{-1}(a)$ in X, there exists a neighborhood V of a in Y such that $f^{-1}(V) \subset U$, where it is possible that $f^{-1}(a) = U = \emptyset$, which implies that $f(X) \cap A$ is closed in A.

3.1. Results in §1 of [1]. First, observe that separability is not used in the proofs of Lemmas 1.1, 1.3 and Corollary 1.2 of [1], hence they are valid for non-separable spaces. In the proof of Lemma 1.4 of [1], it is essential that each P_i is compact because $X \setminus f_{i-1}(P_{i-1})$ need to be open in X. It is a problem to prove Lemma 1.4 of [1] without separability, that is,

PROBLEM 1. In a non-separable ANR X, if A is a Z-set and also a strong Z_{σ} -set in X, is A a strong Z-set in X?

As same as Lemma 1.4 of [1], separability is required in the proof of Proposition 1.7 of [1]. Then, the following is a problem.

PROBLEM 2. Let $X \in \mathfrak{M}(\tau)$ be an ANR which has the τ -discrete cells property $(\tau > \aleph_0)$. Is every Z-set in X a strong Z-set in X?

Instead of Lemma 1.4 and Proposition 1.7 of [1], we can prove the following without separability.

PROPOSITION 3.1. Let $X \in \mathfrak{M}(\tau)$ be an ANR which has the τ -discrete cells property. If A is a Z-set and also a strong Z_{σ} -set in X, then A is a strong Z-set in X.

PROOF. We can write $A = \bigcup_{i \in N \cup \{0\}} A_i$, where $A_0 \subset A_1 \subset A_2 \subset \cdots$ are strong Z-sets in X. For each open cover \mathscr{U} of X, let \mathscr{U}_{-1} be an open starrefinement of \mathscr{U} . Since X is an ANR, we have a locally finite-dimensional simplicial complex K with card $K^{(0)} \leq w(X)$, $f: X \to |K|$ and $g: |K| \to X$ such that gf is \mathscr{U}_{-1} -close to id_X , where |K| admits the weak (Whitehead) topology.

We inductively construct open covers \mathscr{U}_i of X, maps $h_i : |K| \to X$, open sets V_i , V'_i in X and discrete collections $\mathscr{W}_i = \{W_\sigma \mid \sigma \in K^{(i)} \setminus K^{(i-1)}\}, \ \mathscr{W}'_i = \{W'_\sigma \mid \sigma \in K^{(i)} \setminus K^{(i-1)}\}$ of open sets in X, $i \in \mathbb{N} \cup \{0\}$, such that

- (1) mesh $\mathscr{U}_i < 2^{-i}$, st $\mathscr{U}_i \prec \mathscr{U}_{i-1}$, $\mathscr{U}_i \prec \{V_{i-1}, X \setminus \text{cl } V'_{i-1}\}$, st $(W'_{\sigma}, \mathscr{U}_i) \subset W_{\sigma}$ for each $\sigma \in K^{(i-1)}$,
- (2) h_i is \mathscr{U}_i -close to h_{i-1} , $h_i | |K^{(i-1)}| = h_{i-1} | |K^{(i-1)}|$,
- (3) $A_i \subset V'_i \subset \operatorname{cl} V'_i \subset V_i \subset X \setminus h_i(|K|),$
- (4) cl $W'_{\sigma} \subset W_{\sigma} \subset X \setminus A$ and $h_i(\sigma) \subset \bigcup_{\sigma' < \sigma} W'_{\sigma'}$ for each $\sigma \in K^{(i)}$,

where $h_{-1} = g$. Since $\{W'_{\sigma} | \sigma \in K^{(i)}\}$ is locally finite in X, the condition (4) implies the following condition:

(5) cl
$$h_i(|K^{(i)}|) \subset$$
 cl $\bigcup_{\sigma \in K^{(i)}} W'_{\sigma} = \bigcup_{\sigma \in K^{(i)}}$ cl $W'_{\sigma} \subset X \setminus A$.

Assume that \mathscr{U}_j , h_j , V_j , V'_j , \mathscr{W}_j and \mathscr{W}'_j have been obtained for j < i. Since cl $V'_{i-1} \subset V_{i-1}$, cl $W'_{\sigma} \subset W_{\sigma}$ for each $\sigma \in K^{(i-1)}$ and \mathscr{W}_{i-1} is discrete in X, we can choose an open cover \mathcal{U}_i of X so as to satisfy the condition (1). Let \mathcal{U}'_i be an open star-refinement of \mathcal{U}_i . Since cl $h_{i-1}(|K^{(i-1)}|) \cap A_i = \emptyset$ and A_i is a strong Z-set in X, we have a map $h'_i : |K| \to X$ and open neighborhoods V_i, V'_i of A_i in X such that

- (6) h'_i is \mathscr{U}'_i -close to h_{i-1} ,
- (7) $h'_i | |K^{(i-1)}| = h_{i-1} | |K^{(i-1)}|$ and
- (8) cl $V'_i \subset V_i \subset$ cl $V_i \subset X \setminus$ cl $h'_i(|K|)$.

Let \mathscr{U}_i^* be an open refinement of \mathscr{U}_i' such that

(9) $\mathscr{U}_i^* \prec \{V_i, X \setminus (\operatorname{cl} h_i'(|K|) \cup \operatorname{cl} V_i'), X \setminus \operatorname{cl} V_i\}.$

Since X is an ANR, \mathcal{U}_i^* has an open refinement \mathcal{U}_i'' such that two \mathcal{U}_i'' -close maps from an arbitrary space to X are \mathcal{U}_i^* -homotopic.

For each *i*-simplex $\sigma \in K$, $U_{\sigma} = \bigcup_{\sigma' < \sigma} h_{i-1}^{-1}(W_{\sigma'})$ is an open neighborhood of $\partial \sigma$ in |K|. Choose an *i*-cell c_{σ} in each *i*-simplex $\sigma \in K$ so that $\sigma \setminus U_{\sigma} \subset c_{\sigma}$ and $\{c_{\sigma} \mid \sigma \in K^{(i)} \setminus K^{(i-1)}\}$ is discrete in |K|. Since X has the τ -discrete *i*-cells property and A is a Z-set in X, we have a map $h''_i : \bigcup_{\sigma \in K^{(i)} \setminus K^{(i-1)}} c_{\sigma} \to X$ such that

- (10) $h_i''(\bigcup_{\sigma \in K^{(i)} \setminus K^{(i-1)}} c_{\sigma}) \cap A = \emptyset$,
- (11) h''_i is \mathscr{U}''_i -close to h'_i and
- (12) $\{h_i''(c_{\sigma}) \mid \sigma \in K^{(i)} \setminus K^{(i-1)}\}$ is discrete in X.

By using the Homotopy Extension Theorem, we can obtain a map $h_i: |K| \to X$ such that

- (13) $h_i | \bigcup_{\sigma \in K^{(i)} \setminus K^{(i-1)}} c_\sigma = h''_i,$ (14) $h_i | |K^{(i-1)}| = h'_i | |K^{(i-1)}|$ and
- (15) h_i is \mathscr{U}_i^* -homotopic to h'_i ,

whence $h_i ||K^{(i-1)}| = h_{i-1} ||K^{(i-1)}||$ and h_i is \mathcal{U}_i -close to h_{i-1} , that is, h_i satisfies the condition (2). Since h_i is \mathscr{U}_i^* -close to h'_i , it follows from (9) that $h_i(|K|) \subset X \setminus cl V_i$, that is, cl $V \subset X \setminus h_i(|K|)$. Thus, the condition (3) is satisfied.

By (12) and (13), for each *i*-simplex $\sigma \in K$, $h_i(c_{\sigma})$ has open neighborhoods W_{σ}, W'_{σ} in X such that cl $W'_{\sigma} \subset W_{\sigma} \subset X \setminus A$ and $\mathscr{W}_{i} = \{W_{\sigma} \mid \sigma \in K^{(i)} \setminus K^{(i-1)}\}$ is discrete in X, hence $\mathscr{W}'_i = \{ W'_{\sigma} | \sigma \in K^{(i)} \setminus K^{(i-1)} \}$ is also discrete in X. For each *i*-simplex $\sigma \in K^{(i)}$ and $x \in \sigma \setminus c_{\sigma} \sigma \cap U_{\sigma}$, choose $\sigma' < \sigma$ so that $h_{i-1}(x) \in W'_{\sigma'}$. Since h_i is \mathscr{U}_i -close to h_{i-1} , it follows from (1) that $h_i(x) \in \operatorname{st}(W'_{\sigma'}, \mathscr{U}_i) \subset W_{\sigma'}$. Therefore, $h_i(\sigma) \subset \bigcup_{\sigma' < \sigma} W_{\sigma'}$. Then, the condition (4) is also satisfied.

By induction, we can obtain \mathcal{U}_i , h_i , V_i , \mathcal{W}_i for all $i \in N$. By the condition (2), we can define $h: |K| \to X$ by $h | |K^{(i)}| = h_i | |K^{(i)}|$. Then, h is the uniform limit of h_i by (1), hence h is continuous. It follows from (1) and (2) that h is st \mathcal{U}_{i+1} -close to h_i , hence h is \mathcal{U}_i -close to h_i . In particular, h is \mathcal{U}_{-1} -close to $h_{-1} = g$, hence

hf is \mathscr{U} -close to id_X . Since $\mathscr{U}_i \prec \{V_i, X \setminus \mathrm{cl} \ V_i^{\prime}\}$, it follows from (3) that $hf(X) \subset h(|K|) \subset \mathrm{st}(h_i(|K|, \mathscr{U}_i) \subset \mathrm{st}(X \setminus V_i, \mathscr{U}_i) \subset X \setminus \mathrm{cl} \ V_i^{\prime}$, hence

$$\mathrm{cl}\ hf(X)\cap\bigcup_{i\in N\cup\{0\}}V_i'=\varnothing,$$

which means that cl $hf(X) \cap A = \emptyset$ because $A \subset \bigcup_{i \in \mathbb{N} \cup \{0\}} V_i^{*}$.

By using Lemma 1.4 of [1], Corollary 1.5 of [1] was obtained. But we use Michael's Theorem for local properties [7] to prove the same result without separability, that is,

PROPOSITION 3.2. A closed set A in an ANR X is a strong Z-set in X if and only if each $a \in A$ has an open neighborhood U in X such that $A \cap U$ is a strong Z-set in U.

PROOF. The "only if" part is trivial. To see the "if" part, let \mathcal{P}_A be the property of open sets U in X such that $A \cap U$ is a strong Z-set in U. It is enough to prove that \mathcal{P}_A is G-hereditary, that is, (1) if an open set U in X has \mathcal{P}_A then every open set in U has \mathcal{P}_A ; (2) if two open sets U_1 and U_2 in X have \mathcal{P}_A then $U_1 \cup U_2$ has \mathcal{P}_A ; (3) for a dicrete collection $\{U_\lambda\}_{\lambda \in \Lambda}$ open sets in X, if each U_λ has \mathcal{P}_A , then $\bigcup_{\lambda \in \Lambda} U_\lambda$ has \mathcal{P}_A . Since Lemma 1.3 of [1] is valid without separability, we have (1). And (3) is trivial.

To see (2), assume that U_1 and U_2 are open sets in X such that $A \cap U_i$ is a strong Z-set in U_i . We write $A \cap (U_1 \cup U_2) = A_1 \cup A_2$ such that $A_i \subset U_i$ and A_i is closed in $U_1 \cup U_2$, whence A_i is a strong Z-set in U_i . For each open cover \mathscr{U} of $U_1 \cup U_2$, let \mathscr{V}_1 be an open star-refinement of \mathscr{U} . Then, we have a map $f_1: U_1 \to U_1$ and an open neighborhood V_1 of A_1 in U_1 such that $V_1 \cap f_1(U_1) =$ \emptyset , f_1 is \mathscr{V}_1 -close to id and f_1 can be extended to $\tilde{f_1}: U_1 \cup U_2 \to U_1 \cup U_2$ by $\tilde{f_1} \mid U_2 \setminus U_1 = id$, whence $V_1 \cap \tilde{f_1}(U_1 \cup U_2) = \emptyset$. Choose an open set W_1 in $U_1 \cup U_2$ so that $(U_1 \cup U_2) \cap cl \ W_1 \subset V_1$. let \mathscr{V}_2 be an open cover of $U_1 \cup U_2$ such that

$$\mathscr{V}_2 \prec \mathscr{V}_1$$
 and $\mathscr{V}_2 \prec \{V_1, (U_1 \cup U_2) \setminus \mathrm{cl} W_1\}.$

Then, we have a map $f_2: U_2 \to U_2$ and an open neighborhood V_2 of A_2 in U_2 such that $V_2 \cap f_2(U_2) = \emptyset$, f_2 is \mathscr{V}_2 -close to id and f_2 can be extended to $\tilde{f}_2:$ $U_1 \cup U_2 \to U_1 \cup U_2$ by $\tilde{f}_2 | U_1 \setminus U_2 = id$, whence $V_2 \cap \tilde{f}_2(U_1 \cup U_2) = \emptyset$. Observe that $W_1 \cap \tilde{f}_2 \tilde{f}_1(U_1 \cup U_2) = \emptyset$. Hence,

$$(W_1 \cup V_2) \cap \tilde{f}_2 \tilde{f}_1 (U_1 \cup U_2) = \emptyset.$$

Thus, $A \cap (U_1 \cup U_2)$ is a strong Z-set in $U_1 \cup U_2$.

Note that Corollary 1.6 of [1] is proved by Curtis [3, Lemma 7.2] without separability.

In the proof of Corolary 1.8 of [1], the following is shown without separability:

LEMMA 3.3. Let X be an ANR which has the Strong Discrete Approximation Property. Then, every compact set in X is a Z-set.

This extends as follows:

PROPOSITION 3.4. Let $X \in \mathfrak{M}(\tau)$ be an ANR which has the τ -discrete cells property. Then, every closed set A in X with $w(A) < \tau$ is a Z-set in X.

PROOF. For each $n \in N$ and each map $f : \mathbf{I}^n \to X$, let $\tilde{f} : \mathbf{I}^n \times \Gamma \to X$ be the map defined by $\tilde{f}(x, \gamma) = f(x)$. For each open cover \mathscr{U} of X, \tilde{f} is \mathscr{U} -close to a map $g : \mathbf{I}^n \times \Gamma \to X$ such that $\{g_{\gamma}(\mathbf{I}^n)\}_{\gamma \in \Gamma}$ is discrete in X by the τ -discrete cells property. Since $w(A) < \tau$, it is easy to see that $A \cap g_{\gamma}(\mathbf{I}^n) = \emptyset$ for some $\gamma \in \Gamma$, whence g_{γ} is \mathscr{U} -close to f. Then, A is a Z-set in X.

PROBLEM 3. In Proposition 3.4 above, is A a strong Z-set in X?

We call X a Z_{σ} -space (or a strong Z_{σ} -space) if X itself is a Z_{σ} -set (or a strong Z_{σ} -set) in X. By Baire's Theorem, any completely metrizable spaces is not a (strong) Z_{σ} -space. It is a problem whether Lemma 1.9 of [1] can be generalized to non-separable spaces, that is,

PROBLEM 4. Let $X \in \mathfrak{M}(\tau)$ be an ANR which is a strong Z_{σ} -space $(\tau > \aleph_0)$. Does X have the τ -discrete cells property?

Lemmas 1.10 and 1.11 of [1] are valid for non-separable spaces (cf. their proofs).

3.2. Results in §2 of [1]. Observe that Propositions 2.1 and 2.2 of [1] are proved whitout separability. Thus, they are valid for non-separable spaces.

In the proof of Proposition 2.3 of [1], Lemmas 1.4, 1.9 and Proposition 1.7 of [1] are applied, where separability is necessary. Moreover, separability is also used in the proof of 2.3 of [1] itself (the last paragraph). By adding the condition on \mathscr{C} that $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in N$, we can extend the result to ANR's X with

 $w(X) = \tau$. The proof is basically same as [1]. Since the proof in [1] contains some misprints and some of details are not easy to follow, we give a complete proof, where we make some small changes in the arguments to make the proof clear.

PROPOSITION 3.5. Let \mathscr{C} be a closed hereditary additive topological class of spaces such that $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in \mathbf{N}$, and let X be an ANR with $w(X) = \tau$. If X is a strongly \mathscr{C} -universal strong Z_{σ} -space, then X is strongly \mathscr{C}_{σ} -universal.

PROOF. Since $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in N$, if X is strongly \mathscr{C} -universal then X has the τ -discrete cells property. By Proposition 3.1, every Z-set in X is a strong Z-set. Then, by Proposition 2.2 of [1], it suffices to show that each open set $U \neq \emptyset$ in X is \mathscr{C}_{σ} -universal. Note that U is an ANR with $w(U) = \tau$. Since U is an F_{σ} -set in X, U is a strong Z_{σ} -space. It follows from Proposition 2.1 of [1] that U is strongly \mathscr{C} -universal. Thus, we may assume that U = X, whence it suffices to show that X is \mathscr{C}_{σ} -universal.

Let $f: C \to X$ be a map of $C \in \mathscr{C}_{\sigma}$. In case C is an open set in some member of \mathscr{C} , it is proved by the same way as [1] that f can be approximated by Zembeddings. We now consider the general case $C \in \mathscr{C}_{\sigma}$, that is, $C = \bigcup_{i \in \mathbb{N}} C_i$, where $C_1 \subset C_2 \subset \cdots$ are closed in C and $C_i \in \mathscr{C}$.² We write $X = \bigcup_{i \in \mathbb{N}} X_i$, where $X_1 \subset X_2 \subset \cdots$ are strong Z-sets in X. Given an admissible metric d for X, let $C(\mathbf{I}^k, X)$ be the space of all (continuous) maps from \mathbf{I}^k to X with the sup-metric induced by d. For each $k \in \mathbb{N}$, since $C(\mathbf{I}^k, X)$ has the same weight as X, there is a map $g_k : \mathbf{I}^k \times \Gamma \to X$ such that $\{g_{k,\gamma} | \gamma \in \Gamma\}$ is dense in $C(\mathbf{I}^k, X)$, where $g_{k,\gamma} :$ $\mathbf{I}^k \to X$ is defined by $g_{k,\gamma}(x) = g_k(x,\gamma)$. Given an open cover \mathscr{U} of X, let \mathscr{U}_0 be an open star-refinement of \mathscr{U} . By induction, we shall construct maps $f_i : C \to X$, $g_k^i : \mathbf{I}^k \times \Gamma \to X$ ($k \leq i$), and open covers \mathscr{U}_i of $X \setminus (f_i(C_i) \cup X_i)$, $i \in \mathbb{N}$, such that

- (1) $f_i | C_i$ is a Z-embedding,
- (2) $f_i | C_{i-1} = f_{i-1} | C_{i-1},$
- (3) $f_i(C \setminus C_i) \cap f_i(C_i) = \emptyset$,
- (4) f_i is closed over $f_i(C_i) \cup X_i$,
- (5) $f_i | C \setminus C_{i-1}$ is \mathcal{U}_{i-1} -close to $f_{i-1} | C \setminus C_{i-1}$,
- (6) cl $f_i(C \setminus C_{i-1}) \cap (X_i \setminus (f_{i-1}(C_{i-1}) \cup X_{i-1})) = \emptyset$,
- (7) st $\mathscr{U}_i \prec \mathscr{U}_{i-1}$,
- (8) diam $U < \min\{2^{-i}, \frac{1}{2}d(U, f_i(C_i) \cup X_i)\}$ for each $U \in \mathscr{U}_i$,
- (9) $g_k^i(\mathbf{I}^k \times \Gamma)$ is a Z-set in X,

² In the case C is an open set in some member of \mathscr{C} , we can assume that $C_i \subset \text{int } C_{i+1}$. However, this assumption cannot be used in the general case.

- (10) $f_i(C) \cap \bigcup_{k \le j \le i} g_k^j(\mathbf{I}^k \times \Gamma) = \emptyset$, (11) $\{g_{k,\gamma}^i | \gamma \in \Gamma\}$ is 2^{-i} -dense in $C(\mathbf{I}^k, X)$, that is, each $g \in C(\mathbf{I}^k, X)$ is 2^{-i} close to some $g_{k,\nu}^i$,

where $f_0 = f$ and $C_0 = X_0 = \emptyset$.

Assume that f_{i-1} , g_k^{i-1} $(k \le i-1)$ and \mathcal{U}_{i-1} have been obtained. Since $f_{i-1}(C_{i-1})$ is a Z-set in X by (1) and $\mathbf{I}^k \times \Gamma \in \mathscr{C}$, we can apply the strong \mathscr{C} -universality of X to find Z-embeddings $g_k^i: \mathbf{I}^k \times \Gamma \to X \ (k \leq i)$ such that

$$g_k^i(\mathbf{I}^k \times \Gamma) \cap f_{i-1}(C_{i-1}) = \emptyset,$$

and each g_k^i is $2^{-(i+1)}$ -close to g_k , hence it satisfies (9) and (11).

Now, we denote

$$W = X \setminus (f_{i-1}(C_{i-1}) \cup X_{i-1}).$$

Then, \mathcal{U}_{i-1} is an open cover of W. Let \mathscr{V} be an open star-refinement of \mathcal{U}_{i-1} . Since W is open in X, W is a strong Z_{σ} -space and has τ -discrete cells property. By Proposition 3.1, each Z-set in W is a strong Z-set. Note that $X_i \cap W$ is a strong Z-set in W by Proposition 3.2 and W is strongly \mathscr{C} -universal by Proposition 2.1 of [1]. We apply the special case to the open set $C_i \setminus C_{i-1}$ in $C_i \in \mathscr{C}$, and use the Homotopy Extension Theorem to construct a map $h: C \setminus C_{i-1} \to W$ such that

- (12) $h \mid C_i \setminus C_{i-1}$ is a Z-embedding,
- (13) *h* is \mathscr{V} -close to $f_{i-1} \mid C \setminus C_{i-1}$,

(14) cl $h(C \setminus C_{i-1}) \cap W \cap (X_i \cup \bigcup_{k \le j \le i} g_k^j (\mathbf{I}^k \times \Gamma)) = \emptyset.$

Since $h(C_i \setminus C_{i-1}) \cup (X_i \cap W)$ is a strong Z-set in W, we apply Lemma 1.1 of [1] to obtain a map $h: C \setminus C_{i-1} \to W$ such that

- (15) \hat{h} is \mathscr{V} -close to h, hence it is \mathscr{U}_{i-1} -close to $f_{i-1}|C \setminus C_{i-1}$ by (13),
- (16) cl $\tilde{h}(C \setminus C_{i-1}) \cap W \cap (X_i \cup \bigcup_{k \le i \le i} g_k^j (\mathbf{I}^k \times \Gamma)) = \emptyset$,
- (17) $\ddot{h} \mid C_i \setminus C_{i-1} = h \mid C_i \setminus C_{i-1},$
- (18) $\tilde{h}(C \setminus C_i) \cap \tilde{h}(C_i \setminus C_{i-1}) = \emptyset$,
- (19) \tilde{h} is closed over $\tilde{h}(C_i \setminus C_{i-1}) \cup (X_i \cap W)$.

For each $z \in C_{i-1}$ and $\varepsilon > 0$, since f_{i-1} is continuous, we have a neighborhood V of z in C such that $y \in V$ implies $d(f_{i-1}(y), f_{i-1}(z)) < \varepsilon/2$. For each $y \in V \setminus C_{i-1}$, choose $U \in \mathscr{U}_{i-1}$ so that $\tilde{h}(y), f_{i-1}(y) \in U$, whence we have $d(\tilde{h}(y), f_{i-1}(y)) < \frac{1}{2}d(f_{i-1}(y), f_{i-1}(z))$ by (8) for i-1. Then, we have

$$d(\hat{h}(y), f_{i-1}(z)) \le d(\hat{h}(y), f_{i-1}(y)) + d(f_{i-1}(y), f_{i-1}(z))$$

$$< \frac{3}{2}d(f_{i-1}(y), f_{i-1}(z)) < \varepsilon.$$

Therefore, as an extension of \tilde{h} , we can obtain the map $f_i: C \to X$ satisfying (2), which clearly satsfies (3), (5), (6) and (10) (cf. (18), (15), (16)).

Since
$$f_i | C_{i-1} = f_{i-1} | C_{i-1}$$
 and $f_i | C_i \setminus C_{i-1} = h | C_i \setminus C_{i-1}$ are injective and
 $f_i (C_i \setminus C_{i-1}) \cap f_{i-1} (C_{i-1}) = \tilde{h} (C_i \setminus C_{i-1}) \cap f_{i-1} (C_{i-1}) = \emptyset$,

it follows that $f_i|C_i$ is injective. If f_i satisfies (4), that is, f_i is closed over $f_i(C_i) \cup X_i$, then $f_i|C_i$ is an embedding.

Suppose that f_i is not closed over $f_i(C_i) \cup X_i$. Then, there exist $a \in f_i(C_i) \cup X_i$, a neighborhood U of $f_i^{-1}(a)$ in C (we allow $U = f_i^{-1}(a) = \emptyset$) and a sequence $(z_n)_{n \in \mathbb{N}}$ in $C \setminus U$ with $\lim f_i(z_n) = a$. Since $f_i | C_{i-1} = f_{i-1} | C_{i-1}$ is a closed embedding into X by (1) for i - 1, we have $z_n \in C \setminus C_{i-1}$ for sufficiently large $n \in \mathbb{N}$. Since $f_i | C \setminus C_{i-1}$ is closed over $f_i(C_i \setminus C_{i-1}) \cup (X_i \cap W)$ by (19), it follows that $a \notin f_i(C_i \setminus C_{i-1}) \cup (X_i \cap W)$. Recall $a \in f_i(C_i) \cup X_i$. Then, we have

$$a \in f_i(C_{i-1}) \cup (X_i \setminus W) = f_{i-1}(C_{i-1}) \cup X_{i-1}$$

For sufficiently large $n \in N$, we can choose $U_n \in \mathcal{U}_{i-1}$ so that $f_i(z_n), f_{i-1}(z_n) \in U_n$ by (5), whence

$$d(f_{i-1}(z_n), a) \le d(f_i(z_n), f_{i-1}(z_n)) + d(f_i(z_n), a) < \frac{3}{2}d(f_i(z_n), a).$$

Then, $\lim f_{i-1}(z_n) = a$, which implies that $f_{i-1}^{-1}(a) \neq \emptyset$ by (4) for i-1. Since $f_{i-1}^{-1}(a) \subset C_{i-1}$ by (3) for i-1, it follows from (2) that $f_{i-1}^{-1}(a) \subset f_i^{-1}(a) \subset U$. U. Again by (4) for i-1, we have a neighborhood V of a in X such that $f_{i-1}^{-1}(V) \subset U$. For sufficiently large $n \in N$, $f_{i-1}(z_n) \in V$, hence $z_n \in f_{i-1}^{-1}(V) \subset U$. This is a contradiction. Therefore, f_i satisfies (4).

To see (1), it remains to show that $f_i(C_i)$ is a Z-set in X. Observe that

$$X \setminus (f_i(C_i) \cup X_{i-1}) = W \setminus h(C_i \setminus C_{i-1}),$$

which is open in W. Then, $f_i(C_i) \cup X_{i-1}$ is closed in X, hence $f_i(C_i) \cup X_i$ is also closed in X. Since $f_{i-1}(C_{i-1}) \cup X_i$ is a Z-set in X and $f_i(C_i \setminus C_{i-1}) = h(C_i \setminus C_{i-1})$ is a Z-set in $W = X \setminus (f_{i-1}(C_{i-1}) \cup X_i)$, it follows that $f_i(C_i) \cup X_i$ is a Z-set in X. By (3) and (4), we can see that $f_i(C_i)$ is closed in $f_i(C_i) \cup X_i$. Therefore, $f_i(C_i)$ is a Z-set in X.

Finally, by choosing an open cover \mathcal{U}_i of $X \setminus (f_i(C_i) \cup X_i)$ so as to satisfy (7) and (8), we can obtain f_i , g_k^i $(k \le i)$ and \mathcal{U}_i which satisfy all conditions (1)–(11).

By (2), we can define $f_*: C \to X$ defined by $f_*|C_i = f_i|C_i$. It follows from (5) and (8) that f_* is 2^{-i+1} -close to f_i . Thus, f_* is the uniform limit of $(f_i)_{i \in N}$, so f_* is continuous. By (1) and (3), f_* is injective. Then, to see that f_* is a Z-embedding, it remains to show that f_* is a closed map and $f_*(C)$ is a Z-set in X.

Now, assume that f_* is not closed. Then, we have a sequence $(z_n)_{n \in N}$ in

C such that $(z_n)_{n \in \mathbb{N}}$ has no convergent subsequences but $(f_*(z_n))_{n \in \mathbb{N}}$ converges to some $a \in X$. Let $a \in X_m \setminus X_{m-1}$. Then, $z_n \in C \setminus C_m$ for sufficiently large $n \in \mathbb{N}$. Otherwise, C_m contains a subsequence of $(z_n)_{n \in \mathbb{N}}$, which is convergent because $f_*|C_m = f_m|C_m$ is a closed embedding. From (2), (5) and (7), it follows that $f_* | C \setminus C_m$ is st \mathcal{U}_m -close to $f_m | C \setminus C_m$. By (8), we have $x_n, y_n \in X$ for sufficiently large $n \in \mathbb{N}$ such that

$$d(f_*(z_n), x_n) < \frac{1}{2}d(f_*(z_n), a),$$

$$d(x_n, y_n) < \frac{1}{2}d(x_n, a) \text{ and }$$

$$d(y_n, f_m(z_n)) < \frac{1}{2}d(y_n, a).$$

Then, $(f_m(z_n))_{n \in \mathbb{N}}$ also converges to *a*, hence

$$a \in \operatorname{cl} f_m(C \setminus C_m) \subset \operatorname{cl} f_m(C \setminus C_{m-1}),$$

which implies that $a \in f_{m-1}(C_{m-1})$ by (6). By (1), (2) and (3), there is unique $c \in C_{m-1}$ such that $f_m(c) = f_{m-1}(c) = a$. Since $(z_n)_{n \in N}$ does not converge to c and f_m is closed over $f_m(C_m)$ by (4), we have a neighborhood V of a in X such that infinitely many z_n are not contained in $f_m^{-1}(V)$, that is, infinitely many $f_m(z_n)$ are not contained in V. This is a contradiction. Therefore, f_* is a closed map.

To see that $f_*(C)$ is a Z-set in X, let $g: \mathbf{I}^k \to X$ be a map and $\varepsilon > 0$. Choose $j \in \mathbf{N}$ so that $2^{-j} < \varepsilon$. Then, g is ε -close to some $g_{k,\gamma}^j$ by (11), whence $f_i(C_i) \cap g_{k,\gamma}^j(\mathbf{I}^k) = \emptyset$ for every $i \ge j$ by (10). Since $f_*(C) = \bigcup_{i\ge j} f_i(C_i)$, it follows that $f_*(C) \cap g_{k,\gamma}^j(\mathbf{I}^k) = \emptyset$. Hence, $f_*(C)$ is a Z-set in X.

By the above version of Proposition 2.3 of [1], Corollary 2.4 of [1] is valid for spaces X with $w(X) = \tau$ if $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in N$.

In this paper, the weak product of a space X with a basepoint $* \in X$ is denoted by X_f^{ω} intead of W(X,*). In the proof of Proposition 2.5 of [1],³ when $w(X) = \tau > \aleph_0$, we have $\tilde{X}^{\omega} \approx \ell_2(\Gamma)$ by Theorem 5.1 of [16]. Then, X^{ω} and X_f^{ω} can be regarded as homotopy dense subsets of $\ell_2(\Gamma)$. Hence, every Z-set in X^{ω} (or X_f^{ω}) is a strong Z-set. In any other part, separability is not necessary.⁴ Then, Proposition 2.5 [1] valid for a non-separable AR X.

Proposition 2.6 of [1] is also valid for non-separable spaces because the proof does not require separability.

³In Proposition 2.5 of [1], X should be an AR (see the proof).

⁴p. 302 of [1], lines 4 and 5: $\frac{1}{\delta(f(c))} - k$ should be $\frac{2^{-k}}{\delta(f(c))} - 1$.

^{—,} line 10: $\delta(f(c)) \leq 2\delta(f'(c))$ should be $\frac{2}{3}\delta(f'(c)) \leq \delta(f(c)) \leq 2\delta(f'(c))$.

In the proof of Proposition 2.7 of [1], we cannot assume that \mathcal{U} is countable when X is non-separable. However, by Stone's Theorem (cf. [5, 4.4.1]) and Proposition 2.1 of [1], we can assume that \mathcal{U} is locally finite σ -discrete, whence it is not difficult to modify the proof to be valid for non-separable spaces. We can also apply Michael's Theorem for local properies [7] to prove this proposition without separability.

3.3. Results in §3 of [1]. A subset $X \subset M$ is said to be homotopy dense if there exists a deformation $h: M \times I \to M$ such that $h_0 = \text{id}$ and $h_t(M) \subset X$ for t > 0. By [15], X is homotopy dense in an ANR M if and only if $M \setminus X$ is locally homotopy negligible in M. A strongly \mathscr{C} -universal homotopy dense Z_{σ} set $X \subset M$ is called a \mathscr{C} -absorbing set in M. By just replacing "s-manifold" by " $\ell_2(\Gamma)$ -manifold" in §3 of [1], we can obtain the non-separable version of Theorems 3.1, 3.2 and 3.3 of [1]. In fact, all facts used in the proofs hold in the non-separable case (cf. 2.6–2.9).

3.4. Results in §4 of [1]. Observe that Lemma 4.1 of [1] is valid for $\ell_2(\Gamma)$ manifolds (cf. 2.6, 2.7 and [16, Proposition 2.1]). In Theorem 4.2 of [1], if Y is non-separable but $w(Y) \leq \tau$, we have an $\ell_2(\Gamma)$ -manifold $M = \tilde{Y} \times \ell_2(\Gamma)$, where $\tilde{Y} \in \mathfrak{M}_1(\tau)$ is an ANR which contains Y as a homotopy dense set (cf. [15, Proposition 4.1], [10]). Note that the projection $\operatorname{pr}_1 : \tilde{Y} \times \ell_2(\Gamma) \to \tilde{Y}$ is a fine homotopy equivalence. Thus, we have

THEOREM 3.6. For each ANR $Y \in \mathfrak{M}(\tau)$, there exists an $\ell_2(\Gamma)$ -manifold M such that, for every \mathscr{C} -absorbing set $X \subset M$, there is a fine homotopy equivalence $f: X \to Y$.

Then, we have the non-separable version of Corollary 4.3 of [1], where "s-manifold" is just replaced by " $\ell_2(\Gamma)$ -manifold".

3.5. Results in §5 of [1]. In Lemma 5.2 of [1], if M is an $\ell_2(\Gamma)$ -manifold, then $\tilde{\Omega}$ and \tilde{X} in the proof are $\ell_2(\Gamma)$ -manifolds by Toruńczyk characterization of $\ell_2(\Gamma)$ -manifolds, and $\tilde{i}: \tilde{\Omega} \to \tilde{X}$ is a near-homeomorphism by [2, Corollary]. Thus, by just replacing "s-manifold" by " $\ell_2(\Gamma)$ -manifold", we have the nonseparable version of Lemma 5.2 of [1].

In the proof of Theorem 5.1 of [1], Theorem 2.3 of [1] is used. As saw in the above, the condition that $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in N$ is required when $w(X) = \tau$. Then, the non-seprable version of Theorem 5.1 of [1] is as follows: THEOREM 3.7. Let \mathscr{C} be a closed hereditary additive topological class of spaces such that $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in \mathbb{N}$. Suppose that Ω is a \mathscr{C} -absorbing set in an $\ell_2(\Gamma)$ -manifold M and X is a strong \mathscr{C} -universal ANR with $w(X) = \tau$ which is written as $X = \bigcup_{i \in \mathbb{N}} X_i$, where each X_i is a strong Z-set in X and $X_i \in \mathscr{C}$. Then, every fine homotopy equivalence $f : \Omega \to X$ is a near-homeomorphism. \Box

Thus, we have the following non-separable version of Theorem 5.3 of [1]

THEOREM 3.8. Let \mathscr{C} be a closed hereditary additive topological class of spaces such that $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in \mathbf{N}$. Suppose that there exists a \mathscr{C} -absorbing set Ω in $\ell_2(\Gamma)$. Then, X is homeomorphic to Ω if and only if $X \in \mathscr{C}_{\sigma}$, X is a strongly \mathscr{C} -universal AR which is a strong Z_{σ} -space.

The non-separable version of Corollary 5.4 of [1] is true when "s" is replaced by " $\ell_2(\Gamma)$ " and the condition $\Gamma \in \mathscr{C}$ is added. Corollary 5.5 is valid for nonseparable spaces.

THEOREM 3.9. Let \mathscr{C} be a closed hereditary additive topological class of spaces such that $\Gamma \in \mathscr{C}$ and $C \times \mathbf{I} \in \mathscr{C}$ for each $C \in \mathscr{C}$.⁵ Suppose that there exists a \mathscr{C} -absorbing set Ω in $\ell_2(\Gamma)$. Then, the following hold:

- (1) Every $\ell_2(\Gamma)$ -manifold contains a \mathscr{C} -absorbing set.
- (2) (Triangulation) X is a Ω -manifold if and only if there exists a locally finite-dimensional simplicial complex K with card $K^{(0)} \leq \tau$ such that $X \approx |K| \times \Omega$, where |K| admits the metric topology.
- (3) (Open Embedding) Every connected Ω -manifold can be embedded in Ω as an open set.⁶
- (4) Every C-absorbing set in an $\ell_2(\Gamma)$ -manifold is a Ω -manifold, and every Ω -manifold can be embedded in an $\ell_2(\Gamma)$ -manifold as a C-absorbing set.

The assertions (1), (2) and (3) are the non-separable versions of Corollaries 5.6 and 5.7 of [1]. For the assertion (4), the first half and the second half are respectively the non-separable versions of the facts implicitly showed in the proofs of Corolaries 5.7 and 5.6(ii) of [1].

As the above results are based on the existence of an \mathscr{C} -absorbing set in $\ell_2(\Gamma)$, the following problem is fundamental:

⁵ By induction, we have $C \times \mathbf{I}^n \in \mathscr{C}$ for each $C \in \mathscr{C}$ and $n \in N$. In particular, $\mathbf{I}^n \times \Gamma \in \mathscr{C}$ for each $n \in N$.

⁶To avoid the case that X has components more that τ , we have to assume that X is connected or $w(X) = \tau$.

PROBLEM 5. For what class \mathscr{C} , does there exist a \mathscr{C} -absorbing set in $\ell_2(\Gamma)$? Or, for given a model space $E \in \mathfrak{M}(\tau)$, let \mathscr{C}_E be the class of spaces which can be embedded in E as closed sets. Can E be embedded in $\ell_2(\Gamma)$ as a \mathscr{C}_E -absorbing set?

4. The Proof of Main Theorem

The following is the answer to Problem 5 for $\mathfrak{M}_2(\tau)$, $\mathfrak{M}_3(\tau)$ and $\mathfrak{M}_4(\tau)$.

PROPOSITION 4.1. For each i = 2, 3, 4, the space $E_i(\Gamma)$ can be embedded in $\ell_2(\Gamma)$ as an $\mathfrak{M}_i(\tau)$ -absorbing set.

PROOF. Note that $E_i(\Gamma)_f^{\omega} \approx E_i(\Gamma)$ (cf. [13, p. 61, Footnote (³)]). It follows from [1, Proposition 2.5] that $E_i(\Gamma)$ is strongly $\mathfrak{M}_i(\tau)$ -universal. Since $E_i(\Gamma)$ is a Z_{σ} -space, it follows from [17, A1] that $E_i(\Gamma)$ is a strong Z_{σ} -space. It remains to show that each $E_i(\Gamma)$ can be embedded in $\ell_2(\Gamma)$ as a homotopy dense set.

First, $E_3(\Gamma) = \ell_2^f(\Gamma)$ itself is homotopy dense in $\ell_2(\Gamma)$. Then, it follows that $E_4(\Gamma) = \ell_2^f(\Gamma) \times Q$ is homotopy dense in $\ell_2(\Gamma) \times Q \approx \ell_2(\Gamma)$. Since ℓ_2^f is homotopy dense in ℓ_2 , it follows that $E_2(\Gamma) = \ell_2(\Gamma) \times \ell_2^f$ is homotopy dense in $\ell_2(\Gamma) \times \ell_2^f \approx \ell_2(\Gamma)$. Thus, each $E_i(\Gamma)$ can be embedded in $\ell_2(\Gamma)$ as a homotopy dense set.

By combining the following proposition and Proposition 3.5, we can obtain Main Theorem.

PROPOSITION 4.2. Let X be a connected metrizable space. For each i = 2, 3, 4, X is an $E_i(\Gamma)$ -manifold (or $X \approx E_i(\Gamma)$) if and only if $X \in \mathfrak{M}_i(\tau)$ is an ANR (or an AR) which is a strongly $\mathfrak{M}_i(\tau)$ -universal strong Z_{σ} -space.

PROOF. First, we show the "only if" part. By 2.3, $X \in \mathfrak{M}_i(\tau)$ is an ANR (or an AR) and $X \approx X \times E_i(\Gamma)$. Since every Z-set in X is a strongly Z-set by [17, A1] and $E_i(\Gamma)$ is strongly $\mathfrak{M}_i(\tau)$ -universal, it follows from [1, Proposition 2.6] that X is strongly $\mathfrak{M}_i(\tau)$ -universal. Moreover, X is a strong Z_{σ} -space because so is $E_i(\Gamma)$.

Next, we prove the "if" part. By Theorem 3.6, we have an $\ell_2(\Gamma)$ -manifold M such that, for every $\mathfrak{M}_i(\tau)$ -absorbing set W in M, there is a fine homotopy equivalence $\varphi: W \to X$. By Theorem 3.9(1), M contains an $\mathfrak{M}_i(\tau)$ -absorbing set W. Then, we have a fine homotopy equivalence $\varphi: W \to X$, which is a near-homeomorphism by Theorem 3.7. Hence, $X \approx W$ is an $E_i(\Gamma)$ -manifold by Theorem 3.9(4). If X is an AR, $M \approx \ell_2(\Gamma)$ in the above, whence we have $X \approx W \approx E_i(\Gamma)$ by [1, Theorem 3.1] and Proposition 4.1.

Finally, the authors would like to express their thanks to the referee for his helpful comments.

References

- M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.
- [2] T. A. Chapman, Deficiency in infinite-dimensional manifolds, Gen. Topology Appl. 1 (1971), 263–272.
- [3] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97-107.
- [4] W. H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675.
- [5] R. Engelking, General Topology (Revised and complete edition), Sigma Ser. in Pure Math. 6, Heldermann Verlag, Berlin, 1989.
- [6] S. Ferry, The homeomorphism group of a compact Hilbert cube manifold is an ANR, Ann. of Math. 106 (1977), 101–119.
- [7] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163-172.
- [8] J. Mogilski, Characterizing the topology of infinite-dimensional σ -compact manifolds, Proc. Amer. Math. Soc. 92 (1984), 111–118.
- [9] K. Sakai, A mapping theorem for infinite-dimensional manifolds and its generalizations, Colloq. Math. 56 (1988), 319–332.
- [10] K. Sakai, The completions of metric ANR's and homotopy dense subsets, J. Math. Soc. Japan 52 (2000), 835–846.
- K. Sakai, Lectures on Topology towards Infinite-Dimensional Spaces (2003 Version), mimeographical notes.
- [12] R. M. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math. 23 (1971), 87–100.
- [13] H. Toruńczyk, Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53–67.
- [14] H. Toruńczyk, On Cartesian factors and the topological classification of linear metric spaces, Fund. Math. 88 (1975), 71–86.
- [15] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l₂-manifolds, Fund. Math. 101 (1978), 93–110.
- [16] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
- [17] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89–93.

K. Sakai Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp

M. Yaguchi Institute of Mathematics University of Tsukuba Tsukuba, 305-8571, Japan E-mail address: masato@math.tsukuba.ac.jp