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CHARACTERIZING MANIFOLDS MODELED ON

CERTAIN DENSE SUBSPACES OF NON-SEPARABLE

HILBERT SPACES
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Abstract. For an infinite set G, let l
f

2 ðGÞ be the linear span of the

canonical orthonormal basis of the Hilbert space l2ðGÞ, that is,

l
f

2 ðGÞ ¼ fx A l2ðGÞ j xðgÞ ¼ 0 except for finitely many g A Gg:

We denote l
f

2 ¼ l
f

2 ðNÞ. Let Q ¼ ½�1; 1�o be the Hilbert cube. In

this paper, we give characterizations of manifold modeled on the

following spaces: l2ðGÞ � l
f

2 , l f
2 ðGÞ and l

f
2 ðGÞ �Q, where l2ðGÞ � l2

and l2ðGÞ �Q are homeomorphic to l2ðGÞ. Our results are obtained

by suitable alteration and modification of the separable case due to

Bestvina and Mogilski.

1. Introduction

Given a space E, an E-manifold is a topological manifold modeled on E,

that is, a paracompact Hausdor¤ space such that each point has an open

neighborhood which is homeomorphic to ðAÞ an open set in E. In [16] (cf. [17]),

Toruńczyk gave a characterization of l2ðGÞ-manifolds, where l2ðGÞ is the Hilbert

space of square-summable real-valued function on an infinite set G. Let l
f

2 ðGÞ be

the linear span of the canonical orthonormal basis of l2ðGÞ, that is,

l
f

2 ðGÞ ¼ fx A l2ðGÞ j xðgÞ ¼ 0 except for finitely many g A Gg:

In case G ¼ N , we denote l
f

2 ðNÞ ¼ l
f

2 as well as l2ðNÞ ¼ l2. Let Q ¼ ½�1; 1�o be
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the Hilbert cube. As well-known, the separable Hilbert space l2 is homeomorphic

to the psuedo-interior s ¼ ð�1; 1Þo of Q,

l
f

2 As ¼ fx A s j xðiÞ ¼ 0 except for finitely many i A Ng and

l
f

2 �QAl
Q
2 ¼ fx A l2 j supi AN jixðiÞj < yg

AS ¼ fx A Q j supi AN jxðiÞj < 1gABðQÞ ¼ Qns:

Notice that l
Q

2 is a dense subspace of l2. By Mogilski [8], l
f

2 - and l
f

2 �Q-

manifolds were characterized. Furthermore, these were generalized to manifolds

modeled on various dense subspaces of l2 by Bestvina and Mogilski [1]. In

particular, l2 � l
f

2 -manifolds were characterized in addition to l
f

2 - and l
f

2 �Q-

manifolds.

In this paper, these results are extended to the non-separable case, that is, we

characterize l2ðGÞ � l
f

2 -, l f
2 ðGÞ- and l

f
2 ðGÞ �Q-manifolds for an arbitrary infinite

set G. One should note that l2ðGÞ � l
f

2 and l
f

2 ðGÞ �Q are regarded as dense

subspace of l2ðGÞ. In fact, since X � l2ðGÞAl2ðGÞ for any completely metrizable

AR X with weight wðXÞa card G [13], we have

l2ðGÞAl2ðGÞ � l2Al2ðGÞ �Q:

For each open cover U of Y , two maps f ; g : X ! Y are U-close (or f is

U-close to g) if each f f ðxÞ; gðxÞg is contained in some U A U. A closed set

AHX is called a (strong) Z-set in X provided, for each open cover U of X ,

there is a map f : X ! X such that f is U-close to idX and f ðXÞVA ¼ q

ðcl f ðXÞVA ¼ qÞ. When X is an ANR, a closed set A is a Z-set in X if and only

if every map f : Ik ! X ðkb 0Þ can be approximated by maps g : Ik ! XnA
(i.e., for each open cover U of X , there is a map g : Ik ! XnA which is U-close

to f ). The union of countably many (strong) Z-sets in X is called a (strong)

Zs-set in X . A Z-embedding is an embedding whose image is a Z-set.

A space X is said to be universal for a class C (simply, C-universal ) if every

map f : C ! X of C A C is approximated by Z-embeddings. It is said that X is

strongly universal for C (simply, strongly C-universal ) when the following con-

dition is satisfied:

(suC) for each C A C and each closed set DHC, if f : C ! X is a map such

that f jD is a Z-embedding, then, for each open cover U of X , there is

a Z-embedding h : C ! X such that hjD ¼ f jD and h is U-close to f .

The following is our main result:

Main Theorem. Let X be a connected metrizable space and G an infinite set

with card G ¼ t.
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(1) X is homeomorpic to l2ðGÞ � l
f

2 (or an l2ðGÞ � l
f

2 -manifold ) if and only

if X is an AR (or an ANR) with wðXÞ ¼ t, X is a s-completely metrizable

strong Zs-space and strongly universal for the class of completely met-

rizable spaces with weighta t.

(2) X is homeomorpic to l
f

2 ðGÞ (or an l
f

2 ðGÞ-manifold ) if and only if X is an

AR (or an ANR) with wðXÞ ¼ t, X is a strongly countable-dimensional

s-locally compact strong Zs-space and strongly universal for the class

of strongly countable-dimensional locally compact metrizable spaces with

weighta t.

(3) X is homeomorpic to l
f

2 ðGÞ �Q (or an l
f

2 ðGÞ �Q-manifold ) if and only

if X is an AR (or an ANR) with wðXÞ ¼ t, X is a s-locally compact strong

Zs-space and strongly universal for the class of locally compact metrizable

spaces with weighta t.

The above result can be obtained by suitable alteration and modification

of [1]. However, one should remind that some arguments in [1] depend on

separability (e.g., Lemma 1.4, Propositions 1.7 and 2.3). Thus, we need to take

di¤erent approaches to obtain non-separable versions of some results in [1].

2. Preliminaries

Throughout of the paper, let t be an infinite cardinal and G an infinite set with

card G ¼ t.

Let M be the class of all metrizable spaces. For a class CHM, we denote by

CðtÞ the subclass of C consisting of all spaces X A C with weight wðXÞa t. It is

said that
. C is topological if X A C, XAY ) Y A C,
. C is closed (resp. open) hereditary if X A C, AHX is closed (resp. open) in

X ) A A C,
. C is additive if X ¼ X1 UX2 and X1;X2 A C are closed in X ) X A C.

By Cs, we denote the class consisting of all metrizable spaces which can be

expressed as countable unions of closed subspaces contained in C.

It is convenient to use the notation of [13]:

E1ðGÞ ¼ l2ðGÞ; E2ðGÞ ¼ l2ðGÞ � l
f

2 ;

E3ðGÞ ¼ l
f

2 ðGÞ; E4ðGÞ ¼ l
f

2 ðGÞ �Q;

M1 ¼ the class of completely metrizable spaces;

M2 ¼ the class of metrizable spaces which are countable unions

of completely metrizable closed sets;
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M3 ¼ the class of metrizable spaces which are countable unions

of locally compact; locally finite-dimensional closed sets;

M4 ¼ the class of metrizable spaces which are countable unions

of locally compact closed sets:

The classes M1, M2, M3 and M4 are topological, closed hereditary and additive.

For each i ¼ 1; 2; 3; 4; the following hold:

2.1. X A MiðtÞ if and only if X can be embedded into EiðGÞ as a closed set

[13, 1.1].

2.2. X � EiðGÞAEiðGÞ for every AR X A MiðtÞ [13, Theorem 3.2].

2.3. X is an EiðGÞ-manifold if and only if X A MiðtÞ is an ANR and X �
EiðGÞAX [13, Proposition 4.5].

The following classes are also topological, closed hereditary and additive:

M0 ¼ the class of locally compact metrizable spaces and

M
f
0 ¼ the class of locally compact; locally finite-dimensional

metrizable spaces:

Observe that M2 ¼ ðM1Þs, M3 ¼ ðM f
0 Þs and M4 ¼ ðM0Þs.

We list the necessary results of non-separable infinite-dimensional manifolds

(cf. Preliminaries of [9]).1 In the following, let E be a locally convex linear metric

space such that EAEo or EAEo
f , where

Eo
f ¼ fðxiÞi AN A Eo j xi ¼ 0 except for finitely many i A Ng:

2.4 (Triangulation). For each E-manifold M, there exists a locally finite-

dimensional simplicial complex K such that MA jK j � E, where jKj has the metric

topology [14, Theorem 3.4].

A near-homeomorphism is a map which can be approximated by homeo-

morphisms.

2.5 (Stability). For every E-manifold M, the projection of M � E onto M is a

near-homeomorphsim, hence M � EAM [12].

1These are discussed in [11].
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It is said that AHX is E-deficient if there exists a homeomorphism

h : X ! X � E such that hðAÞHX � f0g.

2.6. For a closed set K in an E-manifold M, the following are equivalent

([2, Theorem 1] and [17, A1]):

(1) K is a Z-set in M,

(2) K is a strong Z-set in M,

(3) K is E-deficient in M.

For an open cover U of Y , two maps f ; g : X ! Y are U-homotopic (or f is

U-homotopic to g) if there is a homotopy h : X � I ! Y such that h0 ¼ f , h1 ¼ g

and each hðfxg � IÞ is contained in some U A U (h is called a U-homotopy).

2.7 (Z-Set Unknotting). Let K be a Z-set in an E-manifold M and U an open

cover of M. If a Z-embedding h : K ! M is U-homotopic to id then h extends to

a homeomorphism ~hh : M ! M which is st U-close to id.

2.8 (Negligibilty of Zs-Sets). In case E A M1, if K is a Zs-set in an E-manifold

M, then the inclusion of MnK into M is a near-homeomorphism [4], [2].

A map f : X ! Y is a fine homotopy equivalence if, for each open cover U

of Y , there is a map g : Y ! X (called a U-homotopy inverse) such that gf is

U-homotopic to idY and gf is f �1ðUÞ-homotopic to idX .

2.9. Every fine homotopy equivalence between E-manifolds is a near-

homeomorphism [6, Theorem 3.4].

3. Alteration of Bestvina-Mogilski’s Paper [1]

In this section, we make alteration of §§ 1–5 of [1]. In order to treat non-

separable spaces, we generalize the Strong Discrete Approximation Property.

For each n A N , we say that X has the t-discrete n-cells property if, for each open

cover U of X , every map f : In � G ! X is U-close to a map g : In � G ! X

such that fggðInÞgg AG is discrete in X , where gg : In ! X is defined by ggðxÞ ¼
gðx; gÞ. When X has the t-discrete n-cells property for every n A N , it is said that

it has the t-discrete cells property. The Strong Discrete Approximation Property is

no other than the @0-discrete cells property. One should note that if X A M has

the t-discrete 0-cells property then wðX Þb t.

Recall that a map f : X ! Y is closed over AHY if, for each a A A and

each neighborhood U of f �1ðaÞ in X, there exists a neighborhood V of a in Y

such that f �1ðVÞHU , where it is possible that f �1ðaÞ ¼ U ¼ q, which implies

that f ðX ÞVA is closed in A.
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3.1. Results in § 1 of [1]. First, observe that separability is not used in the

proofs of Lemmas 1.1, 1.3 and Corollary 1.2 of [1], hence they are valid for non-

separable spaces. In the proof of Lemma 1.4 of [1], it is essential that each Pi is

compact because Xn fi�1ðPi�1Þ need to be open in X . It is a problem to prove

Lemma 1.4 of [1] without separability, that is,

Problem 1. In a non-separable ANR X , if A is a Z-set and also a strong

Zs-set in X , is A a strong Z-set in X ?

As same as Lemma 1.4 of [1], separability is required in the proof of

Proposition 1.7 of [1]. Then, the following is a problem.

Problem 2. Let X A MðtÞ be an ANR which has the t-discrete cells

property (t > @0). Is every Z-set in X a strong Z-set in X ?

Instead of Lemma 1.4 and Proposition 1.7 of [1], we can prove the following

without separability.

Proposition 3.1. Let X A MðtÞ be an ANR which has the t-discrete cells

property. If A is a Z-set and also a strong Zs-set in X, then A is a strong Z-set

in X.

Proof. We can write A ¼ 6
i ANUf0g Ai, where A0 HA1 HA2 H � � � are

strong Z-sets in X . For each open cover U of X , let U�1 be an open star-

refinement of U. Since X is an ANR, we have a locally finite-dimensional

simplicial complex K with card K ð0Þ awðXÞ, f : X ! jK j and g : jK j ! X such

that gf is U�1-close to idX , where jK j admits the weak (Whitehead) topology.

We inductively construct open covers Ui of X , maps hi : jK j ! X , open sets

Vi, V 0
i in X and discrete collections Wi ¼ fWs j s A K ðiÞnK ði�1Þg, W 0

i ¼ fW 0
s j s A

K ðiÞnK ði�1Þg of open sets in X , i A N U f0g, such that

(1) mesh Ui < 2�i, st Ui 0Ui�1, Ui 0 fVi�1;Xncl V 0
i�1g, stðW 0

s ;UiÞHWs for

each s A K ði�1Þ,

(2) hi is Ui-close to hi�1, hi j jK ði�1Þj ¼ hi�1 j jK ði�1Þj,
(3) Ai HV 0

i H cl V 0
i HVi HXnhiðjK jÞ,

(4) cl W 0
s HWs HXnA and hiðsÞH6

s 0as
W 0

s 0 for each s A K ðiÞ,

where h�1 ¼ g. Since fW 0
s j s A K ðiÞg is locally finite in X , the condition (4)

implies the following condition:

(5) cl hiðjK ðiÞjÞH cl 6
s AK ðiÞ

W 0
s ¼ 6

s AKðiÞ
cl W 0

s HXnA.
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Assume that Uj, hj, Vj, V 0
j , Wj and W 0

j have been obtained for j < i. Since

cl V 0
i�1 HVi�1, cl W 0

s HWs for each s A K ði�1Þ and Wi�1 is discrete in X , we can

choose an open cover Ui of X so as to satisfy the condition (1). Let U 0
i be an

open star-refinement of Ui. Since cl hi�1ðjK ði�1ÞjÞVAi ¼ q and Ai is a strong

Z-set in X , we have a map h 0
i : jK j ! X and open neighborhoods Vi, V

0
i of Ai in

X such that

(6) h 0
i is U 0

i -close to hi�1,

(7) h 0
i j jK ði�1Þj ¼ hi�1 j jK ði�1Þj and

(8) cl V 0
i HVi H cl Vi HXncl h 0

i ðjK jÞ.
Let U�

i be an open refinement of U 0
i such that

(9) U�
i 0 fVi;Xnðcl h 0

i ðjK jÞU cl V 0
i Þ;Xncl Vig.

Since X is an ANR, U�
i has an open refinement U 00

i such that two U 00
i -close

maps from an arbitrary space to X are U�
i -homotopic.

For each i-simplex s A K , Us ¼ 6
s 0<s

h�1
i�1ðW 0

s 0 Þ is an open neighborhood

of qs in jK j. Choose an i-cell cs in each i-simplex s A K so that snUs H cs and

fcs j s A K ðiÞnK ði�1Þg is discrete in jK j. Since X has the t-discrete i-cells property

and A is a Z-set in X , we have a map h 00
i : 6

s AK ðiÞnKði�1Þ cs ! X such that

(10) h 00
i ð6s AK ðiÞnK ði�1Þ csÞVA ¼ q,

(11) h 00
i is U 00

i -close to h 0
i and

(12) fh 00
i ðcsÞ j s A K ðiÞnK ði�1Þg is discrete in X .

By using the Homotopy Extension Theorem, we can obtain a map hi : jKj ! X

such that

(13) hi j6s AKðiÞnK ði�1Þ cs ¼ h 00
i ,

(14) hi j jK ði�1Þj ¼ h 0
i j jK ði�1Þj and

(15) hi is U�
i -homotopic to h 0

i ,

whence hi j jK ði�1Þj ¼ hi�1 j jK ði�1Þj and hi is Ui-close to hi�1, that is, hi satisfies the

condition (2). Since hi is U�
i -close to h 0

i , it follows from (9) that hiðjKjÞHXncl Vi,

that is, cl V HXnhiðjK jÞ. Thus, the condition (3) is satisfied.

By (12) and (13), for each i-simplex s A K , hiðcsÞ has open neighborhoods

Ws, W 0
s in X such that cl W 0

s HWs HXnA and Wi ¼ fWs j s A K ðiÞnK ði�1Þg is

discrete in X , hence W 0
i ¼ fW 0

s j s A K ðiÞnK ði�1Þg is also discrete in X . For each

i-simplex s A K ðiÞ and x A sncssVUs, choose s 0 < s so that hi�1ðxÞ A W 0
s 0 . Since

hi is Ui-close to hi�1, it follows from (1) that hiðxÞ A stðW 0
s 0 ;UiÞHWs 0 . Therefore,

hiðsÞH6
s 0as

Ws 0 . Then, the condition (4) is also satisfied.

By induction, we can obtain Ui, hi, Vi, Wi for all i A N . By the condition (2),

we can define h : jK j ! X by h j jK ðiÞj ¼ hi j jK ðiÞj. Then, h is the uniform limit of

hi by (1), hence h is continuous. It follows from (1) and (2) that h is st Uiþ1-close

to hi, hence h is Ui-close to hi. In particular, h is U�1-close to h�1 ¼ g, hence
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hf is U-close to idX . Since Ui 0 fVi;Xncl Vi’g, it follows from (3) that hf ðX ÞH
hðjK jÞH stðhiðjK j;UiÞH stðXnVi;UiÞHXncl Vi’, hence

cl hf ðXÞV 6
i ANUf0g

Vi’¼ q;

which means that cl hf ðXÞVA ¼ q because AH 6
i ANUf0g Vi’. r

By using Lemma 1.4 of [1], Corollary 1.5 of [1] was obtained. But we use

Michael’s Theorem for local properties [7] to prove the same result without

separability, that is,

Proposition 3.2. A closed set A in an ANR X is a strong Z-set in X if and

only if each a A A has an open neighborhood U in X such that AVU is a strong

Z-set in U.

Proof. The ‘‘only if ’’ part is trivial. To see the ‘‘if ’’ part, let PA be the

property of open sets U in X such that AVU is a strong Z-set in U . It is enough

to prove that PA is G-hereditary, that is, (1) if an open set U in X has PA then

every open set in U has PA; (2) if two open sets U1 and U2 in X have PA then

U1 UU2 has PA; (3) for a dicrete collection fUlgl AL open sets in X , if each Ul

has PA, then 6
l AL Ul has PA. Since Lemma 1.3 of [1] is valid without sepa-

rability, we have (1). And (3) is trivial.

To see (2), assume that U
1

and U2 are open sets in X such that AVUi is

a strong Z-set in Ui. We write AV ðU1 UU2Þ ¼ A1 UA2 such that Ai HUi and

Ai is closed in U1 UU2, whence Ai is a strong Z-set in Ui. For each open cover

U of U1 UU2, let V1 be an open star-refinement of U. Then, we have a map

f1 : U1 ! U1 and an open neighborhood V1 of A1 in U1 such that V1 V f1ðU1Þ ¼
q, f1 is V1-close to id and f1 can be extended to ~ff1 : U1 UU2 ! U1 UU2 by
~ff1 jU2nU1 ¼ id, whence V1 V ~ff1ðU1 UU2Þ ¼ q. Choose an open set W1 in U1 UU2

so that ðU1 UU2ÞV cl W1 HV1. let V2 be an open cover of U1 UU2 such that

V2 0V1 and V2 0 fV1; ðU1 UU2Þncl W1g:

Then, we have a map f2 : U2 ! U2 and an open neighborhood V2 of A2 in U2

such that V2 V f2ðU2Þ ¼ q, f2 is V2-close to id and f2 can be extended to ~ff2 :

U1 UU2 ! U1 UU2 by ~ff2 jU1nU2 ¼ id, whence V2 V ~ff2ðU1 UU2Þ ¼ q. Observe

that W1 V ~ff2
~ff1ðU1 UU2Þ ¼ q. Hence,

ðW1 UV2ÞV ~ff2
~ff1ðU1 UU2Þ ¼ q.

Thus, AV ðU1 UU2Þ is a strong Z-set in U1 UU2. r
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Note that Corollary 1.6 of [1] is proved by Curtis [3, Lemma 7.2] without

separability.

In the proof of Corolary 1.8 of [1], the following is shown without sepa-

rability:

Lemma 3.3. Let X be an ANR which has the Strong Discrete Approximation

Property. Then, every compact set in X is a Z-set.

This extends as follows:

Proposition 3.4. Let X A MðtÞ be an ANR which has the t-discrete cells

property. Then, every closed set A in X with wðAÞ < t is a Z-set in X.

Proof. For each n A N and each map f : In ! X , let ~ff : In � G ! X be the

map defined by ~ff ðx; gÞ ¼ f ðxÞ. For each open cover U of X , ~ff is U-close to a

map g : In � G ! X such that fggðInÞgg AG is discrete in X by the t-discrete cells

property. Since wðAÞ < t, it is easy to see that AV ggðInÞ ¼ q for some g A G,

whence gg is U-close to f . Then, A is a Z-set in X . r

Problem 3. In Proposition 3.4 above, is A a strong Z-set in X ?

We call X a Zs-space (or a strong Zs-space) if X itself is a Zs-set (or a strong

Zs-set) in X . By Baire’s Theorem, any completely metrizable spaces is not a

(strong) Zs-space. It is a problem whether Lemma 1.9 of [1] can be generalized to

non-separable spaces, that is,

Problem 4. Let X A MðtÞ be an ANR which is a strong Zs-space ðt > @0Þ.
Does X have the t-discrete cells property?

Lemmas 1.10 and 1.11 of [1] are valid for non-separable spaces (cf. their

proofs).

3.2. Results in § 2 of [1]. Observe that Propositions 2.1 and 2.2 of [1] are

proved whitout separability. Thus, they are valid for non-separable spaces.

In the proof of Proposition 2.3 of [1], Lemmas 1.4, 1.9 and Proposition 1.7

of [1] are applied, where separability is necessary. Moreover, separability is also

used in the proof of 2.3 of [1] itself (the last paragraph). By adding the condition

on C that In � G A C for each n A N , we can extend the result to ANR’s X with
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wðXÞ ¼ t. The proof is basically same as [1]. Since the proof in [1] contains some

misprints and some of details are not easy to follow, we give a complete proof,

where we make some small changes in the arguments to make the proof clear.

Proposition 3.5. Let C be a closed hereditary additive topological class of

spaces such that In � G A C for each n A N , and let X be an ANR with wðXÞ ¼ t.

If X is a strongly C-universal strong Zs-space, then X is strongly Cs-universal.

Proof. Since In � G A C for each n A N , if X is strongly C-universal then X

has the t-discrete cells property. By Proposition 3.1, every Z-set in X is a strong

Z-set. Then, by Proposition 2.2 of [1], it su‰ces to show that each open set

U 0q in X is Cs-universal. Note that U is an ANR with wðUÞ ¼ t. Since U is

an Fs-set in X , U is a strong Zs-space. It follows from Proposition 2.1 of [1]

that U is strongly C-universal. Thus, we may assume that U ¼ X , whence it

su‰ces to show that X is Cs-universal.

Let f : C ! X be a map of C A Cs. In case C is an open set in some member

of C, it is proved by the same way as [1] that f can be approximated by Z-

embeddings. We now consider the general case C A Cs, that is, C ¼ 6
i AN Ci,

where C1 HC2 H � � � are closed in C and Ci A C.2 We write X ¼ 6
i AN Xi, where

X1 HX2 H � � � are strong Z-sets in X . Given an admissible metric d for X , let

CðIk;XÞ be the space of all (continuous) maps from Ik to X with the sup-metric

induced by d. For each k A N , since CðIk;X Þ has the same weight as X , there is

a map gk : Ik � G ! X such that fgk; g j g A Gg is dense in CðIk;XÞ, where gk; g :

Ik ! X is defined by gk; gðxÞ ¼ gkðx; gÞ. Given an open cover U of X , let U0 be

an open star-refinement of U. By induction, we shall construct maps fi : C ! X ,

gi
k : Ik � G ! X ðka iÞ, and open covers Ui of Xnð fiðCiÞUXiÞ, i A N , such that

(1) fijCi is a Z-embedding,

(2) fijCi�1 ¼ fi�1jCi�1,

(3) fiðCnCiÞV fiðCiÞ ¼ q,

(4) fi is closed over fiðCiÞUXi,

(5) fi jCnCi�1 is Ui�1-close to fi�1 jCnCi�1,

(6) cl fiðCnCi�1ÞV ðXinð fi�1ðCi�1ÞUXi�1ÞÞ ¼ q,

(7) st Ui 0Ui�1,

(8) diamU < minf2�i; 1
2 dðU ; fiðCiÞUXiÞg for each U A Ui,

(9) gi
kðI

k � GÞ is a Z-set in X ,

2 In the case C is an open set in some member of C, we can assume that Ci H int Ciþ1. However, this

assumption cannot be used in the general case.
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(10) fiðCÞV6
kajai

g
j
kðI

k � GÞ ¼ q,

(11) fgi
k; g j g A Gg is 2�i-dense in CðIk;X Þ, that is, each g A CðIk;X Þ is 2�i-

close to some gi
k; g,

where f0 ¼ f and C0 ¼ X0 ¼ q.

Assume that fi�1, gi�1
k ðka i � 1Þ and Ui�1 have been obtained. Since

fi�1ðCi�1Þ is a Z-set in X by (1) and Ik � G A C, we can apply the strong

C-universality of X to find Z-embeddings gi
k : Ik � G ! X ðka iÞ such that

gi
kðIk � GÞV fi�1ðCi�1Þ ¼ q;

and each gi
k is 2�ðiþ1Þ-close to gk, hence it satisfies (9) and (11).

Now, we denote

W ¼ Xnð fi�1ðCi�1ÞUXi�1Þ:
Then, Ui�1 is an open cover of W . Let V be an open star-refinement of Ui�1.

Since W is open in X , W is a strong Zs-space and has t-discrete cells property.

By Proposition 3.1, each Z-set in W is a strong Z-set. Note that Xi VW is a

strong Z-set in W by Proposition 3.2 and W is strongly C-universal by Prop-

osition 2.1 of [1]. We apply the special case to the open set CinCi�1 in Ci A C,

and use the Homotopy Extension Theorem to construct a map h : CnCi�1 ! W

such that

(12) h jCinCi�1 is a Z-embedding,

(13) h is V-close to fi�1 jCnCi�1,

(14) cl hðCnCi�1ÞVW V ðXi U6
kajai

g
j
kðI

k � GÞÞ ¼ q.

Since hðCinCi�1ÞU ðXi VWÞ is a strong Z-set in W , we apply Lemma 1.1 of [1] to

obtain a map ~hh : CnCi�1 ! W such that

(15) ~hh is V-close to h, hence it is Ui�1-close to fi�1jCnCi�1 by (13),

(16) cl ~hhðCnCi�1ÞVW V ðXi U6
kajai

g
j
kðI

k � GÞÞ ¼ q,

(17) ~hh jCinCi�1 ¼ h jCinCi�1;

(18) ~hhðCnCiÞV ~hhðCinCi�1Þ ¼ q,

(19) ~hh is closed over ~hhðCinCi�1ÞU ðXi VWÞ.
For each z A Ci�1 and e > 0, since fi�1 is continuous, we have a neigh-

borhood V of z in C such that y A V implies dð fi�1ðyÞ; fi�1ðzÞÞ < e=2. For

each y A VnCi�1, choose U A Ui�1 so that ~hhðyÞ; fi�1ðyÞ A U , whence we have

dð~hhðyÞ; fi�1ðyÞÞ < 1
2 dð fi�1ðyÞ; fi�1ðzÞÞ by (8) for i � 1. Then, we have

dð~hhðyÞ; fi�1ðzÞÞa dð~hhðyÞ; fi�1ðyÞÞ þ dð fi�1ðyÞ; fi�1ðzÞÞ

< 3
2 dð fi�1ðyÞ; fi�1ðzÞÞ < e:

Therefore, as an extension of ~hh, we can obtain the map fi : C ! X satisfying (2),

which clearly satsfies (3), (5), (6) and (10) (cf. (18), (15), (16)).
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Since fijCi�1 ¼ fi�1jCi�1 and fi jCinCi�1 ¼ h jCinCi�1 are injective and

fiðCinCi�1ÞV fi�1ðCi�1Þ ¼ ~hhðCinCi�1ÞV fi�1ðCi�1Þ ¼ q;

it follows that fijCi is injective. If fi satisfies (4), that is, fi is closed over

fiðCiÞUXi, then fijCi is an embedding.

Suppose that fi is not closed over fiðCiÞUXi. Then, there exist a A fiðCiÞUXi,

a neighborhood U of f �1
i ðaÞ in C (we allow U ¼ f �1

i ðaÞ ¼ q) and a sequence

ðznÞn AN in CnU with lim fiðznÞ ¼ a. Since fijCi�1 ¼ fi�1jCi�1 is a closed embed-

ding into X by (1) for i � 1, we have zn A CnCi�1 for su‰ciently large n A N .

Since fi jCnCi�1 is closed over fiðCinCi�1ÞU ðXi VWÞ by (19), it follows that

a B fiðCinCi�1ÞU ðXi VWÞ. Recall a A fiðCiÞUXi. Then, we have

a A fiðCi�1ÞU ðXinWÞ ¼ fi�1ðCi�1ÞUXi�1:

For su‰ently large n A N , we can choose Un A Ui�1 so that fiðznÞ; fi�1ðznÞ A Un by

(5), whence

dð fi�1ðznÞ; aÞa dð fiðznÞ; fi�1ðznÞÞ þ dð fiðznÞ; aÞ < 3
2 dð fiðznÞ; aÞ:

Then, lim fi�1ðznÞ ¼ a, which implies that f �1
i�1ðaÞ0q by (4) for i � 1.

Since f �1
i�1ðaÞHCi�1 by (3) for i � 1, it follows from (2) that f �1

i�1ðaÞH f �1
i ðaÞH

U . Again by (4) for i � 1, we have a neighborhood V of a in X such that

f �1
i�1ðVÞHU . For su‰ciently large n A N , fi�1ðznÞ A V , hence zn A f �1

i�1ðVÞHU .

This is a contradiction. Therefore, fi satisfies (4).

To see (1), it remains to show that fiðCiÞ is a Z-set in X . Observe that

Xnð fiðCiÞUXi�1Þ ¼ WnhðCinCi�1Þ;

which is open in W . Then, fiðCiÞUXi�1 is closed in X , hence fiðCiÞUXi is also

closed in X . Since fi�1ðCi�1ÞUXi is a Z-set in X and fiðCinCi�1Þ ¼ hðCinCi�1Þ is

a Z-set in W ¼ Xnð fi�1ðCi�1ÞUXiÞ, it follows that fiðCiÞUXi is a Z-set in X . By

(3) and (4), we can see that fiðCiÞ is closed in fiðCiÞUXi. Therefore, fiðCiÞ is a

Z-set in X .

Finally, by choosing an open cover Ui of Xnð fiðCiÞUXiÞ so as to satisfy (7)

and (8), we can obtain fi, g
i
k ðka iÞ and Ui which satisfy all conditions (1)–(11).

By (2), we can define f� : C ! X defined by f�jCi ¼ fijCi. It follows from

(5) and (8) that f� is 2�iþ1-close to fi. Thus, f� is the uniform limit of ð fiÞi AN ,

so f� is continuous. By (1) and (3), f� is injective. Then, to see that f� is a

Z-embedding, it remains to show that f� is a closed map and f�ðCÞ is a Z-set

in X .

Now, assume that f� is not closed. Then, we have a sequence ðznÞn AN in
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C such that ðznÞn AN has no convergent subsequences but ð f�ðznÞÞn AN converges

to some a A X . Let a A XmnXm�1. Then, zn A CnCm for su‰ciently large n A N .

Otherwise, Cm contains a subsequence of ðznÞn AN , which is convergent because

f�jCm ¼ fmjCm is a closed embedding. From (2), (5) and (7), it follows that

f� jCnCm is st Um-close to fm jCnCm. By (8), we have xn; yn A X for su‰ciently

large n A N such that

dð f�ðznÞ; xnÞ < 1
2 dð f�ðznÞ; aÞ;

dðxn; ynÞ < 1
2 dðxn; aÞ and

dðyn; fmðznÞÞ < 1
2 dðyn; aÞ:

Then, ð fmðznÞÞn AN also converges to a, hence

a A cl fmðCnCmÞH cl fmðCnCm�1Þ;

which implies that a A fm�1ðCm�1Þ by (6). By (1), (2) and (3), there is unique

c A Cm�1 such that fmðcÞ ¼ fm�1ðcÞ ¼ a. Since ðznÞn AN does not converge to c and

fm is closed over fmðCmÞ by (4), we have a neighborhood V of a in X such that

infinitely many zn are not contained in f �1
m ðVÞ, that is, infinitely many fmðznÞ are

not contained in V . This is a contradiction. Therefore, f� is a closed map.

To see that f�ðCÞ is a Z-set in X , let g : Ik ! X be a map and e > 0.

Choose j A N so that 2�j < e. Then, g is e-close to some g
j
k; g by (11), whence

fiðCiÞV g
j
k; gðI

kÞ ¼ q for every ib j by (10). Since f�ðCÞ ¼ 6
ibj

fiðCiÞ, it follows

that f�ðCÞV g
j
k; gðI

kÞ ¼ q. Hence, f�ðCÞ is a Z-set in X . r

By the above version of Proposition 2.3 of [1], Corollary 2.4 of [1] is valid

for spaces X with wðXÞ ¼ t if In � G A C for each n A N .

In this paper, the weak product of a space X with a basepoint � A X is

denoted by X o
f intead of WðX ; �Þ. In the proof of Proposition 2.5 of [1],3 when

wðXÞ ¼ t > @0, we have ~XX oAl2ðGÞ by Theorem 5.1 of [16]. Then, X o and X o
f

can be regarded as homotopy dense subsets of l2ðGÞ. Hence, every Z-set in X o

(or X o
f ) is a strong Z-set. In any other part, separability is not necessary.4 Then,

Proposition 2.5 [1] valid for a non-separable AR X .

Proposition 2.6 of [1] is also valid for non-separable spaces because the proof

does not require separability.

3 In Proposition 2.5 of [1], X should be an AR (see the proof ).

4p. 302 of [1], lines 4 and 5: 1
dð f ðcÞÞ � k should be 2�k

dð f ðcÞÞ � 1.

—, line 10: dð f ðcÞÞa 2dð f 0ðcÞÞ should be 2
3 dð f 0ðcÞÞa dð f ðcÞÞa 2dð f 0ðcÞÞ.
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In the proof of Proposition 2.7 of [1], we cannot assume that U is countable

when X is non-separable. However, by Stone’s Theorem (cf. [5, 4.4.1]) and

Proposition 2.1 of [1], we can assume that U is locally finite s-discrete, whence it

is not di‰cult to modify the proof to be valid for non-separable spaces. We can

also apply Michael’s Theorem for local properies [7] to prove this proposition

without separability.

3.3. Results in § 3 of [1]. A subset X HM is said to be homotopy dense if

there exists a deformation h : M � I ! M such that h0 ¼ id and htðMÞHX

for t > 0. By [15], X is homotopy dense in an ANR M if and only if MnX is

locally homotopy negligible in M. A strongly C-universal homotopy dense Zs-

set X HM is called a C-absorbing set in M. By just replacing ‘‘s-manifold’’

by ‘‘l2ðGÞ-manifold’’ in § 3 of [1], we can obtain the non-separable version of

Theorems 3.1, 3.2 and 3.3 of [1]. In fact, all facts used in the proofs hold in the

non-separable case (cf. 2.6–2.9).

3.4. Results in § 4 of [1]. Observe that Lemma 4.1 of [1] is valid for l2ðGÞ-
manifolds (cf. 2.6, 2.7 and [16, Proposition 2.1]). In Theorem 4.2 of [1], if Y is

non-separable but wðY Þa t, we have an l2ðGÞ-manifold M ¼ ~YY � l2ðGÞ, where
~YY A M1ðtÞ is an ANR which contains Y as a homotopy dense set (cf. [15,

Proposition 4.1], [10]). Note that the projection pr1 : ~YY � l2ðGÞ ! ~YY is a fine

homotopy equivalence. Thus, we have

Theorem 3.6. For each ANR Y A MðtÞ, there exists an l2ðGÞ-manifold M

such that, for every C-absorbing set X HM, there is a fine homotopy equivalence

f : X ! Y . r

Then, we have the non-separable version of Corollary 4.3 of [1], where

‘‘s-manifold’’ is just replaced by ‘‘l2ðGÞ-manifold’’.

3.5. Results in § 5 of [1]. In Lemma 5.2 of [1], if M is an l2ðGÞ-manifold, then
~WW and ~XX in the proof are l2ðGÞ-manifolds by Toruńczyk characterization of

l2ðGÞ-manifolds, and ~ii : ~WW ! ~XX is a near-homeomorphism by [2, Corollary].

Thus, by just replacing ‘‘s-manifold’’ by ‘‘l2ðGÞ-manifold’’, we have the non-

separable version of Lemma 5.2 of [1].

In the proof of Theorem 5.1 of [1], Theorem 2.3 of [1] is used. As saw in the

above, the condition that In � G A C for each n A N is required when wðXÞ ¼ t.

Then, the non-seprable version of Theorem 5.1 of [1] is as follows:
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Theorem 3.7. Let C be a closed hereditary additive topological class of

spaces such that In � G A C for each n A N . Suppose that W is a C-absorbing set

in an l2ðGÞ-manifold M and X is a strong C-universal ANR with wðXÞ ¼ t which

is written as X ¼ 6
i AN Xi, where each Xi is a strong Z-set in X and Xi A C. Then,

every fine homotopy equivalence f : W ! X is a near-homeomorphism. r

Thus, we have the following non-separable version of Theorem 5.3 of [1]

Theorem 3.8. Let C be a closed hereditary additive topological class of

spaces such that In � G A C for each n A N . Suppose that there exists a C-absorbing

set W in l2ðGÞ. Then, X is homeomorphic to W if and only if X A Cs, X is a

strongly C-universal AR which is a strong Zs-space. r

The non-separable version of Corollary 5.4 of [1] is true when ‘‘s’’ is replaced

by ‘‘l2ðGÞ’’ and the condition G A C is added. Corollary 5.5 is valid for non-

separable spaces.

Theorem 3.9. Let C be a closed hereditary additive topological class of

spaces such that G A C and C � I A C for each C A C.5 Suppose that there exists

a C-absorbing set W in l2ðGÞ. Then, the following hold:

(1) Every l2ðGÞ-manifold contains a C-absorbing set.

(2) (Triangulation) X is a W-manifold if and only if there exists a locally

finite-dimensional simplicial complex K with card K ð0Þ a t such that XA
jK j �W, where jK j admits the metric topology.

(3) (Open Embedding) Every connected W-manifold can be embedded in W as

an open set.6

(4) Every C-absorbing set in an l2ðGÞ-manifold is a W-manifold, and every

W-manifold can be embedded in an l2ðGÞ-manifold as a C-absorbing set.

The assertions (1), (2) and (3) are the non-separable versions of Cor-

ollaries 5.6 and 5.7 of [1]. For the assertion (4), the first half and the second half

are respectively the non-separable versions of the facts implicitly showed in the

proofs of Corolaries 5.7 and 5.6(ii) of [1].

As the above results are based on the existence of an C-absorbing set in

l2ðGÞ, the following problem is fundamental:

5By induction, we have C � In A C for each C A C and n A N . In particular, In � G A C for each

n A N .

6To avoid the case that X has components more that t, we have to assume that X is connected or

wðXÞ ¼ t.
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Problem 5. For what class C, does there exist a C-absorbing set in l2ðGÞ?
Or, for given a model space E A MðtÞ, let CE be the class of spaces which can be

embedded in E as closed sets. Can E be embedded in l2ðGÞ as a CE-absorbing set?

4. The Proof of Main Theorem

The following is the answer to Problem 5 for M2ðtÞ, M3ðtÞ and M4ðtÞ.

Proposition 4.1. For each i ¼ 2; 3; 4, the space EiðGÞ can be embedded in

l2ðGÞ as an MiðtÞ-absorbing set.

Proof. Note that EiðGÞof AEiðGÞ (cf. [13, p. 61, Footnote (3)]). It follows

from [1, Proposition 2.5] that EiðGÞ is strongly MiðtÞ-universal. Since EiðGÞ is a

Zs-space, it follows from [17, A1] that EiðGÞ is a strong Zs-space. It remains to

show that each EiðGÞ can be embedded in l2ðGÞ as a homotopy dense set.

First, E3ðGÞ ¼ l
f

2 ðGÞ itself is homotopy dense in l2ðGÞ. Then, it follows

that E4ðGÞ ¼ l
f

2 ðGÞ �Q is homotopy dense in l2ðGÞ �QAl2ðGÞ. Since l
f

2 is

homotopy dense in l2, it follows that E2ðGÞ ¼ l2ðGÞ � l
f

2 is homotopy dense in

l2ðGÞ � l
f

2 Al2ðGÞ. Thus, each EiðGÞ can be embedded in l2ðGÞ as a homotopy

dense set. r

By combining the following proposition and Proposition 3.5, we can obtain

Main Theorem.

Proposition 4.2. Let X be a connected metrizable space. For each i ¼ 2; 3; 4,

X is an EiðGÞ-manifold (or XAEiðGÞ) if and only if X A MiðtÞ is an ANR (or an

AR) which is a strongly MiðtÞ-universal strong Zs-space.

Proof. First, we show the ‘‘only if ’’ part. By 2.3, X A MiðtÞ is an ANR (or

an AR) and XAX � EiðGÞ. Since every Z-set in X is a strongly Z-set by [17,

A1] and EiðGÞ is strongly MiðtÞ-universal, it follows from [1, Proposition 2.6] that

X is strongly MiðtÞ-universal. Moreover, X is a strong Zs-space because so is

EiðGÞ.
Next, we prove the ‘‘if ’’ part. By Theorem 3.6, we have an l2ðGÞ-manifold

M such that, for every MiðtÞ-absorbing set W in M, there is a fine homotopy

equivalence j : W ! X . By Theorem 3.9(1), M contains an MiðtÞ-absorbing

set W . Then, we have a fine homotopy equivalence j : W ! X , which is a

near-homeomorphism by Theorem 3.7. Hence, XAW is an EiðGÞ-manifold by

Theorem 3.9(4). If X is an AR, MAl2ðGÞ in the above, whence we have

XAWAEiðGÞ by [1, Theorem 3.1] and Proposition 4.1. r
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[15] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l2-manifolds,

Fund. Math. 101 (1978), 93–110.
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