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THE CAUCHY PROBLEM FOR STRICTLY HYPERBOLIC
OPERATORS WITH NON-ABSOLUTELY CONTINUOUS
COEFFICIENTS

By

Massimo CICOGNANI

Introduction
Let us consider the Cauchy problem

0 Pu(t,x)=0 1in [0,T] x R"
u(0,x) = up(x), Ju(0,x)=u;(x) in R"

for a strictly hyperbolic operator

(2) P=0] = aji(t,x)0y05 + > _ bi(t,x)0y, + byy1(1,x)
Jrk=1 j=1
with (a; 1) a real symmetric matrix, b; € C([0, T']; Z#(R")), #(R") the space of all
C* functions which are bounded together with all their derivatives in R".
It is well known that if d,a; € L'([0, T); Z#(R")) then problem (1) is well
posed in Sobolev spaces: for every uy € H*(R"), uy € H*~'(R") there is a unique
solution u e C([0, T]; H*(R™)) N C'([0, T]; H*~'(R"™)) which satisfies

3) [u(@)ly + 10Dl < Clluolly + e lly-1), 0<z<T.

By the finite speed of propagation one obtains the well posedness in C*.
Our aim is to consider non-absolutely continuous coefficients assuming a; ; €
C'(0, T: A(R")) and

(4) |0a; 1 (t,x)| < Ct™4, g>=1,t>0,xeR"

as it is done by Colombini, Del Santo and Kinoshita in [3] for coefficients of P
depending only on the time variable . Here we treat the general case and, beside
(4), we permit:
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(5) 108a; i (t,x)] < Cpt™, pel0,1],|8 >0,>0,xeR".
For ¢g=1in (4) and any p€[0,1] in (5), we prove the inequality
(©) Nu(@lls—p + N10u(@)ly-1-p < C([u(O)l]s + [0(O0)][s-1),  C,h>0,0<t<T

for every ue C([0, T]; H**'(R"))N C'([0, T]; H*(R")) such that Pu=0. In par-
ticular, we obtain the well posedness in C* of the Cauchy problem (1) with a loss
of h derivatives.

In the case ¢ > 1 in (4), we assume boundness and Gevrey regularity y* for
the coefficients, that is we take p = 0 and Cy = CA¥!(B!)" in (5). Then we prove
the well posedness of problem (1) in y for 1 <s < gq/(q—1).

We refer to [3] for counter examples that show the sharpness of these results;
in particular C* well posedness does not hold for ¢ > 1.

In (4) and (5) one can subsitute ¢ and ? with |To —¢|"7 and |Ty — 77,
respectively, Ty € [0, T], t # Ty. So inequality (6) can be applied also to the study
of the blowup rate in some nonlinear equations. Consider, for istance, a smooth
solution u for t < T of

t
u — oc(J Oxu(s, x) ds) Pu=0, a(y)=0 >0
0

such that
|0Pu(t,x)| < Co(T — 1), t<T.

If o is bounded and |« ()| < Arel, u<1/Cy, k>2, then a(t,x):=
oc(fé dyu(s, x) ds) satisfies (4) with ¢ =1 and (5) with p e |uC), 1], (T —¢)"" and
(T —1)™" in place of ! and ¢ respectively. So inequality (6) implies u € C~
also for = T. This means that (7 — t)f1 is not a sufficient breakdown rate of the
derivatives 0”u to have blowup of u at t=T, cf. [1].

1. Main Results
Let
P=0] = aji(t,x)0y0x + > _ bj(t,x)0y, + byy1 (1, x)
Jrk=1 j=1

be a linear differential operator in [0, 7] x R", with (a; ) a symmetric matrix of
real valued functions, g, x € C1(]0,T]; C*(R")), b; € C([0, T]; C*(R")). We con-
sider the Cauchy problem for the equation
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(1.1) Pu(t,x)=0 in [0,T] x R"
with initial data at + =0
(1.2) u(0,x) = up(x), Ju(0,x)=u(x) in R"

under the hypothesis of strict hyperbolicity

(1.3) a(t,x,&) ==Y a1, )& = cole]’, >0

J k=1

and we deal with its well posedness according to the behaviour of d,a as ¢t — 0.
Our first result is the following:

THEOREM 1. Assume that there exist p,r e [0,1[ and positive constants Cg
such that

(14) |0l i(t, )] < Cpr?, Bl > 05 |0Fdwa; (e, )] < Cpr™' =B = 0.

Then, for every ug,u; € C*(R") the Cauchy problem (1.1), (1.2) has a unique
solution u e C'([0, T]; C*(R")).

REMARK. A consequence of (1.4) is the finite speed of propagation. So it is
not restrective to consider ug,u; € C;°(R") and to assume

(1.5) |08b;(1,x)| < Cp,  (t,x) €[0,T] x R".

In Section 2 we shall prove an estimate in Sobolev spaces that implies
Theorem 1:

THEOREM 2. Under the hypotheses of Theorem 1 there are positive constants
C,h such that for every ue C([0,T]; H**'(R")) N C' ([0, T]; H*(R")) which sat-
isfies Pu=0 we have

(1.6)  [lu(®)lly—p + 0au(D)ls-1 -5 < CClu(O) I + N0u(O)ly-y), O<t<T.

When 18,a(1, x,&|E| %) is not bounded, problem (1.1), (1.2) may not be well
posed in C*.
For s > 1, 4 >0, we denote by yf) = yif)(R”) the space of all functions f
satisfying
1/ Wl = SuPge 20, vern AP |OL S ()] < o0

so y¥ = [ yi‘lY) is a Gevrey space.
A>0
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THEOREM 3. Assume a; i, b; € C([0, T];yﬁf)(R”)) and
(1.7) |0loayi(t,x)| < CrtaPl(B)’,  (t,x)€]0,T] x R", q>1,5<gq/(g—1).

Then there exists Ay > A such that for every uy,u; € yij)(R") the Cauchy problem
(1.1), (1.2) has a unique solution ue C'(]0, T];yifg(R”)).

As Theorem 1, we shall obtain Theorem 3 from an a priori estimate; so we
introduce Gevrey-Sobolev spaces adapted to our problem. We fix J €0, 1| such
that 1/s = (¢ — 1 +6)/q then for k > 0, t€ [0, T], u€ R we denote by H*"#(R")
the space of all functions f such that:

||f||k.t,,u =

< o,
u

exp (lg(T(S _ t())<Dx>1/S>f

llgll, the norm of g in the usual Sobolev space H*(R").
From Paley-Wiener theorem it follows that

1 lew < CllAllear £EPY (RDNCE(RY), 0<KkT?)o < T

with Ty and C positive constants depending on 4. Conversely, for every 77 < T
and k > 0 there is A; > 0 such that

Hkv"/‘(R") c yS)(R"), tel0,T1],A > Ay, u>n/2.

For functions u(¢,x) we define the space

C(H" ) = {u; 1 — exp (g(T‘5 - 15)<Dx>1/3) d"u(t,-) is continuous from
[0,T] to H*"(R"),h = o,}

THEOREM 4. Under the hypotheses of Theorem 3 there are positive constants
ko, To, C such that for every ue CH(H* 1) kT?/5 < Ty, k > ko, which satisfies
Pu=0 we have

(1.8) Mu(@lly. e + N0ty 1 1 < CUUuO) g 0,5 + 10105 0, 1), O<E<T.

We shall prove Theorem 4 in Section 3. From estimate (1.8) we can solve
problem (1.1), (1.2) in [0,7}], T\ = (6To/ko)'°. This is sufficient to prove
Theorem 3 since we have a; e C'([Th,T ];y?(R”)) that ensures ) well
posedness in [T}, 7.
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2. C%” Well Posedness
In this section we prove Theorem 2 which implies Theorem 1.
Writing

P= 5,2 +a(t,x,Dy) + b(t,x,D,), D,= 15\ (i=v—1),
i

t X, é Z aj. k t X é]ék» b(ta X, é) = iij([, x)éj +bn+l(t; x)a

J k=1 j=1
the assumptions on P are the following:

(2.1) a(t,x,&) = colé]’, ¢ >0,

(22) |000%a(t, x,&)| < Cypt <E, a2 0, 18] > 0,
(2.3) |00020,a(t,x,&)| < Cypt™ YL a] > 0,18] > 0,
(24) 100021, x,&)] < Cp<&', o 2 0,1 2 0,

pre01] (6,x,8) €]0,T] x R" x R", <&y = (1+ &))"~
In particular (2.3) gives also

(2.5) |02a(t,x,&)| < Cy log(1 + 1/0)<E 1 Jaf > 0.
We modify the symbol a for (&) <2/t defining
ao(1,x,&) = p(KENKEN? + (1 — p(<E))alt, x, &),
peC®R), 0<p<l, p=1in[0,1], ¢=0in [2,4 0]

Then A(f) = +/ao(t), 0 <t < T, is a family of symbols of pseudodifferential
operators in R” which satisfies

(2.6) M, x, &) =&y, ¢>0
(27)  [802a(t,x,8)] < Cup<E' 1 + H(1<E))r PP (log(1 + 1/1)) 1],
H(y)=0 for y<1, H(y)=1 for y > 1.

In particular, if we denote as usual by S5 the class of all symbols q(x, %)
such that |0/02q(x,&)] < Cpp<&" W 0 <o <p <1, we have that {A(r);
0<1<T} is bounded in S,** and {4~ ( );0 <t<T} is bounded in S, for
every ¢ >0 and every pe|p,1].

Another consequence is that the symbol r(z,x,&) of the operator ag— A
verifies ' ~“r e C([0,T}; S| ,) for every e€]0,1—p].



6 Massimo CICOGNANI

From (2.2), (2.3) and (2.5) we get:
(2.8)  [0B0za,At,x,&)| < CyplE TH (1<) W (log(1 + 1/1) P,
0 = max{p,r},

which implies the boundness in Sllf(f/ of {t'7%0,A(1);0 <t < T} for any given
e€]0,1], ¢ €e, 1], by using 7 *(log(1 + 1/0))" P < €7 < €, on the sup-
port of H(K&)).
Now we factorize the principal part of the operator P = (3? +a+b:
(2.9) P=(0,—il)(0;+il)+a—ap+a,
a; = —i[0,, 4] + ag — 1* + b.

Obviously ##*"(a(t) —ap(t)), 0 <t<T, is a bounded and continuous family
in S7" for any m >0 while 7'a(7), 0 <t < T is bounded and continuous in

Sllﬁ*(;sl for every ¢€]0,1 —0[, ¢ €]e, 1[. Hereafter we fix 0 <e<é¢' <1—0.

We have not a —ag +a; € L'([0,T}; S, ;) that by Gronwall’s method would

give the classical energy inequality
lu(@)ly + 10D,y < C(u(O) |y + 10(0)|y-y), €>0,0<2<T

for every ue C([0, T); H**'(R"))N C'([0, T]; H*(R™)) such that Pu=0.

Anyway a weaker condition in this direction holds true: a—ag=
p(t{EY)(a — (&)?) is bounded by C{&)* log(1 4 1/1) and vanishes for (&) > 2 so
we can find a smooth function (¢, &) such that

la — ao|<E <y, (log(1+1/1)) e € C([0, T]; S} )

and
T 2/<&>
L 102001, )] dr < Ci(EY1 L log(1 4+ 1/1) di < (&> log(1 + (&).

Concerning a; we have that

00 = (22) T KEP (IKEY)(KEY? — a) + (1 — p(1{ED))d,a]

is bounded by C{&>? log(1 + 1/1) for 1{&) <2 and by (&) for t{&) > 2 while
the symbol of ay — A* 4 b is bounded by Cr '*:(¢). So we can find v, (z,&) such
that

lar[<ET <y, Yy e C([0, T];SIS:O)
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and

T

2/4& 1
log(1+1/1) dH—J —dt
2/¢ey ¢

T
L 029, (1,€)| dt < (&Y

1+<é>j

0

< (&Y log(1 + ¢&)).

Now we use the factorization (2.9) to reduce the equation Pu =0 to a first
order system. For ue C([0,T]; H**'(R"))NC'([0, T]; H(R")) let us define

U="(u,up), wy=(0+iA)u, ur=<{Dou—muy,

(1 = 9({&>/3))XE>
2iA(t, x, &)
for 1<(&) > 6 and (supp m)N(supp a —ap) = .
Then it is easy to see that the equation Pu = 0 is equivalent to a first order
2 x 2 system LU =0,

m the operator with symbol m(t,x,¢) =

to have &> = 2iim

(2.10) L=0,+K(t,x,Dy), K=D+A, A=Ay+A,
where

—il 0
(.11) Dz((j M), 24y € C(0, T} S}.),

Ao(t,x,&) =0 for (&) >6, 1'7°41 € C([0,T];Si,)
and there are two positive functions v (¢,¢), ¥, (¢, €) such that:
(2.12) ol <o, (log(1+1/0) "¢y € C((0, T]; S} ),

il <y, 17 € C0,T); SF),

T
L 20 (1,6)] di < bl 2> log(1 +4ED), ¥ = vhy + Y.
Since it is
CH () lyar + 10(D)l,) < U@, < CUu(Oss 10 + l0au(D)]l), O<t<T,

we prove Theorem 2 by the following result:

THEOREM 2.1. There are positive constants C,h such that for every U e
C([0, T]; H*Y(R")NCY([0, T]; H*(R™)) which satisfies LU =0 we have

(2.13) IO < CIUO);, 0<r<T.
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Proor. It is sufficient to prove (2.13) for s = 0 since <D,»*L{D,)> "’ satisfies
the same hypotheses as L.

We look for lower bounds of the operator K = D+ 4 in (2.10). As it con-
cerns the diagonal part D, from (2.7) we have that the symbol d(¢,x,&) of the
operator D(7) + D*(1) satisfies t'*d e C([0, T]; S ;) so it follows

(2.14) 2Re(DU(1),U(t)y = —Ct U (1), U(£)y, C>0
for every U e C([0,T]; H'(R")).

Next we make the change of variable

V=it D)0, witd) = exp(- [ 5.0 )

W =, + 1, the function in (2.12). We have
(2.15) U@, <2[V(@)llg, UO)=V(0),h0>0,0<t<T
and LU =0 if and only if LV =0 with
(2.16) Ly =wLw™ =0, + Ki(t,x, D),
Ky =D+ (I +A4)+ Ry,
1" (log(1 +<&»)) "' R1 € C([0, T]; ST )
Now the symbol of I + A4 satisfies
1ol + Ao) € C0, T]:SLy), Yol + (Ao +43)/2= 0 for large |¢],
H I+ A1) € C([0,T); St,), Yyl + (A1 +A47)/2>0 for large [¢],
e<ée <1-06, 6=max{p,r},
so the sharp Garding inequality gives
(2.17) 2Re{(WI + AV (1), V(t)y = —Cr "V (1), V(£)y, C>0

for every Ve C([0, T]; H'(R")).
For the operator R; we have

(2.18) 2 Re(R V (1), V(1)) = —hit" " Felog(1 + <D )V (1), V(£)Y, h >0
that leads us to make the further change of variable (cf. [2]):
W= (14+<D) IV = (14+DD) (e, DU, alt) = mt'/e,

hy the constant in (2.18). It is
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(2.19)
UGNy < 22D WD)l U©) = W), h=hy+mT /e, 0<i<T,

hy the constant in (2.15), and LU =0 if and only if L, W =0 with

(2.20) Ly = (1+ D)) Li(1 +<D))™ = 6, + Ka(1, x, Dy),
Ky =D+ (Yl + A) + (hit7 ¥ log(1 + (D.>) + Ry) + Ry,
'Ry € C([0, T}; S} ).

Now /7% log(1 + <{D.>) + R is a positive operator by (2.18) while #'“*R, (1) is
uniformly bounded in L?(R") for 0 < ¢t < T. From this, (2.14) and (2.17) we get

2Re(Ko W (1), W(t)y = —Ct W (1), W(t)y, C>0
for every W e C([0,T]; H'(R")), hence
w2 < e w2
21Ol < w0l
for every W e C([0,T]; H'(R"))NC'([0, T); H*(R")) such that L,W = 0. This
gives
1w ()5 < exp(Ct*/e)[[ W (0)[5

that is (2.13) with s =0 by (2.19).

3. 7% Well Posedness

In this section we prove Theorem 4 which implies Theorem 3.

We need to introduce a class pseudodifferential operators in Gevrey spaces:
DEFINITION 3.1. For me R, s > 1, A > 0 we denote by I, the space of all

symbols a(x,&) such that

(3.1) |a

L, Sup(x,cf)eRz”,\a+ﬁ|sl‘yeli|agaf+7a(x, f)|A7‘y‘(V!)7s<f>7mH“l
is finite for every /e Z,.
Set ap(x,D.) = eMa(x,Dy)e ™, A =k({D,>"/* and denote by
|a|s;” = sup(x,é)eRz",|a+ﬂ|g[|agafa(x> &)|KgymH

the usual norms in S7%). In [4] Kajitani proved the following result:
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ProposITION 3.2.  For every A >0 there is Ty > 0 such that
(3.2) k| < To, aelly=aneSy, ar=a+r, reS{f’aHl/S
and for every 1€ Z', there are C;>0 and I' € Z' such that

(3.3) |r

Slm—lJr]/\' < C[|a|1—;.mAv[/ .

In particular we have that a(x,D,), aeI}", is a continuous operator from

H5UH(R) to HYBE=m(R™), HRMH(R™) = exp(— %‘ (T° - 1‘5)<Dx>1/5) H"(R"), for
0<kT?/5<Ty, 0<t<T.
Now we can begin the proof of Theorem 4. In this section the assumptions
on the operator
P =07 +a(t,x,D,) + b(t,x, Dy)

are the following:

(3.4) a(t,x, &) > colé?, ¢ >0

(35)  aecC(o,T}:T2,)

(3.6) t10,a,0 < t < T, is a continuous and bounded family in FS?A,

q>1,s<q/(g—1)
(37)  beC(0,T)L),).
Here we define

(3.8)  ao(t,x,&) = p(1 <) + (1 = p(17¢EN)a(t, x,9),
peC”R), 0<g¢p<l, ¢=1in[0,1], ¢=0in [2,400]

and take 0 >0 so that 1/s=(¢—143)/q to have

(3.9) 1"%(a— ap) € C([0, T, I ;1%)

using (&Y <2t in the support of ¢(17(&)).
We have also

A= \aye C([0,T;T,,), i'eC(0,T|T,))
and from (3.6) we get
(3.10) ('=0,h e ([0, T )

by <&> <2:77 in supp ¢’'(19<&>) and 17 < &) in supp(l — @(179{&))).
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So we can write
P= (0= i2)@+i)+r, ' re (o, TETE)
and define
U="u,uw), u = 0;+il)u, ur={Dyou—muy,

m(t,x, &) = {&>/2iA(t,x,&) to have that the equation Pu =0 is equivalent to a
first order 2 x 2 system LU =0,

(3.11) L=0,+K(t,x,Dy), K=D+R,

—il 0 i
D= -0 R T];T'%).
(% ) recmo.Tin)

Denoting by ||ull;,, the norm of u in HFLH(RY), it s
CH ()l gt + N0 i 1) < WU D0 < CUOg et + 1020051,

0<t<T, 0<kT’/6 <Ty T, the constant in Proposition 3.2, thus we prove
Theorem 4 by the following result:

THEOREM 3.3. There are positive constants ko, C such that for every U €
CLH* Y KT )5 < To, k > ko, which satisfies LU =0 we have
(3.12) IUOx.1u < CIUO) k0,0 O=<t=<T.

Proor. It is sufficient to prove (3.12) for =0 since (D, Y*L{D,>* sat-
isfies the same hypotheses as L and this is equivalent to prove
(3.13) V@l < ClVOly 0<r<T
for every Ve C([0,T]; H'(R"))NC'([0,T]; H'(R")) such that LAV =0, Ly =

k

eMLeh, A =<(T° = ) <DH

From Proposition 3.2 and (3.11) we have

Lo = 0,4+ ki DY+ D+ Ry, 1R, € C([0, T); Sf,/(‘;‘), kT°/5 < Ty,

so we can take k large enough, say k > kj, to make kt‘1+5<Dx>1/5+R1(Z)
a positive operator while D(¢) + D*(¢) is uniformly bounded in L?*(R") for
0<t<T. This gives

d
SIV@IE < V@R, 0<r<T < @To/i)"”
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for every Ve C([0,T]; H'(R")NCY([0, T]; H*(R")) such that L,V =0 which
proves (3.13).

REMARK. It is possible to prove Theorem 4 also for the critical index s =
q/(q —1). This needs the use of the Sharp Garding inequality as in the proof
of Theorem 2 after an ad hoc version of Proposition 3.2 for more general
functions A.
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