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AUTOPARALLEL DISTRIBUTIONS AND

SPLITTING THEOREMS

By

Antonio J. Di Scala*

Abstract. We study some links between autoparallel distributions

and the factorization of a riemannian manifold. Finally, we prove a

splitting theorem for Lie groups with biinvariant metrics.

1 Introduction

Splitting theorems are very important in the study of intrinsic and extrinsic

geometry of riemannian manifolds. De Rham theorem [KN] in the intrinsic case,

and Moore’s Lemma [M] in the extrinsic one, are well-known examples. Splitting

theorems play also an important role in the theory of isoparametric submanifolds,

see for example [PT], [HL].

In many situations it is possible to construct (locally) two autoparallel dis-

tributions, spanning the tangent bundle, which are perpendicular modulo the

intersection. If the intersection is trivial then both distributions must be parallel

and so the riemannian manifold splits. In this case the hypothesis of ortho-

gonality cannot be omitted (see first example in section 2).

In [D], the author shows that (see Proposition 2.1 below) a riemannian

manifold splits if it has two autoparallel nontrivial distributions satisfying a

curvature condition. Existence of two autoparallel distributions does not imply in

general, that the manifold splits.

In this article we prove the following theorem which shows that, in homo-

geneous case, this condition is, however, su‰cient to imply the splitting of the

involved manifold.

Theorem 1.1. Let G be a Lie group and h ; i a biinvariant metric on G. If

there exist two G-invariant (nontrivial ) autoparallel distributions D1;D2 such that:
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i) TG ¼ D1 þD2

ii) D1;D2 are orthogonal modulo intersection.

then G is not simple. In particular, the riemannian manifold ðG; h ; iÞ is a product

of Lie groups with biinvariant metrics (i.e. G ¼ G1 � G2 and h ; i ¼ h ; i1 � h ; i2).

2 Autoparallel Distributions and Factorization

Let ðM; h ; iÞ be a riemannian manifold and ‘ the Levi-Civita connection. A

distribution D is autoparallel if ‘XY A D for all vector fields X ;Y A wðDÞ. The

distribution D is called parallel if ‘XY A D for all vector fields Y A wðDÞ and X

an arbitrary vector field. An autoparallel distribution is integrable (zero torsion

property) with totally geodesic leaves. Conversely, the tangent spaces to the leaves

of a totally geodesic foliation define an autoparallel distribution.

As we pointed out in the introduction one has:

Proposition 2.1. If (locally) TM ¼ D1 lD2, orthogonal sum and both

distributions are autoparallel, then M splits locally.

We include the proof, since it is di‰cult to find it in the mathematical

literature. In fact, if X A wðD1Þ and Y ;Z A wðD2Þ then

0 ¼ YhX ;Zi ¼ h‘YX ;Ziþ hX ;‘YZi ¼ h‘YX ;Zi

which implies that D1 is parallel. Then we can use the well-known De Rham

theorem [KN] to decompose M.

First Example. If we omit the hypothesis of perpendicularity in the above

Proposition 2.1 then the proposition is false. In fact, take any surface S of non

zero curvature. Then it is clear that the manifold is not locally a product. Around

any point p A S it is possible to define an autoparallel distribution Fp given by the

radial direction (i.e. Fp is generated by the radial vector field in normal coor-

dinates around p). Thus, if p; q are su‰cient close these two distributions are

complementary and the manifold does not split. r

In [D] the author shows that the hypothesis on the intersection can be deleted

introducing conditions on the behavior of the curvature tensor. More precisely:

Proposition 2.2 [D]. Let M be a Riemannian manifold and let T1 and T2 be

autoparallel distributions spanning TM which are orthogonal modulo the intersec-

tion T1 VT2 ðT1 0TM0T2Þ. Assume that the curvature tensor RXY ¼ 0 if X lies

in T1 and Y lies in T2. Then, for each p A M there exists a nontrivial subspace of
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T1ðpÞ which contains T?
2 and is invariant under the local holonomy group F loc

p . In

particular M is locally reducible at each point.

Second Example. If we omit the hypothesis on the curvature tensor in

the above Proposition 2.2 then the proposition is false. To give an example we

recall the half plane model of the hyperbolic space Hn. In this model, the hyper-

bolic space Hn :¼ fp A Rn : p ¼ ðx1; . . . ; xnÞ; xn > 0g is endowed with the metric

ds2 :¼ h ;i
x2
n

. The totally geodesic submanifolds are the semispaces parallels to the

xn-axis and the upper part of spheres which meets orthogonally the hyperplane

xn ¼ 0. The hyperbolic space Hn has constant negative sectional curvature and

then it is a locally irreducible riemannian space. Define the following two

foliations of Hn : D1 :¼ fp A Rn : p ¼ ðx1; . . . ; xnÞ; x1 ¼ cte; xn > 0g and D2 :¼
fp A Rn : p ¼ ðx1; . . . ; xnÞ; x2 ¼ cte; xn > 0g.

Then, the two distributions: D1 :¼ TD1 and D2 :¼ TD2 are (nontrivial)

totally geodesic, orthogonal modulo intersection and THn ¼ D1 þD2. This shows

that without curvature assumptions Proposition 2.2 is false. Observe that if one

also avoids the hypothesis of nontriviality of the distributions then Proposition

2.2 is trivially false as shown by any ruled non developable surface.

It is interesting to note that there also exists examples in positive curva-

ture. In fact, let i : Sn � Sn ¼ M �N ! S2nþ1ð
ffiffiffi
2

p
Þ be the standard immersion

of the product of spheres into a big dimensional sphere. As iðSn � SnÞ is an

hypersurface of S2nþ1ð
ffiffiffi
2

p
Þ we can define the parallel submanifolds it : S

n � Sn !
S2nþ1ð

ffiffiffi
2

p
Þ, namely itðxÞ :¼ iðxÞ cosðtÞ þ

ffiffiffi
2

p
xðxÞ sinðtÞ where x is a (unitary)

normal vector field along iðSn � SnÞ. Note that it is also a product immersion of

a product of spheres of di¤erent radius. Thus, we have itðSn � SnÞ ¼ Mt �Nt H
S2nþ1ð

ffiffiffi
2

p
Þ. Then it is not di‰cult to verify that (locally): TS2nþ1ð

ffiffiffi
2

p
Þ ¼ TMt l

TNt l nðMt �NtÞ and that the two distributions given by D1 :¼ TMt l

nðMt �NtÞ, D2 :¼ TNt l nðMt �NtÞ are autoparallel and orthogonal modulo

intersection, where nðMt �NtÞ is the normal bundle of the submanifold

Mt �Nt. r

Remark 2.3. Another way to construct examples of irreducible riemannian

manifolds with the above properties is the following. Look for functions f ; g such

that the following metric h ; i defined in an open subset of R3 verifies: (1) q
qx
; q
qy

and
q
qz

are perpendicular. (2) q
qx
; q
qx

� �
¼ gðx; yÞ, q

qz
; q
qz

� �
¼ f ðy; zÞ and q

qy
; q
qy

D E
¼ 1. (3)

The distributions spanned by q
qx
; q
qy

and by q
qy
; q
qz

are autoparallel. (4) The curvature

tensor of h ; i does not have nullity.

Finally, we give the proof of Theorem 1.1.
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Proof of Theorem 1.1. The following proof is due to J. J. Bigeón and J.

Vargas. Let g be the Lie algebra of G. It is well-known that G-invariant dis-

tributions D are in 1 � 1 correspondence with subspaces V :¼ DðeÞ of g, where e

is the identity of G. Moreover, D is autoparallel (resp. parallel) if and only if V is

a subalgebra (resp. an ideal) of g (i.e. ½V ;V �HV (resp. ½V ; g�HV )). Thus, i) and

ii) imply that g ¼ AlBlC (nontrivial orthogonal sum) and AlB, BlC are

Lie subalgebras of g. Assume that g is simple. We claim that I :¼ C þ ½C;C � þ
½C; ½C;C �� þ � � � is a nontrivial ideal of g (Note that CH I HBlC ). In fact,

½C; I �H I by construction. In order to finish the proof it is su‰cient to prove that

½A; I �H I and ½B; I �H I . Let Kðx; yÞ be the Killing form of g. As G is simple it is

well-known that K is a multiple of h ; i. Then for a A A, b A B and c A C:

Kðb; ½a; c�Þ ¼ Kð½b; a�; cÞ ¼ 0

because AlB is a Lie subalgebra and AlB ? C. So, we obtain that

½A;C �HAlC. Then, for a1; a2 A A and c A C we have that:

Kða1; ½a2; c�Þ ¼ Kð½a1; a2�; cÞ ¼ 0

which implies that ½A;C �HC. Now, from Jacobi identity, it is standard to

conclude ½A; I �H I . Finally, for b1; b2 A B and c A C we have that:

Kðb1; ½b2; c�Þ ¼ Kð½b1; b2�; cÞ ¼ 0

which implies that ½B;C �HC. Again, from Jacobi identity, it is standard to

conclude ½B; I �H I . r
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