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SPINORS, CALIBRATIONS AND GRASSMANNIANS

By

Zhou Jianwei

Abstract. In this paper we use Cli¤ord algebra and spinor calculus

to study the calibrations on Riemannian manifolds and the Grass-

mann manifolds. Show that for every Grassmannian, there is a map

p : Gðk;RmÞ ! M such that every x A M is a calibration on Rm and

p�1ðxÞ is the contact set of x. In low dimensional cases, the cali-

bration sets M are manifolds or manifolds with singularities. We also

use Cli¤ord algebra to study the isotropy groups of calibrations.

§ 1. Introduction

In [9], we gave a new treatment of the Cli¤ord algebras. We represented the

pinor and spinor spaces as subspaces of the Cli¤ord algebras, then we used these

pinors to construct isomorphisms between the Cli¤ord algebras and the matrix

algebras. In doing these, we have developed some spinor calculus. In this paper,

we use Cli¤ord algebra and the results of [9] to study the calibrations and the

Grassmann manifolds.

Let x be a closed k-form on a Riemannian manifold M. If for every

point p of M and every orthonormal vectors e1; . . . ; ek A TpM, we have

xpðe15 � � �5ekÞa 1 and there are e1; . . . ; ek such that xpðe15 � � �5ekÞ ¼ 1, then

x is called a calibration. The set of such e15 � � �5ek is called a contact set of the

calibration x. The importance of the calibration is that the calibrations are closely

related with the homologically volume minimizing submanifolds (see [5], [6]).

Dadok and Harvey [2] have shown that from squares of spinors in dimension 8k,

one can get calibrations. Their method can be phrased as follows.

Under the canonical isomorphism between the Cli¤ord algebras and the

exterior algebras, the oriented Grassmannian Gðk;RmÞ can be looked as a subset
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of Cli¤ord algebra, especially, Gðk;RmÞHPinðmÞ. For any x; h A Clm with unit

norm, x0; x A Gðk;RmÞ, we have

hx0xaðh tÞ; xi ¼ hx0x; xhia 1:

These shows the k-form part of x0x � aðh tÞ is a calibration on Rm and the element

x is in the contact set of this calibration if and only if xx ¼ x0h.

In this paper, we study the cases of x ¼ h being the generators of the Cli¤ord

modules constructed in [9], see § 2 of this paper. We shall also see that all

homogenous parts of x � aðx tÞ are calibrations which includes many known

important calibrations. Let M be the set of calibrations defined by k-form part

of xx � aðx tÞ, x A Gðk;RmÞ. There is a map p : Gðk;RmÞ ! M defined naturally

and p�1ðfÞ is the contact set of f A M. Then every Grassmann manifold can be

represented as a disjoint union of the contact sets of some calibrations. In low

dimensional cases, we can show that p�1ðfÞ is a totally geodesic submanifold of

Gðk;RmÞ. In some cases, p : Gðk;RmÞ ! M define fibre bundles. These maps are

useful for our understanding the Grassmann manifolds. In many cases, the cali-

bration sets M are manifolds or manifolds with singularities. We call M calibra-

tion manifolds.

For example, as shown in [9], A8ð1 þ b8Þ generates a left irreducible

module space V8 ¼ Cl8 � A8ð1 þ b8Þ over Cl8. We shall see that A8ð1 þ b8Þ �
aðA8ð1 þ b8ÞÞ

t ¼ A8ð1 þ b8Þ and kA8ð1 þ b8Þk ¼ 1=4. Let ji be the 4-form part of

16e1eiA8ð1 þ b8Þ, i ¼ 1; . . . ; 8. j1 is the Cayley calibration, the other ji are special

Lagrangian calibrations. The calibration manifold M defined by 4-form part

of 16xA8ð1 þ b8Þ is di¤eomorphic to the unit sphere S7, that is, M ¼ f
P

viji j
v ¼ ðv1; . . . ; v8Þ A S7g. This is the content of Proposition 3.1.

For another example, let ~MM be the calibration manifold defined by 2-form

part of 16xA8ð1 þ b8Þ, x A Gð2;R8Þ. In this case, ~MM is di¤eomorphic to S6 and

p : Gð2;R8Þ ! S6 is a fibre bundle with fibre CP3.

The paper is organized as follows. In § 2, we study the calibrations defined by

xx � aðx tÞ for the case of x being the generators of the Cli¤ord modules. The

results are in Theorem 2.4 and 2.5. In § 3, we study the calibration sets in low

dimensional cases.

In § 4, we study the isotropy groups of calibrations. We show that in many

cases, the contact sets of the calibrations can be viewed as subsets of the isotropy

groups of the calibrations. In § 5, we study the calibrations on Riemannian mani-

folds. Combining with a result of Lawson and Michelsohn [8], we show that there

is a Cayley calibration on a 8-dimensional Riemannian manifold if and only if
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the manifold is spin and there is a parallel pinor or spinor field on this manifold

(Theorem 5.3).

Many notations used in this paper have been used in [9]. We write here

for easy reference. Let e1; . . . ; em be an orthonormal basis of Rm, then Clm is

generated by feig with the relations: eiej þ ejei ¼ �2dij . The homomorphism

a : Clm ! Clm is defined by

aðxÞ ¼ x; if x A Cleven
m ; aðhÞ ¼ �h; if h A Clodd

m :

When m ¼ 2n, let gi ¼ 1
2 ðe2i�1 �

ffiffiffiffiffiffiffi
�1

p
e2iÞ, gi ¼ 1

2 ðe2i�1 þ
ffiffiffiffiffiffiffi
�1

p
e2iÞ, i ¼ 1; . . . ; n.

Denote A2n ¼ Reðg1 � � � gnÞ and B2n ¼ Imðg1 � � � gnÞ. Let om ¼ e1e2 � � � em be the

volume element of Clm. The element bm A Clm is defined by

bm ¼
e1e3 � � � em�3em�1; m even;

e1e3 � � � em�2em; m odd:

�

§ 2. Pinors and Calibrations

We have shown in [9] that every pinor or spinor space can be realized as a

subspace of Cli¤ord algebra. Under the canonical isomorphism r : Clm ! 5ðRmÞ
defined by rðei1 � � � eik Þ ¼ ei1 5 � � �5eik , i1 < � � � < ik, the pinor or spinor spaces

can be looked as subspaces of the exterior algebra. The inner products h ; i on

Clm and 5ðRmÞ are defined as usual. The norms of x and rðxÞ are

kxk ¼ krðxÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hx; xi

p
:

For any x A Gðk;RmÞ, we can write x ¼ e15 � � �5ek, where fe1; . . . ; ekg is

an oriented orthonormal basis of x. As noted above, if x A Gð5ðRmÞÞ is a cali-

bration, we call

GðxÞ ¼ fx A Gðk;RmÞ j xðxÞ ¼ 1g

the contact set of x.

As shown in [9], the irreducible modules over Clm can be generated by the

one of the following elements:

(1) Am, when m1 2; 4 ðmod 8Þ;
(2) Amð1 þ bmÞ, when m1 0; 6 ðmod 8Þ;
(3) Am�1ð1 þ bm�1Þ, when m1 1 ðmod 8Þ;
(4) Am�1ð1GomÞ, when m1 3 ðmod 8Þ;
(5) Am�1ð1 þ bmÞ, when m1 5 ðmod 8Þ;
(6) Am�1ð1 þ bm�1Þð1GomÞ, when m1 7 ðmod 8Þ.

We shall see that every homogenous part of the above generators (under the
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map r) is a calibration. It is well-known that the n-form 2nA2n is a calibration on

R2n called the special Lagrangian calibration; the 4-form part of 24A8ð1 þ b8Þ is

Cayley calibration; the 3 or 4 form parts of 23A6ð1 þ b6Þð1 þ o7Þ are associative

and coassociative calibrations respectively. It is easy to see that we need only to

study the cases of (1), (2) and (6). First we prove several lemmas.

Lemma 2.1. For any n, we have 4A3
2n ¼ ð�1Þðn=2Þðnþ1Þ

A2n, kA2nk2 ¼
4kA2

2nk
2 ¼ 1

2nþ1 , rðA2nÞ is an n-form.

Proof. From g1 � � � gng1 � � � gngn � � � g1 ¼ ð�1Þng1 � � � gn and g1 � � � gn ¼
A2nð1 �

ffiffiffiffiffiffiffi
�1

p
e1e2Þ, one has

ð�1Þðn=2Þðn�1Þ4A3
2nð1 �

ffiffiffiffiffiffiffi
�1

p
e1e2Þ ¼ ð�1ÞnA2nð1 �

ffiffiffiffiffiffiffi
�1

p
e1e2Þ:

This shows 4A3
2n ¼ ð�1Þðn=2Þðnþ1Þ

A2n. r

Lemma 2.2. When 2n1 0; 6 ðmod 8Þ, we have ðA2nð1 þ b2nÞÞ
2 ¼

A2nð1 þ b2nÞ, kA2nð1 þ b2nÞk
2 ¼ 1

2 n , and rðA2nð1 þ b2nÞÞ ¼ cn þ
P
kb0

c4k, where cj

is a j-form.

Proof. From g1 � � � gn ¼ A2nð1 �
ffiffiffiffiffiffiffi
�1

p
e1e2Þ and

g1 � � � gnb2n ¼ g1 � � � gng1 � � � gn ¼ 2A3
2nð1 þ

ffiffiffiffiffiffiffi
�1

p
e1e2Þ;

one has A2nb2n ¼ 2A2
2n. Then

ðA2nð1 þ b2nÞÞ
2 ¼ A2nð1 þ b2nÞ; ðA2nð1 � b2nÞÞ

2 ¼ �A2nð1 � b2nÞ:

Hence

kA2nð1 þ b2nÞk
2 ¼ hA2nð1 þ b2nÞ; 1i ¼ 1

2n
:

The representative rðA2nð1 þ b2nÞÞ ¼ cn þ
P

c4k follows from

A2nb2n ¼ ð�1Þðn=2Þðn�1Þ
Reðg1g1 � � � gngnÞ: r

The proof of the next lemma is easy (o8kþ7 in the center of Cl8kþ7).

Lemma 2.3. ½A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ�2 ¼ 2A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ,
kA8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þk2 ¼ 1

24kþ2 , rðA8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7ÞÞ ¼
P

c4i þP
c4jþ3.
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The following theorem generalizes some important known calibrations. The

methods used in the following proof were first established by Dadok and

Harvey [2].

Theorem 2.4. Each homogeneous part of the following di¤erential forms is a

calibration:

(1) 2nA2n;

(2) 2nA2nð1 þ b2nÞ, 2n1 0; 6 ðmod 8Þ;
(3) 24kþ3A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ.

Furthermore,

(1) 0 x A Gð2nA2nÞ if and only if xA2n ¼ A2nb2n;

(2) 0 x A Gð2nA2nð1 þ b2nÞÞ if and only if xA2nð1 þ b2nÞ ¼ A2nð1 þ b2nÞ,
2n1 0; 6 ðmod 8Þ;

(3) 0 x A Gð24kþ3A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7ÞÞ if and only if xA8kþ6ð1 þ b8kþ6Þ �
ð1 þ o8kþ7Þ ¼ A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ,

where the Cli¤ord product is used.

Proof. The theorem is an easy consequence of Lemma 2.1–2.3, we prove

(1) and (1) 0 for examples. By Lemma 2.1, for any x A Pinð2nÞ, we have

hrð2nA2nÞ; rðxÞi ¼ 2nþ2hA2
2n; xA2nia 2nþ2kA2

2nk kxA2nk ¼ 1;

and hrð2nA2nÞ; rðxÞi ¼ 1 if and only if xA2n ¼ 2A2
2n. It is easy to see that

b2n is in the contact set of the special Lagrangian calibration rð2nA2nÞ and

b2nA2n ¼ A2nb2n. r

By 24kA8kaðb t
8kÞ ¼ Reð1 þ

ffiffiffiffiffiffiffi
�1

p
e1e2Þ � � � ð1 þ

ffiffiffiffiffiffiffi
�1

p
e8k�1e8kÞ, we have

24kA8kð1 þ b8kÞ ¼ 24kA8k þ
X2k

l¼0

ð�1Þ l 1

ð2lÞ!W
2l ;

where W ¼ e1e2 þ � � � þ e8k�1e8k is the kaehler form on R8k GC 4k. One can show

that

Gð24kA8kÞVG ð�1Þk 1

ð2kÞ!W
2k

� �
¼ q;

Gð24kA8kÞUG ð�1Þk 1

ð2kÞ!W
2k

� �
HG 24kA8k þ ð�1Þk 1

ð2kÞ!W
2k

� �
:

Thus the calibration defined by 4k-form part of 24kA8kð1 þ b8kÞ can be viewed as

a naturally generalization of the Cayley calibration.
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The proof of following theorem is easy.

Theorem 2.5. For any x0 A Gðr;RmÞHPinðmÞ, the r-form parts of the fol-

lowing di¤erential forms are calibrations:

(1) 2nþ1x0A2naðAt
2nÞ ¼ 2nx0A2naðb t

2nÞ, m ¼ 2n;

(2) 2nx0A2nð1 þ b2nÞ, m ¼ 2n1 0; 6 ðmod 8Þ;
(3) 24kþ3x0A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ, m ¼ 8k þ 7.

Furthermore,

(1) 0 x A Gð2nx0A2naðb t
2nÞÞVGðr;R2nÞ if and only if xA2n ¼ x0A2n;

(2) 0 x A Gð2nx0A2nð1 þ b2nÞÞVGðr;R2nÞ if and only if xA2nð1 þ b2nÞ ¼
x0A2nð1 þ b2nÞ, 2n1 0; 6 ðmod 8Þ;

(3) 0 x A Gð24kþ3A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7ÞÞVGðr;R8kþ7Þ, if and only if,

xA8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ ¼ x0A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ.

Let UðnÞ be the unitary group on C n GR2n. The complex structure J is

defined by g1; . . . ; gn. The element A2n is invariant under the action of

SUðnÞHSOð2nÞ. From g1 � � � gng1 � � � gn ¼ 2A2
2nð1 þ

ffiffiffiffiffiffiffi
�1

p
e1e2Þ, we know that

2A2
2n þ A2nb2n is invariant under the action of UðnÞ. In the remained of this

section we study the calibrations defined by 2nxA2naðb t
2nÞ. For more results, see § 3.

Proposition 2.6. For any x A Gð2;R2nÞ, represent x as v5ðaJvþ bwÞ,
where v;w are unit vectors and w ? v, Jv, a2 þ b2 ¼ 1. Then the 2-form part of

2nxA2naðb t
2nÞ is one of the following,

(1) v5ðaJvþ bwÞ þ ðaw� bJvÞ5Jwþ � � � ; if jaj < 1, where � � � denotes the

2-forms which can be omitted as a calibration;

(2) Gðe1e2 þ e3e4 þ � � � þ e2n�1e2nÞ, if a ¼G1.

Proof. Since A2naðb t
2nÞ is invariant under the action of UðnÞ, we can

assume that v ¼ e1, w ¼ e3. The 2-form part of

2nxA2naðb t
2nÞ

¼ a Reðe1e2 �
ffiffiffiffiffiffiffi
�1

p
Þð1 þ

ffiffiffiffiffiffiffi
�1

p
e3e4Þ � � � ð1 þ

ffiffiffiffiffiffiffi
�1

p
e2n�1e2nÞ

þ b Reðe1 �
ffiffiffiffiffiffiffi
�1

p
e2Þðe3 �

ffiffiffiffiffiffiffi
�1

p
e4Þð1 þ

ffiffiffiffiffiffiffi
�1

p
e5e6Þ � � � ð1 þ

ffiffiffiffiffiffiffi
�1

p
e2n�1e2nÞ

is

e1ðae2 þ be3Þ þ ðae3 � be2Þe4 þ aðe5e6 þ � � � þ e2n�1e2nÞ:

If jaj < 1, the contact sets of above 2-form and e1ðae2 þ be3Þ þ ðae3 � be2Þe4

are the same. This proves the proposition. r
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Now we compute the calibrations defined by 4-forms of 2nxA2naðb t
2nÞ,

x A Gð4;R2nÞ. As pointed out in [5, p. 129], every x A Gð4;R2nÞ can be repre-

sented by

x ¼ e1ðcos ae2 þ sin ae3Þe5ðcos be6 þ sin be7Þ;

where e1; e2 ¼ Je1; . . . ; e2n�1, e2n ¼ Je2n�1 is some orthonormal basis on R2n and J

is the complex structure defined above, 0a aa p=2, aa ba p.

Proposition 2.7. For any x A Gð4;R2nÞ represented as above, let f be the

calibration defined by x as in Theorem 2.5 (1). With some new orthonormal bases

e1; e2; . . . ; e2n, as a calibration, f or �f can be represented by the one of the

following forms,

(1) Kaehler calibration f1 ¼ 1
2 ðe1e2 þ � � � þ e2n�1e2nÞ2, when a ¼ b ¼ 0 or

a ¼ 0, b ¼ p;

(2) Special Lagrangian calibration f2 ¼ 24A8, when a ¼ b ¼ p=2;

(3) f3 ¼ ðe5e7 � e6e8Þ5ðe1e2 þ e3e4 þ e9e10 þ � � � þ e2n�1e2nÞ, when a ¼ 0,

b ¼ p=2;

(4) f4 ¼ ðe1e2 þ e3e4Þðe5e6 þ e7e8ÞG cos2 aðe1e2e3e4 þ e5e6e7e8Þ�
sin2 aðe1e4 þ e2e3Þðe5e8 þ e6e7Þ, when a ¼ b0 0; p=2 or aþ b ¼ p, a0 0; p=2;

(5) f5 ¼ ðe1e2 þ e3e4Þðe5e6 þ e7e8Þ, for all other cases.

Proof. By simple computation, the 4-form part of 2nxA2naðb t
2nÞ can be

written as fþ c, with

f ¼ ðe1e2 þ e3e4Þðe5e6 þ e7e8Þ þ cos a cos bðe1e2e3e4 þ e5e6e7e8Þ

� sin a sin bðe1e4 þ e2e3Þðe5e8 þ e6e7Þ;

c ¼ 1

2
cos a cos bðe9e10 þ � � � þ e2n�1e2nÞ2

þ cos aðe5e6 þ e7e8Þðe9e10 þ � � � þ e2n�1e2nÞ

þ cos bðe1e2 þ e3e4Þðe9e10 þ � � � þ e2n�1e2nÞ:

We have replaced cos ae2 þ sin ae3 and cos ae3 � sin ae2 by e2 and e3;

cos be6 þ sin be7 and cos be7 � sin be6 by e6 and e7 respectively. Then the cases of

(1), (2), (3) follow directly.

Now assuming a; b0 0; p=2; p, we first show that for any y A Gð4;R2nÞ with

hfþ c; yi ¼ 1, then hc; yi ¼ 0. Hence as a calibration we need only consider

the 4-form f. Rewrite fþ c ¼ e9e105c 0 þ w, where c 0 and w are the forms in
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orthogonal complement of span fe9; e10g. For any y A Gðfþ cÞ, as in the proof

of Lemma 2.1 of [3], y can be written as

y ¼ ðcos ge9 þ sin gvÞðcos ge10 þ sin gwÞh;

where h; v;w are orthogonal to e9; e10. Then at least one of the following holds:

hy; e9e10c
0i ¼ 1; hy; wi ¼ 1

hh;c 0i ¼ hvwh; wi ¼ 1:

Since e9e10ðe1e2 þ � � � þ e7e8 þ e11e12 þ � � � þ e2n�1e2nÞ is a calibration and

jcos aj < 1, jcos bj < 1 by assumption, then hy; e9e10c
0i ¼ 1 and hh;c 0i ¼ 1 can

not hold. Then we have

hy; wi ¼ 1 and cos g ¼ 0:

In this way we can show that if y A Gðfþ cÞ, then hc; yi ¼ 0. Thus we need

only to consider the 4-form f. Note that f is calibration for any a; b, the fol-

lowing hold,

q

qa
hy; fi ¼ q

qb
hy; fi ¼ 0:

Then

sin a cos baþ cos a sin bb ¼ 0;

cos a sin baþ sin a cos bb ¼ 0;

where a ¼ he1e2e3e4 þ e5e6e7e8; yi, b ¼ hðe1e4 þ e2e3Þðe5e8 þ e6e7Þ; yi. Then

a ¼ b ¼ 0 if sin2 a cos2 b � cos2 a sin2 b ¼ sinðaþ bÞ sinða� bÞ0 0. In this case,

as calibrations, f and f5 are the same. If a ¼ b or aþ b ¼ p, f has the form

f4. r

§ 3. Calibration Manifolds

In this section we study the calibration sets defined by Theorem 2.5 in low

dimensional cases. By Theorem 2.5, we know that 8xA4aðAt
4Þ ¼ xð1 � o4Þ is a

calibration for every x A Gð2;R4Þ. x 0 A Gð2;R4Þ is in the contact set of this

calibration if and only if xA4 ¼ x 0A4, this is equivalent to xð1 � o4Þ ¼ x 0ð1 � o4Þ.
On the other hand, x ¼ 1

2 xð1 � o4Þ þ 1
2 xð1 þ o4Þ and there are unit vectors

v;w ? e1 such that xð1 � o4Þ ¼ e1vð1 � o4Þ, xð1 þ o4Þ ¼ e1wð1 þ o4Þ. The map

Gð2;R4Þ ! S2 � S2 defined by sending x to ðv;wÞ is a di¤eomorphism. Then

the map p : Gð2;R4Þ ! S2, x ! v, defines a fibre bundle. The contact set of
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the calibration e1vð1 � o4Þ is p�1ðvÞ which is a totally geodesic submanifold of

Gð2;R4Þ.
This construction can be generalized to many cases. Let M1ðr; 2nÞ be the set

of calibrations defined by r-form parts of 2nxA2naðb t
2nÞ, x A Gðr;R2nÞ. When

2n1 0; 6 ðmod 8Þ, let M2ðr; 2nÞ be the set of calibrations defined by r-form parts

of 2nxA2nð1 þ b2nÞ. By Theorem 2.5, there are two maps:

p1 : Gðr;R2nÞ ! M1ðr; 2nÞ;

p2 : Gðr;R2nÞ ! M2ðr; 2nÞ; 2n1 0; 6 ðmod 8Þ:

For any j A Miðr; 2nÞ, p�1
i ðjÞHGðr;R2nÞ is the contact set of j. If xA2n ¼ x 0A2n,

we have xA2nð1 þ b2nÞ ¼ x 0A2nð1 þ b2nÞ. Then there is a map p 0 : M1ðr; 2nÞ !
M2ðr; 2nÞ, if 2n1 0; 6 ðmod 8Þ. This map is nontrivial in some cases. Obviously,

p 0p1 ¼ p2.

We shall see that, in low dimensional cases, the calibration set Miðr;mÞ are

manifolds or manifolds with singularities. We call them the calibration manifolds.

We first study the sets M2ðr; 8Þ. As shown in [9], there is a unit vector v A R8,

such that xA8ð1 þ b8Þ ¼ e1vA8ð1 þ b8Þ or xA8ð1 þ b8Þ ¼ vA8ð1 þ b8Þ for any

x A Gðr;R8Þ, according to r being even or odd. As exterior forms, xA8ð1 þ b8Þ is

selfdual for any x A Gð2r;R8Þ, anti-self dual for x A Gð2r� 1;R8Þ. Then we need

only to study M2ðr; 8Þ for r ¼ 2; 3; 4. As is well known the isotropy group of

A8ð1 þ b8Þ is Spin7 HSOð8Þ which acts transitively on the unit sphere S7 in R8.

The exceptional Lie group G2 is a subgroup of Spin7 which acts transitively on

the sphere S6 ¼ fv A S7 j v ? e1g. These observations are useful for the study of

M2ðr; 8Þ.
In the following, we shall often use A8 and A8b8. By simple computation, we

have

16A8 ¼ e1e3e5e7 þ e2e4e6e8 � e1e3e6e8 � e2e4e5e7

� e1e4e5e8 � e1e4e6e7 � e2e3e5e8 � e2e3e6e7;

16A8b8 ¼ 1 þ o8 � e5e6e7e8 � e1e2e3e4

� e3e4e7e8 � e1e2e5e6 � e1e2e7e8 � e3e4e5e6:

Proposition 3.1. The calibration set M2ð4; 8Þ is a manifold di¤eomorphic

to S7, the di¤eomorphism is defined by sending v A S7 to 4-form part of

16e1vA8ð1 þ b8Þ. Furthermore, v ¼Ge1 corresponds to the Cayley calibration, the

others are the special Lagrangian calibrations.
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Proof. We need only to show that the 4-form part of 24e1vA8ð1 þ b8Þ is

a calibration for any v A S7. As noted above, there is an element G A Spin7

such that Gðe1Þ ¼ e1, GðvÞ ¼ ae1 þ be2, then Gðe1vA8ð1 þ b8ÞÞ ¼ e1ðae1 þ be2Þ �
A8ð1 þ b8Þ. By �e1e4e6e7A8ð1 þ b8Þ ¼ A8ð1 þ b8Þ, we have

e1ðae1 þ be2ÞA8ð1 þ b8Þ ¼ ðae1 � be2Þe4e6e7A8ð1 þ b8Þ:

By Theorem 2.5, the 4-form part of 24e1vA8ð1 þ b8Þ is in M2ð4; 8Þ. Thus M2ð4; 8Þ
is a manifold di¤eomorphic to S7. The 4-form parts of G24A8ð1 þ b8Þ are the

Cayley calibrations. If v0Ge1, replace ae1 � be2, be1 þ ae2 in Gðe1vA8ð1þ b8ÞÞ ¼
ðae1 � be2Þe4e6e7A8ð1 þ b8Þ by e1; e2, one can show that the 4-form part of

24e1vA8ð1 þ b8Þ is a special Lagrangian calibration. r

For any unit vector v ? e1, we can define a map Jv : R
8 ! R8, Jvðe1Þ ¼ v,

JvðvÞ ¼ �e1; for any w ? e1, v, JvðwÞ is determined by JvðwÞA8ð1 þ b8Þ ¼
�e1vwA8ð1 þ b8Þ. It is easy to see that Jv is a complex structure on R8 and

Je2
¼ J. On the other hand, for any such v, there is G A G2 such that Gðe1Þ ¼ e1,

GðvÞ ¼ e2. It is easy to see that Jv ¼ G�1JG.

By Proposition 3.1, there are calibrations ji defined by 24e1eiA8ð1 þ b8Þ,

i ¼ 1; . . . ; 8. For any x ¼ ðx1; x2; . . . ; x8Þ A S7, j ¼
P8

i¼1

xiji is also a calibration. j1

is Cayley calibration, the other ji are special Lagrangian calibrations with the

complex structures Jei . Then for every element of Vþ
8 with norm 4 determines a

calibration.

It is interesting to note that the di¤erential equations of ji-submanifolds can

be determined by jj , where j ¼ 1; . . . ; i � 1; i þ 1; . . . ; 8 (cf. Dodak and Harvey

[2]). This method of determine the di¤erential equations for calibrations can be

applied to all calibrations studied in this paper.

Proposition 3.2. The calibration set M2ð2; 8Þ is a manifold di¤eomorphic to

S6 ¼ fv A S7 j v ? e1g. The two form of 16e1vA8ð1 þ b8Þ is a kaehler calibration on

R8 GC 4 with respect to the complex structure Jv. The map p2 : Gð2;R8Þ ! S6

defines a fibre bundle with fibre CP3.

Proof. Let xA8ð1 þ b8Þ ¼ e1vA8ð1 þ b8Þ and v ¼ ae1 þ bv 0, v 0 ? e1, where

x A Gð2;R8Þ. From

hxA8ð1 þ b8Þ;A8ð1 þ b8Þi ¼ hx;A8ð1 þ b8Þi ¼ 0

and
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1

16
¼ hxA8ð1 þ b8Þ; e1vA8ð1 þ b8Þi ¼ hxA8ð1 þ b8Þ; be1v

0A8ð1 þ b8Þia
1

16
jbj;

we get v ? e1. The two form of 16e1vA8ð1 þ b8Þ is a kaehler calibration on

R8 ¼ C4 with respect to the complex structure Jv.

Then there is a map p2 : Gð2;R8Þ ! S6, p2ðxÞ ¼ u, if xA8ð1 þ b8Þ ¼
e1uA8ð1 þ b8Þ. By Theorem 2.5, it is not di‰cult to show that for any u A S6,

p�1
2 ðuÞ ¼ fvJuv A Gð2;R8Þ j v A S7g:

Then p�1
2 ðuÞ is di¤eomorphic to the complex projective space CP3. These com-

plete the proof of the proposition. r

For any G A Spin7, we have the following commutative diagram:

Gð2;R8Þ ���!G Gð2;R8Þ???yp2

???yp2

S6 ���!G S6;

where G is defined by GðxÞA8ð1 þ b8Þ ¼ e1GðuÞA8ð1 þ b8Þ, u ¼ p2ðxÞ. It is easy to

show that p�1
2 ðuÞ is a totally geodesic submanifold of Gð2;R8Þ for any u A S6.

The proof of the following proposition is similar to that of Proposition 3.1

and 3.2.

Proposition 3.3. The calibration sets M2ðr; 8Þ are all di¤eomorphic to S7 for

r ¼ 1; 3; 5; 7. Every element in M2ð3; 8Þ is essentially an associative calibration on

some 7-dimensional subspace of R8. For each r ¼ 1; 3; 5; 7, p2 : Gðr;R8Þ ! M2ðr; 8Þ
defines a fibre bundle.

Similar to the case of Gð2;R8Þ, for any G A Spin7, we have the following

commutative diagram:

Gð3;R8Þ ���!G Gð3;R8Þ???yp2

???yp2

S7 ���!G S7:

The group Spin7 acts transitively on Gð3;R8Þ and every fibre of Gð3;R8Þ ! S7 is

a totally geodesic submanifold of Gð3;R8Þ and is denoted by ASSOC.

Remark. In [4], Gluck, Mackenzie and Morgan studied the volume-

minimizing cycles in Grassmann manifolds. We can show that p�1
2 ðuÞ is a cali-
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brated submanifold of calibration 1
6o

3 on Gð2;R8Þ for any u A S6, where o is the

kaehler form on Gð2;R8Þ (cf. [4]) and p2 : Gð2;R8Þ ! S6 is defined in Proposi-

tion 3.2. Let E be a vector bundle on Gð2;R8Þ, the fibre on e15e2 A Gð2;R8Þ is

fv ? e1; e2 j v A R8g. Then the Euler class of E defines a calibration on Gð2;R8Þ
and the sphere S6 HGð2;R8Þ is a calibrated submanifold of this calibration.

These gives an answer to the problem (5) of [4]. Let dvS6 be the volume element

of S6. It is interesting to note that the 6-form p�
2 ðdvS 6Þ is also a calibration on

Gð2;R8Þ and can be represented as a summand of 1
6o

3. There is no calibrated

submanifold of p�
2 ðdvS 6Þ even locally.

As is well-known, there is a Hopf fibration S7 ! S4 defined by quaternions.

Combining this with Proposition 3.3, we have a map t : Gð3;R8Þ ! S4. We can

show that every fibre of the map t : Gð3;R8Þ ! S4 is a calibrated submanifold

of ?p1 the dual of the Pontryagin form p1 on Gð3; 8Þ (cf. [4]). Then t�1ðvÞ is

volume-minimizing in the holomogy class defined by t�1ðvÞ, any v A S4. This

gives a partial answer to the problem (2) in [4].

Proposition 3.4. The map Gðr;R8Þ ! M2ðr; 8Þ defines a fibre bundle for

each r0 4; 8. The bundles p2 : Gðr;R8Þ ! M2ðr; 8Þ and p2 : Gð8 � r;R8Þ !
M2ð8 � r; 8Þ are dual in the sense of the following commutative diagram:

Gðr;R8Þ ���!? Gð8 � r;R8Þ???yp2

???yp2

M2ðr; 8Þ ���!ð�1Þ r
M2ð8 � r; 8Þ

where ? is the Hodge star operator.

Proof. The Hodge star operator ? can also be defined by ?x ¼ o8 � x, for

x A Cl8 G5ðR8Þ. Hence

?xA8ð1 þ b8Þ ¼ ð�1Þ rxo8A8ð1 þ b8Þ ¼ ð�1ÞrxA8ð1 þ b8Þ

for any x A Gðr;R8Þ. This proves Proposition. r

Now we turn to study the calibrations defined by xA6ð1 þ b6Þð1 þ o7Þ. Let

Cl6 and Cl7 be generated by e3; . . . ; e8 and e2; e3; . . . ; e8 respectively. The iso-

morphism C : Cl7 ! Cleven
8 is defined by CðxÞ ¼ x for x A Cleven

7 , CðcÞ ¼ e1c,

for c A Clodd
7 . It is easy to see that 2A8 ¼ e1A6 þ A6o7, then

CðA6ð1 þ b6Þð1 þ o7ÞÞ ¼ 2A8ð1 þ b8Þ:
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Then for any x A Cl7,

CðxA6ð1 þ b6Þð1 þ o7ÞÞ ¼ 2e1vA8ð1 þ b8Þ

for some v A R8. Since the exceptional Lie group G2 fixes A6ð1 þ b6Þð1 þ o7Þ and

A8ð1 þ b8Þ, we can assume that v ¼ ae1 þ be2. Replace �ae3 þ be4, �ae4 � be3 by

e3; e4 in 24ð�aþ be1e2ÞA8ð1 þ b8Þ, we get

e1ðe357 � e368 � e458 � e467Þ þ e2ðe468 � e457 � e358 � e367Þ

� að1 � e5678 � e3478 � e3456Þ � ae1ðo7 � e234 � e256 � e278Þ

þ bðe1e2 þ � � � þ e7e8 � e345678Þ � be1e2ðe3456 þ e3478 þ e5678Þ;

where eij���k ¼ eiej � � � ek. This shows

Proposition 3.5. Denote Mðr; 7Þ the calibration sets defined by the r-form

part of 23xA6ð1 þ b6Þð1 þ o7Þ, x A Gðr;R7Þ. Then

(1) There are two forms in Mð3; 7Þ defined by 3-form parts ofG23A6ð1 þ b6Þ �
ð1 þ o7Þ which are associative calibrations. The others are special Lagrangian

calibrations. Mð3; 7Þ is a manifold di¤eomorphic to S7;

(2) Mð2; 7ÞAS6 is a set of kaehler calibrations and p : Gð2;R7Þ ! S6 is a

fibre bundle with fibre CP2;

(3) The calibration manifolds Mð3; 7Þ and Mð4; 7Þ; Mð2; 7Þ and Mð5; 7Þ are

di¤eomorphic respectively.

Now we turn to study the calibration sets M1ðr; 8Þ. Recall that, for any

x A Cleven
8 , there are unit vectors v;w, such that xA8ð1 þ b8Þ ¼ e1vA8ð1 þ b8Þ and

xA8ð1 � b8Þ ¼ e1wA8ð1 � b8Þ. Then

2xA8b8 ¼ e1ðv� wÞA8 þ e1ðvþ wÞA8b8:

The following lemma gives the necessary conditions of for which v;w A R8

there exists x A Gðr;R8Þ such that e1vA8 þ e1wA8b8 ¼ xA8b8 or vA8 þ wA8b8 ¼
xA8b8.

Lemma 3.6. For any v;w A R8, if there is some x A Gðr;R8Þ, such that

e1vA8 þ e1wA8b8 ¼ xA8b8, for r even; vA8 þ wA8b8 ¼ xA8b8, for r odd. Then the

vectors v;w satisfy the following conditions:

jvj2 þ jwj2 ¼ 1; hv;wi ¼ hJv;wi ¼ 0;

where J is the complex structure defined as above.
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Proof. Let r be an even number, x A Gðr;R8Þ, xA8b8 ¼ e1vA8 þ e1wA8b8.

The equality jvj2 þ jwj2 ¼ 1 follows from 2A2
8b8 ¼ A8 and he1vA8; e1wA8b8i ¼

1
2 hv;wA8i ¼ 0. By A2

8 ¼ aðxA8b8Þ
t � xA8b8, we have A8ðb8vwb8 þ wvÞA8 ¼ 0.

Since A8 and A8b8 are invariant under the action of SUð4Þ, choose G A SUð4Þ
such that

GðvÞ ¼ a1e1; GðwÞ ¼ b1e1 þ b2e2 þ b3e3:

Then

GðA8ðb8vwb8 þ wvÞA8Þ

¼ A8ð�2a1b1 � 2a1b2e1e2ÞA8

¼ �2a1b1A
2
8 þ 2a1b2e1e2A

2
8 :

This shows

a1b1 ¼ hGðvÞ;GðwÞi ¼ hv;wi ¼ 0;

a1b2 ¼ hJGðvÞ;GðwÞi ¼ hJv;wi ¼ 0:

The case of r being odd can be proved similarly. r

Proposition 3.7. The calibration set M1ð2; 8Þ is a manifold with two singu-

larities. Any element of M1ð2; 8Þ can be represented by 2-form of e1vA8 þ e1wA8b8,

where v ¼
P8

i¼3

aiei, w ¼
P8

j¼2

bjej satisfy the conditions of Lemma 3.6. The singu-

larities correspond to v ¼ 0, w ¼Ge2.

Proof. For any x A Gð2;R8Þ, xA8b8 ¼ e1vA8 þ e1wA8b8, we have

2he1vA8;A8i ¼ 2hxA8b8;A8i ¼ hx;A8i ¼ 0;

2he1vA8; e1e2A8i ¼ 2hxA8b8; e1e2A8i ¼ hx; e1e2A8i ¼ hx;B8i ¼ 0:

These show that v ? e1; e2. Similarly we can show that w ? e1. This shows that

the conditions of the proposition are necessary. On the contrary, suppose that the

vectors v;w satisfy the conditions of the proposition. We can assume that

v ¼ a3e3; w ¼ b2e2 þ b5e5; a2
3 þ b2

2 þ b2
5 ¼ 1:

Then

e1vA8 þ e1wA8b8 ¼ ða3e7 � b2e6 þ b5e1Þe5A8b8

and the 2-form part of e1vA8 þ e1wA8b8 is in M1ð2; 8Þ.
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Finally, we show that omit two pints of M1ð2; 8Þ, the remained set is a

manifold of dimension 10. Let

F1 ¼ jvj2 þ jwj2; F2 ¼ hv;wi; F3 ¼ hJv;wi:

The Jacobian matrix
qðF1;F2;F3Þ

qða3;a5;a6;b2;b3;b4;b5Þ at point v ¼ a3e3, w ¼ b2e2 þ b5e5 is

0
B@

a3 b2 b5

b5 a3

�b5 a3

1
CA:

The rank of this matrix is 3 if and only if a3 0 0 or b5 0 0. This completes the

proof of proposition. r

By Proposition 2.6, we know that the singularities of M1ð2; 8Þ are kaehler

calibrations on R8, the other elements of M1ð2; 8Þ are kaehler calibrations on

some 4-dimensional subspaces of R8. Then the fibres of the map p1 : Gð2;R8Þ !
M1ð2; 8Þ are all di¤eomorphic to CP1AS2 expect two points. One can also show

that p�1
1 ðpÞ is geodesic submanifold of Gð2;R8Þ for any p A M1ð2; 8Þ.

As noted above, we have the following commutative diagram:

Gð2;R8Þ ���!p1
M1ð2; 8Þ

p2

???yp 0

M2ð2; 8Þ

������!

For any u A S6AM2ð2; 8Þ, u0 e2, p�1
2 ðuÞ is di¤eremorphic to CP3. We can show

that M ¼ p 0�1ðuÞ is di¤eremorphic to S4. Restrict the map p1 on p�1
2 ðuÞ, we get a

fibre bundle

p1 : CP3 ! S4:

Every fibre of this map is S2. The map p1 : CP3 ! S4 is just the well-known map

CP3 ! HP1.

By Hodge star operator, we know that M1ð6; 8Þ is also a manifold with sin-

gularities. Now we turn to study M1ð4; 8Þ.

Proposition 3.8. The calibration set M1ð4; 8Þ is defined by these v;w A R8

which satisfy the conditions of Lemma 3.6 and hw; e2i ¼ 0. M1ð4; 8Þ is a mani-

fold with singularities and the singularities correspond to v ¼ a1e1 þ a2e2, w ¼ 0,

a2
1 þ a2

2 ¼ 1.

Spinors, Calibrations and Grassmannians 91



Proof. Let v;w A R8 satisfy above conditions. We show that 4-form part of

e1vA8 þ e1wA8b8 is in M1ð4; 8Þ. Choose G A SUð4Þ, such that

GðvÞ ¼ a1e1; GðwÞ ¼ b3e3:

We can also assume that Gðe1Þ is a linear combination of the vectors e1; e2; e3; e5.

Then

Gðe1vA8 þ e1wA8b8Þ

¼ Gðe1Þða1e1b8 þ b3e3ÞA8b8

¼ Gðe1Þð�a1e1e2e3e6e7 � b3e3e1e2e7e8ÞA8b8

¼ Gðe1Þe1e2e3e7ða1e6 � b3e8ÞA8b8

¼ �Gðe1Þe4e7ða1e6 � b3e8ÞA8b8:

These shows that there is x A Gð4;R8Þ such that

xA8b8 ¼ e1vA8 þ e1wA8b8:

As in the proof of Proposition 3.7, we can show that if e1vA8 þ e1wA8b8 ¼
xA8b8, for some x A Gð4;R8Þ, then w ? e2. r

It is easy to see that the singularities of M1ð4; 8Þ defined by Ge1e2A8b8 are

kaehler calibrations and the other singularities are special Lagrangian calibrations

(cf. Proposition 2.6).

The proof of the following proposition is similar to that of Proposition 3.7

and 3.8.

Proposition 3.9. The calibration sets M1ð3; 8Þ and M1ð5; 8Þ are both dif-

feomorphic to a submanifold of S15 HR16 defined by

jvj2 þ jwj2 ¼ 1; hv;wi ¼ hJv;wi ¼ 0:

It is not di‰cult to show that M1ð3; 8Þ is a minimal submanifold of the

sphere S15 with second fundamental form of constant length 24. There is a

natural action of SUð4Þ on M1ð3; 8Þ and M1ð5; 8Þ, defined by ðv;wÞ ! ðGv;GwÞ,
for any G A SUð4Þ.

The calibrations defined by 23xA6ð1 þ b6Þ or 23A6b6 can be studied sim-

ilarly. By [9, § 3.1], any elements in V6 ¼ Cl6A6ð1 þ b6Þ can be represented as

ðaþ vþ co6ÞA6ð1 þ b6Þ. With the action of SUð3Þ, this can be changed into
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ðaþ be1 þ co6ÞA6ð1 þ b6Þ

¼ ð�ae3 þ be5 þ ce4Þe3A6ð1 þ b6Þ

¼ ðae3 � be5 � ce4Þe2e6A6ð1 þ b6Þ:

It is easy to see that the 2-form part of 23ð�ae3 þ be5 þ ce4Þe3A6ð1 þ b6Þ is a

calibration if and only if a ¼ 0 and b2 þ c2 ¼ 1; the 3-form part is a calibration

for all a; b; c with a2 þ b2 þ c2 ¼ 1. These prove

Proposition 3.10. The calibration sets M1ð2; 6Þ ¼ M2ð2; 6Þ and M1ð3; 6Þ ¼
M2ð3; 6Þ are di¤eomorphic to S6 and S7 respectively.

§ 4. Isotropy Groups of Calibrations

In this section, we study the group action on the calibrations. For any

G A SOðmÞ, G can be extended to automorphisms G : Clm ! Clm and

G : 5ðRmÞ ! 5ðRmÞ, rðGðxÞÞ ¼ GðrðxÞÞ for any x A Clm. Let f be a calibration

on Rm. The subgroup of SOðmÞ defined by fG A SOðmÞ jGðfÞ ¼ fg is called the

isotropy group of f. As is well known, the special Lagrangian calibration A2n is

fixed by the action of elements of SUðnÞHSOð2nÞ. Moreover, we have

Proposition 4.1. The isotropy group of special Lagrangian calibration A2n is

SUðnÞ, when 2n1 2; 6 ðmod 8Þ.

Proof. Assuming 2n1 2; 6 ðmod 8Þ, from g1 � � � gno2n ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þng1 � � � gn,

we have A2no2n ¼ ð
ffiffiffiffiffiffiffi
�1

p
Þnþ1

B2n. If GðA2nÞ ¼ A2n for some G A SOð2nÞ, let

g A Spinð2nÞ be a lift of G. Then GðB2nÞ ¼ gB2ng
t ¼ B2n, hence Gðg1 � � � gnÞ ¼

g1 � � � gn. Write

GðgiÞ ¼
X
j

Cij gj þ
X
j

Dijgj :

Denote C ¼ ðCijÞ, D ¼ ðDijÞ, they satisfy

CCt þDDt ¼ I :

From

Gðg1 � � � gnÞ ¼ detðCÞg1 � � � gn þ � � � þ detðDÞg1 � � � gn ¼ g1 � � � gn;

we have det C ¼ 1, hence D ¼ 0. This shows G A SUðnÞ. r

Proposition 4.2. SUð4kÞ is a subgroup of the isotropy group of the cali-

bration A8kð1 þ b8kÞ.
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The proposition follows from A2nb2n ¼ 2A2
2n.

Lemma 4.3. When 2n1 0; 6 ðmod 8Þ, G is in the isotropy group of

A2nð1 þ b2nÞ, if and only if, G can be lifted to g A Spinð2nÞ such that

gA2nð1 þ b2nÞ ¼ A2nð1 þ b2nÞ.

Proof. By Proposition 3.1.5 of [9], the equalities

GðA2nð1 þ b2nÞÞ ¼ gA2nð1 þ b2nÞ � að½A2nð1 þ b2nÞ�
tÞgt

¼ A2nð1 þ b2nÞ � að½A2nð1 þ b2nÞ�
tÞ

hold if and only if gA2nð1 þ b2nÞ ¼GA2nð1 þ b2nÞ. r

The next lemma can be proved by using Proposition 3.2.4 of [9].

Lemma 4.4. The element G A SOð8k þ 7Þ is in the isotropy group of

A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ if and only if G can be lifted to g A Spinð8k þ 7Þ, such
that gA8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ ¼ A8kþ6ð1 þ b8kþ6Þð1 þ o8kþ7Þ, or equivalently,

gA8kþ6ð1 þ b8kþ6o8kþ7Þ ¼ A8kþ6ð1 þ b8kþ6o8kþ7Þ.

Combining Lemma 4.3, 4.4 with Theorem 2.4, we know that the contact sets

of some calibrations can be viewed as subsets of the isotropy groups of the

calibrations. For example, let PHSOð8kÞ be the isotropy group of A8kð1 þ b8kÞ
and ~PPH Spinð8kÞ is the lift of P such that ~PPjA8kð1þb8kÞ ¼ 1. Hence the contact set

of 4l-form part of A8kð1 þ b8kÞ are

rð ~PPÞVGð4l;R8kÞ:

In general, the contact set of r-form part of x0A8kð1 þ b8kÞ, x0 A Gðr;R8kÞ, is

rðx0
~PPÞVGðr;R8kÞ:

From A8kð1 þ b8kÞe1e2 ¼ �e1e2A8kð1 � b8kÞ, we know that the lift of the isotropy

group of A8kð1 � b8kÞ to Spinð8kÞ is Adðe1e2Þ ~PP. Since the isotropy group of A8k

is a subgroup of the isotropy group of A8kð1 þ b8kÞ, the lift of the isotropy group

of A8k is ~PPVAdðe1e2Þ ~PP and the contact set of r-form of x0A8kb8k is

r½x0ð ~PPVAdðe1e2Þ ~PPÞ�VGðr;R8kÞ;

where x0 A Gðr;R8kÞ.

Zhou Jianwei94



§ 5. Calibrations on Manifolds

In this section, we study calibrations on Riemannian manifolds. First we have

Theorem 5.1. Let M be a spin manifold with dimension ma 9. If there is

a parallel real pinor or spinor field s on M with unit norm. Then rðs � aðs tÞÞ is a

harmonic form. Furthermore, the homogeneous parts of rðs � aðs tÞÞ are calibrations

on M. If m ¼ 7, the 3 or 4-form parts of rðs � aðs tÞÞ are associative or co-

associative calibrations respectively. If m ¼ 8, the 4-form part of rðs � aðs tÞÞ is a

Cayley calibration.

Proof. Let s be a parallel real spinor field on M with ksk1 1. As shown

in [5], spin group SpinðmÞ acts on the unit sphere in spinor spaces transitively if

ma 9. Then the theorem follows from Theorem 2.4. r

The following theorems concern the conditions of existence calibrations on

Riemannian manifolds.

Theorem 5.2. Let M be a compact Riemannian manifold with dimension 8. If

there is a Cayley calibration or a special Lagrangian calibration on M, then

(1) H 4ðMÞ0 0;

(2) The structure group of M can be reduced to Spin7 the isotropy group of

Cayley form;

(3) M has a spin structure;

(4) p1ðMÞ2 � 4p2ðMÞ þ 8wðMÞ ¼ 0, where piðMÞ are Pontrjagin forms on M.

Proof. It is easy to see that 16A8ð1 þ b8Þ is a sum of Cayley form and

1 þ o8. Let f be a Cayley calibration on M. Then f ¼ ?f is a harmonic form and

there is a pinor bundle defined by

S ¼ fxqð1 þ o8 þ fÞ j xq A ClqðMÞ; q A Mg;

where o8 is the volume element on M and f is viewed as a section of ClðMÞ.
Let P be the frame bundle over M formed by all frames on M with which f

can be represented in canonical Cayley form. Obviously, the structure group of

P is Spin7. The existence of spin structure follows from Lemma 4.3. For (4), see

Theorem 10.7 on p. 349 in [8].

On the other hand, let c be a special Lagrangian calibration on M. Also

denote the correspond element in GðClðMÞÞ by c. Since A8 þ 2A8 � A8 ¼
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A8ð1 þ b8Þ, from cþ 1
8c � c, we can get a Cayley form on M. Notice also that c

is a harmonic form ðo8 � A8 ¼ A8Þ. r

Combining Theorem 5.1, 5.2 with Theorem 10.20 of [8, p. 356], we have

Theorem 5.3. Let M be a Riemannian manifold with dimension 8. Then there

is a Cayley calibration on M if and only if M is spin and there is a parallel pinor

or spinor field on M.

Proposition 5.4. Let M be an oriented Riemannian manifold. If there is a

special Lagrangian calibration c on M, then

(1) When 2n1 2 or 6 ðmod 8Þ, the structure group of M can be reduced to

SUðnÞ, hence there is a complex structure on M. Moreover, M is spin and there is

a pinor bundle generated by c� ð
ffiffiffiffiffiffiffi
�1

p
Þnc � o2n as subbundle of ClðMÞ;

(2) When 2n1 0 or 6 ðmod 8Þ, there is a real pinor bundle over M generated

by cþ 1
2n�1 c � c.

Proof. With the notations used in previous sections, we have

A2n þ
ffiffiffiffiffiffiffi
�1

p
B2n ¼ A2n � ð

ffiffiffiffiffiffiffi
�1

p
ÞnA2n � o2n; if 2n1 2; 6 ðmod 8Þ;

A2nð1 þ b2nÞ ¼ A2n þ 2A2n � A2n; if 2n1 0; 6 ðmod 8Þ:

Then the proposition follows from Proposition 4.1, 4.2 and the results of § 3

in [9]. r

Proposition 5.5. If there is an associative or coassociative calibration on a

Riemannian manifold with dimension 7. Then

(1) The structure group of the manifold can be reduced to exceptional Lie

group G2;

(2) The manifold has a spin structure and there is a pinor bundle on it.

The proof of the proposition is similar to that of Proposition 5.4, so we

omit it.
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