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ANALYTIC REPRESENTATION OF GENERALIZED

TEMPERED DISTRIBUTIONS OF EXPONENTIAL

GROWTH BY WAVELETS

By

Byung Keun Sohn and Dae Hyeon Pahk

Abstract. The analytic representation of the generalized tempered

distributions of eMðkxÞ-growth with restricted order, Kr0
M ðRÞ, is given

in terms of series of analytic wavelets. These series converge uni-

formly on compact subsets of the upper and lower half planes.

1. Introduction

The analytic representation of functions or distributions on the real line R is

usually given by a Cauchy type formula, but in some cases may also be given by

an orthogonal series. It is well-known that trigonometric series may be used for

the analytic representation of periodic functions and distributions. Also, Hermite

series and Legendre polynomials can be used for the representation of non-

periodic functions and functions with compact support, respectively. Recently a

new category of orthogonal systems has been introduced in [1]. These systems

are composed of wavelets, i.e., orthogonal functions on R consisting of dilations

and translations of a fixed function. G. G. Walter has found an expansion in

orthogonal wavelets and pointwise convergence of that expansion from L2ðRÞ to

the tempered distributions with restricted order of derivative, S 0
r ðRÞ, in [6] and [8]

and has showed an analytic representation of S 0
r ðRÞ in terms of series of analytic

wavelets in [7]. These two results were extended by us to the case of the tem-

pered distributions of exponential growth with restricted order in [3], [5]. Also, we

have found the wavelet expansion of the tempered distributions of eMðkxÞ-growth
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with restricted order and the pointwise convergence of the wavelet expansion of

K r0
M ðRÞ in [4].

In this paper, we will present an analytic representation of Kr0
M ðRÞ in terms of

series of analytic wavelets. These series converge uniformly on compact subsets of

the upper and lower half planes.

2. The Generalized Tempered Distributions Space K 0
MðRÞ

Let mðxÞ ð0a xayÞ denote a continuous increasing function such that

mð0Þ ¼ 0, mðyÞ ¼ y. For xb 0, we define

MðxÞ ¼
ð x

0

mðxÞ dx:

The function MðxÞ is an increasing, convex and continuous function

with Mð0Þ ¼ 0, MðyÞ ¼ y and satisfies the fundamental convexity inequality

Mðx1Þ þMðx2ÞaMðx1 þ x2Þ. Further we define MðxÞ for negative x by means

of the equality Mð�xÞ ¼ MðxÞ. Note that since the derivative mðxÞ of MðxÞ is

unbounded in R, the function MðxÞ will grow faster than any linear function as

jxj ! y. Now we list some properties of MðxÞ which will be frequently used in

this paper.

MðxÞ þMðyÞaMðxþ yÞ for all x; yb 0: ð1Þ

Mðxþ yÞaMð2xÞ þMð2yÞ for all x; yb 0: ð2Þ

Using the function MðxÞ we define the space KMðRÞ as the space of all

functions f A CyðRÞ such that

nkðfÞ ¼ supx AR;aak e
MðkxÞjDafðxÞj < y; k ¼ 1; 2; . . . ; ð3Þ

where Da ¼ d a=dxa. The topology in KMðRÞ is defined by the family of the semi-

norms nk. Then KMðRÞ becomes a Fréchet space and the embeddings D ,!
KM ,! S ,! E are continuous; here E denotes the space of all Cy-functions, S

the space of the tempered distributions of polynomial growth and D the space of

Cy-functions with compact supports. By K 0
MðRÞ, we mean the space of con-

tinuous linear functionals on KMðRÞ. Pahk characterized the distributions in

K 0
MðRÞ by the growth at infinity [2, Theorem 2.3]; a distribution T A D 0 is in

K 0
MðRÞ if and only if there exist positive integers a, k0 and a bounded continuous

function f ðxÞ on R such that

T ¼ Da½eMðk0xÞf ðxÞ�:
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Definition 1. For a natural number r, we denote by Kr
MðRÞ the space of all

functions f A CrðRÞ such that

nrkðfÞ ¼ sup
x AR;aar

eMðkxÞjDafðxÞj < y; k ¼ 1; 2; 3; . . . :

The topology of Kr
MðRÞ is defined by the family of semi-norms fn rkgk¼1;2;....

By Kr0
M ðRÞ, we mean the space of continuous linear functionals on K r

MðRÞ. Each

S A Kr0
M ðRÞ is characterized by

S ¼ Dr½eMðk0xÞf ðxÞ�; ð4Þ

where f ðxÞ is a bounded continuous function on R and r, k0 A N, the set of

natural numbers, by the same method of the above K 0
M -case in [2, Theorem 2.3].

Similarly, we can define

SrðRÞ ¼ fyðtÞ A CrðRÞ; jDkyðtÞjaCpkð1 þ jtjÞ�p; p A N; k ¼ 0; 1; . . . ; rg

and its dual S 0
r ðRÞ. For further details, we refer to [2].

3. Multiresolution Analysis of L2ðRÞ Associated with f A Kr
MðRÞ

Let f A Kr
MðRÞ. In order for it to qualify as a scaling function, there must be

associated with f a multiresolution analysis of L2ðRÞ, i.e., a nested sequence of

closed subspaces fVmgm AZ for the set of integers Z such that

(i) ffð� � nÞg is an orthonormal basis of V0,

(ii) � � �HV�1 HV0 HV1 H � � �HL2ðRÞ,
(iii) f ð�Þ A Vm , f ð2�Þ A Vmþ1,

(iv) 7
m
Vm ¼ f0g, 7

m
Vm ¼ L2ðRÞ.

Then f has an expansion

fðtÞ ¼
X

n
cn

ffiffiffi
2

p
fð2t� nÞ; fcng A l2; t A R; ð5Þ

where l 2 ¼ ffcng;
P

n jcnj
2 < yg. Once we have the scaling function f A Kr

MðRÞ,
we can obtain a mother wavelet c such that fcðt� nÞg is an orthogonal basis of

the space W0, given by the orthogonal complement of V0 in V1. Also, c has an

expansion

cðtÞ ¼
X

n
dn

ffiffiffi
2

p
fð2t� nÞ; fdng A l2; ð6Þ
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for dn corresponding to cn in (5). We will adopt the construction of a mother

wavelet defined by dn ¼ ð�1Þnc1�n. If such a cðtÞ can be found, then cmnðtÞ ¼
2m=2cð2mt� nÞ is an orthogonal basis of Wm which is the orthogonal complement

of Vm in Vmþ1.

Example. In [1], Corollary 5.5.3 states that it is impossible that c has

exponential decay and that c A Cy, with all derivatives bounded, unless c ¼ 0.

Hence there is no mother wavelet c A KMðRÞ. So we will restrict our attention to

K r
MðRÞ. Daubechies’ compactly supported wavelets are examples of K r

MðRÞ, but

Battle-Lemarié’s wavelets (in the page 152 of [1]) are not Kr
MðRÞ wavelets even if

they have exponential decay and smoothness.

The reproducing kernel of V0 is given by

qðx; tÞ ¼
X

n
fðx� nÞfðt� nÞ;

where fðxÞ is the scaling function. The series and its derivatives with respect

to t of order a r converge uniformly on x A R because of the regularity of

f A K r
MðRÞ, i.e.,

jfðaÞðxÞjaCake
�MðkxÞ; a ¼ 0; 1; . . . ; r; k ¼ 1; 2; . . . : ð7Þ

The reproducing kernel for Vm is given by

qmðx; tÞ ¼ 2mqð2mx; 2mtÞ:

Similarly, we can define the reproducing kernel rmðx; tÞ for Wm by

rmðx; tÞ ¼ 2m
X

n
cð2mx� nÞcð2mt� nÞ;

where cðtÞ is the mother wavelet.

The sequence fqmðx; tÞg is a delta sequence in S 0
r ðRÞHK r0

M ðRÞ, i.e.,

qmðx; tÞ ! dðx� tÞ. This follows from the fact that

ðy
�y

qmðx; tÞyðtÞ dt ! yðxÞ as m ! y;

for each y A K r
MðRÞHSrðRÞ, where the convergence is in the L2-sense. These

kernels have a number of interesting properties, some of which come out of the

wavelet moment theorem. Since K r
MðRÞHSrðRÞ, we have by [1],
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Lemma 2. Let c A K r
MðRÞ with cmnðxÞ ¼ 2m=2cð2mx� nÞ an orthogonal

system in L2ðRÞ. Then

ðy
�y

xkcðxÞ dx ¼ 0; k ¼ 0; 1; . . . ; r:

Definition 3. We define the spaces T0 and U0 by T0 ¼ f f ; f ðtÞ ¼P
n anfðt� nÞ for some sequence of complex numbers with an ¼ OðeMðk1nÞÞ for

some k1 A Ng and U0 ¼ fg; gðtÞ ¼
P

n ancðt� nÞ for some sequence of complex

numbers with an ¼ OðeMðk1nÞÞ for some k1 A Ng. We denote by Tm and Um their

corresponding dilation spaces, i.e., f A T0 , f ð2mtÞ A Tm and g A U0 , gð2mtÞ A
Um.

We may expect that a multiresolution analysis of Kr0
M ðRÞ exists, namely,

� � �HT�m � � �HT�1 HT0 HT1 � � �HTm H � � �HK r0
M ðRÞ ð8Þ

and

6
m
Tm ¼ Kr0

M ðRÞ;

where the closure is in the topology of K r0
M ðRÞ.

Now in [3], we have found the expansion in orthogonal wavelets from L2ðRÞ
to K r0

M ðRÞ.

Theorem 4. Let the scaling function f A Kr
MðRÞ satisfy the dilation equation

(5) with ck ¼ Oðe�MðlkÞÞ for all l A N, and have an associated multiresolution

analysis in L2ðRÞ; let c A Kr
MðRÞ be the mother wavelet given in (6). Then there

exists a multiresolution analysis (8) of closed dilation subspaces fTmg whose union

is dense in Kr0
M ðRÞ; the closed subspace Um in Definition 3 is a complementary

subspace of Tm in Tmþ1 and

Tm ¼ U0 lU1 l � � �lUm lT0;

where l denotes the nonorthogonal direct sum.

4. Analytic Representation of Distributions of K r0
M by Wavelets

A quasi-positive delta sequence is a sequence fdmð� ; yÞg of functions in L1ðRÞ
with a parameter y A R which satisfies the following:

(a) there is a C > 0 such that

ðy
�y

jdmðx; yÞj dxaC; y A R;m A N;
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(b) there is a c > 0 such that

ð yþc

y�c

dmðx; yÞ dx ! 1

uniformly on compact subsets of R, as m ! y;

(c) for each g > 0,

supjx�yjagjdmðx; yÞj ! 0 as m ! y:

Then since Kr
MðRÞHSrðRÞ, we have the following important lemmas as

in [8]:

Lemma 5. Let fdmðx; yÞg be a quasi-positive delta sequence and let f A L1ðRÞ
be continuous on ða; bÞ. Then

fmðyÞ ¼
ðy
�y

dmðx; yÞ f ðxÞ dx ! f ðyÞ as m ! y

uniformly on compact subsets of ða; bÞ.

Lemma 6. If the scaling function f A K r
MðRÞ, then the reproducing kernel

qmðx; yÞ and Kmðx; tÞ ¼ ðx�tÞ
a!

qa

qt a
qmðx; tÞ for a A N, 0a aa r, are quasi-positive

delta sequences on R.

In order to represent an element of Kr0
M ðRÞ by series of analytic wavelets,

we impose conditions on the scaling function f again. Since K r
MðRÞHL2ðRÞ, an

analytic representation of f is given by

fGðzÞ ¼ 1

2pi

ðy
�y

fðxÞ
x� z

dx; Im zr 0;

where fG are analytic in the upper half-plane and the lower half-plane, respec-

tively. An analytic representation of the mother wavelet is also given by

cGðzÞ ¼ 1

2pi

ðy
�y

cðxÞ
x� z

dx; Im zr 0;

and the analytic wavelets cG
mn are obtained by dilation and translation of cG.

Now, we define TG
0 ¼ f f ðzÞ ¼

P
n anf

Gðz� nÞ; an ¼ Oðcl0MðnÞÞ for some l0 A Ng
and we denote by the subspaces TG

m of TG
0 the corresponding dilation spaces.

Then the spaces Tþ
m and T�

m are composed of analytic functions in the upper

and the lower half-planes, respectively, whose boundary functions are continuous
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functions of eMðxÞ-growth. Since 6Tm ¼ K r0
M ðRÞ, we might expect to obtain an

analytic representation of f A Kr0
M ðRÞ in terms of wavelets,

f þðzÞ ¼
Xy

n¼�y
anf

þðz� nÞ þ
Xy

m¼0

Xy

n¼�y
bmn2m=2cþð2mz� nÞ;

where the first series may not converge. Since an analytic representation is a

continuous map from Kr0
M ðRÞ to a corresponding space of analytic functions

and fmðxÞ ¼ ð f ; qmðx; tÞÞ ! f ðxÞ ¼ DrFðxÞ in Kr0
M ðRÞ for a continuous function

of eMðxÞ-growth F ðxÞ [cf. (4)] by Lemmas 5 and 6, f þm ðzÞ ! f þðzÞ uniformly

on bounded subsets of the upper half-plane. Moreover, f þðzÞ ¼ Dr
zF

þðzÞ, where

FþðzÞ is an analytic representation of FðzÞ, and is given by

FþðzÞ ¼ 1

2pi

ðy
�y

FðxÞ
x� z

e�MðkxÞeMðkzÞ dx;

for a su‰ciently large k such that FðxÞe�MðkxÞ A L2ðRÞ. Here for z A C, we define

eMðzÞ as eMðjzjÞ.

We may express fm as

fm ¼ f0 þ fm � f0 ¼ f0 þ
Xm�1

k¼0

Xy

n¼�y
bknckn;

and if the inner sum converges,

f þm ðzÞ � f þ0 ðzÞ ¼
Xm�1

k¼0

Xy

n¼�y
bknc

þ
knðzÞ þ gmðzÞ; ð9Þ

where gmðzÞ is an entire function.

Lemma 7. Let c A Kr
MðRÞ and bn ¼ OðeMðknÞ�eÞ for any k A N and some

e > 0. Then

Xy

n¼�y
bnc

þðz� nÞ

converges uniformly on compact subsets of the upper half-plane.

Proof. The proof is based on the moment property, Lemma 2,

ðy
�y

xlcðxÞ dx ¼ 0; l ¼ 0; 1; . . . ; r:

Hence, for any k A N and a natural number pa rþ 1,

Analytic Representation of Generalized Tempered Distributions 53



eMðkzÞcþðzÞ ¼ 1

2pi

ðy
�y

eMðkzÞ

zp
� zp

x� z
cðxÞ dx

¼ 1

2pi

ðy
�y

eMðkzÞ

zp
� z

p � xp

x� z
cðxÞ dx

þ 1

2pi

ðy
�y

eMðkzÞ

zp
� xp

x� z
cðxÞ dx

¼ � 1

2pi

ðy
�y

eMðkzÞ

zp
� ðxp�1 þ zxp�2 þ � � � þ zp�2xþ zp�1ÞcðxÞ dx

þ 1

2pi

ðy
�y

eMðkzÞ

zp
� xp

x� z
cðxÞ dx

¼ 1

2pi

ðy
�y

eMðkzÞ

zp
� xp

x� z
cðxÞ dx

holds. By the growth condition of c A K r
MðRÞ, jeMðkzÞcþðzÞj is uniformly bounded

on compact subsets of the half-plane Im zb e > 0 for any k A N and a natural

number pa rþ 1. Hence, the preceding fact holds for any k A N and any

pa rþ 1. Thus the conclusion follows.

Theorem 8. For natural numbers s, r with s < r, let f A Ks0
MðRÞ, f;c A

K r
MðRÞ and let bmn ¼ h f , cmni, m ¼ 0; 1; 2; . . . ; n ¼ 0;G1;G2; . . . be the wavelet

coe‰cients of f . Then an analytic representation of f is given by

f þðzÞ ¼ f þ0 ðzÞ þ
Xy

m¼0

Xy

n¼�y
bmnc

þ
mnðzÞ;

where the series converges uniformly on compact subsets of the half-plane Im zb 1

and f þ0 ðzÞ is an analytic representation of f0, the projection of f on T0.

Proof. First, we will estimate jbmnj. Each f A Ks0
M ðRÞ is characterized

by

f ¼ Ds½eMðk0xÞm�

for some integer k0 and finite measure m on R. Each c A Kr
MðRÞ satisfies

jcðlÞðxÞjaCje
�Mð jxÞ; l ¼ 1; 2; . . . ; r; jb 0:

If we use integration by parts s-times, we have, for m > 1,

Byung Keun Sohn and Dae Hyeon Pahk54



jbmnja
ðy
�y

jDs½eMðk0xÞ�cmnðxÞj djmja
ðy
�y

eMðk0xÞjcðsÞ
mnðxÞj djmj

a

ðy
�y

eMðk0xÞck0
2m=2þsme�Mðk0ð2mx�nÞÞ djmj

a

ðy
�y

eMð2k0ðx�n2�mÞÞeMð2k0n2�mÞck0
2m=2þsme�Mð2mk0ðx�n2�mÞÞ djmj

a c 0k0
2m=2þsmeMð2k0n2�mÞ:

By the fact in the proof of Lemma 7, on every compact subset K of the half-

plane Im zb 1, there exists a constant c such as jcþðzÞja ce�MðkzÞ for any k A N.

Hence if we take k su‰ciently large with k > sup k0;
3
2 þ s

� �
, then for z A K ,

Xy

m¼0

Xy

n¼�y
jbmnc

þ
mnðzÞj

a
Xy

m¼0

Xy

n¼�y
c 0k0

eð1=2þsÞmeMð2k0n2�mÞc2m=2e�Mðkð2mz�nÞÞ

a
Xy

m¼0

Xy

n¼�y
cc 0k0

eð3=2þsÞmeMð2k0n2�mÞe�Mðk2mðn2�m�Re z�i Im zÞÞ2�m=2

a
Xy

m¼0

Xy

n¼�y
cc 0k0

eð3=2þsÞmeMð2k0n2�mÞ

� e�Mðk2mðn2�m�Re zÞÞe�Mð2m�1kÞ2�m=2

a
X2

m¼0

Xy

n¼�y
þ
Xy

m¼3

Xy

n¼�y

n o
cc 0k0

eð3=2þsÞmeMð2k0n2�mÞ

� e�Mðk2mðn2�m�Re zÞÞe�Mð2m�1kÞ2�m=2

a
Xy

m¼3
Ck0; z2

�m=2 < y;

where we use the properties (1), (2) and the inequality
ffiffiffi
2

p
jzjb jRe zj þ jIm zjb

jRe zj þ 1 for jIm zjb 1. Hence the series
Py

m¼0

Py
n¼�y bmnc

þ
mnðzÞ converges

uniformly on compact subsets of the half-plane Im zb 1.

Now, by taking the limit in (9) as m ! y, we have

f þðzÞ ¼ f þ0 ðzÞ þ
Xy

k¼0

Xy

n¼�y
bknc

þ
knðzÞ þ gyðzÞ;

where gyðzÞ ¼ limm!y gmðzÞ is an entire function. Since an analytic representa-

tion plus an entire function is an analytic representation, we can drop gy in (9).

Remark. We have only worked out the convergence for f þ but proof

Analytic Representation of Generalized Tempered Distributions 55



for f � is parallel. Then by the same method as in the proof of Theorem 8, an

analytic representation of f is given by

f �ðzÞ ¼ f �0 ðzÞ þ
Xy

m¼0

Xy

n¼�y
bmnc

�
mnðzÞ;

where the series converges uniformly on compact subsets of the half-plane

Im za�1 and f �0 ðzÞ is an analytic representation of f0, the projection of f on

T0.
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