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Introduction

Let us consider the Cauchy problem

Puðt; xÞ ¼ 0 in ½0;T � � Rn

uð0; xÞ ¼ u0ðxÞ; qtuð0; xÞ ¼ u1ðxÞ in Rn

ð1Þ

for a strictly hyperbolic operator

P ¼ q2
t �

Xn

j;k¼1

aj;kðt; xÞqxjqxk þ
Xn

j¼1

bjðt; xÞqxj þ bnþ1ðt; xÞð2Þ

with ðaj;kÞ a real symmetric matrix, bj A Cð½0;T �;BðRnÞÞ, BðRnÞ the space of all

Cy functions which are bounded together with all their derivatives in Rn.

It is well known that if qtaj;k A L1ð½0;T �;BðRnÞÞ then problem (1) is well

posed in Sobolev spaces: for every u0 A HsðRnÞ, u1 A Hs�1ðRnÞ there is a unique

solution u A Cð½0;T �;HsðRnÞÞVC1ð½0;T �;Hs�1ðRnÞÞ which satisfies

kuðtÞks þ kqtuðtÞks�1 aCðku0ks þ ku1ks�1Þ; 0a taT :ð3Þ

By the finite speed of propagation one obtains the well posedness in Cy.

Our aim is to consider non-absolutely continuous coe‰cients assuming aj;k A

C 1ð�0;T �;BðRnÞÞ and

jqtaj;kðt; xÞjaCt�q; qb 1; t > 0; x A Rnð4Þ

as it is done by Colombini, Del Santo and Kinoshita in [3] for coe‰cients of P

depending only on the time variable t. Here we treat the general case and, beside

(4), we permit:
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jqb
xaj;kðt; xÞjaCbt

�p; p A ½0; 1½; jbj > 0; t > 0; x A Rn:ð5Þ

For q ¼ 1 in (4) and any p A ½0; 1½ in (5), we prove the inequality

kuðtÞks�h þ kqtuðtÞks�1�h aCðkuð0Þks þ kqtuð0Þks�1Þ; C; h > 0; 0a taTð6Þ

for every u A Cð½0;T �;Hsþ1ðRnÞÞVC1ð½0;T �;HsðRnÞÞ such that Pu ¼ 0. In par-

ticular, we obtain the well posedness in Cy of the Cauchy problem (1) with a loss

of h derivatives.

In the case q > 1 in (4), we assume boundness and Gevrey regularity gðsÞ for

the coe‰cients, that is we take p ¼ 0 and Cb ¼ CAjbjðb!Þs in (5). Then we prove

the well posedness of problem (1) in gðsÞ for 1 < s < q=ðq� 1Þ.
We refer to [3] for counter examples that show the sharpness of these results;

in particular Cy well posedness does not hold for q > 1.

In (4) and (5) one can subsitute t�q and t�p with jT0 � tj�q and jT0 � tj�p,

respectively, T0 A ½0;T �, t0T0. So inequality (6) can be applied also to the study

of the blowup rate in some nonlinear equations. Consider, for istance, a smooth

solution u for t < T of

q2
t u� a

ð t

0

qxuðs; xÞ ds
� �

q2
xu ¼ 0; aðyÞb a0 > 0

such that

jqb
xuðt; xÞjaCbðT � tÞ�1; t < T :

If a 0 is bounded and jaðkÞðyÞjaAke
mjyj, m < 1=C1, kb 2, then aðt; xÞ :¼

að
Ð t

0 qxuðs; xÞ dsÞ satisfies (4) with q ¼ 1 and (5) with p A �mC1; 1½, ðT � tÞ�1 and

ðT � tÞ�p in place of t�1 and t�p respectively. So inequality (6) implies u A Cy

also for t ¼ T . This means that ðT � tÞ�1 is not a su‰cient breakdown rate of the

derivatives qb
xu to have blowup of u at t ¼ T , cf. [1].

1. Main Results

Let

P ¼ q2
t �

Xn

j;k¼1

aj;kðt; xÞqxjqxk þ
Xn

j¼1

bjðt; xÞqxj þ bnþ1ðt; xÞ

be a linear di¤erential operator in ½0;T � � Rn, with ðaj;kÞ a symmetric matrix of

real valued functions, aj;k A C1ð�0;T �;CyðRnÞÞ, bj A Cð½0;T �;CyðRnÞÞ. We con-

sider the Cauchy problem for the equation
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Puðt; xÞ ¼ 0 in ½0;T � � Rnð1:1Þ

with initial data at t ¼ 0

uð0; xÞ ¼ u0ðxÞ; qtuð0; xÞ ¼ u1ðxÞ in Rnð1:2Þ

under the hypothesis of strict hyperbolicity

aðt; x; xÞ :¼
Xn

j;k¼1

aj;kðt; xÞxjxk b c0jxj2; c0 > 0ð1:3Þ

and we deal with its well posedness according to the behaviour of qta as t ! 0.

Our first result is the following:

Theorem 1. Assume that there exist p; r A ½0; 1½ and positive constants Cb

such that

jqb
xaj;kðt; xÞjaCbt

�p; jbj > 0; jqb
xqtaj;kðt; xÞjaCbt

�1�rjbj; jbjb 0:ð1:4Þ

Then, for every u0; u1 A CyðRnÞ the Cauchy problem (1.1), (1.2) has a unique

solution u A C 1ð½0;T �;CyðRnÞÞ.

Remark. A consequence of (1.4) is the finite speed of propagation. So it is

not restrective to consider u0; u1 A Cy
0 ðRnÞ and to assume

jqb
xbjðt; xÞjaCb; ðt; xÞ A ½0;T � � Rn:ð1:5Þ

In Section 2 we shall prove an estimate in Sobolev spaces that implies

Theorem 1:

Theorem 2. Under the hypotheses of Theorem 1 there are positive constants

C; h such that for every u A Cð½0;T �;Hsþ1ðRnÞÞVC1ð½0;T �;HsðRnÞÞ which sat-

isfies Pu ¼ 0 we have

kuðtÞks�h þ kqtuðtÞks�1�h aCðkuð0Þks þ kqtuð0Þks�1Þ; 0a taT :ð1:6Þ

When tqtaðt; x; xjxj�2Þ is not bounded, problem (1.1), (1.2) may not be well

posed in Cy.

For s > 1, A > 0, we denote by g
ðsÞ
A ¼ g

ðsÞ
A ðRnÞ the space of all functions f

satisfying

k f ks;A :¼ supb AZ n
þ;x AR

n A�jbjðb!Þ�sjqb
x f ðxÞj < y

so gðsÞ :¼ 6
A>0

g
ðsÞ
A is a Gevrey space.

The Cauchy Problem for Strictly Hyperbolic Operators 3



Theorem 3. Assume aj;k; bj A Cð½0;T �; gðsÞA ðRnÞÞ and

jqb
xqtaj;kðt; xÞjaCt�qAjbjðb!Þs; ðt; xÞ A �0;T � � Rn; q > 1; s < q=ðq� 1Þ:ð1:7Þ

Then there exists A0 > A such that for every u0; u1 A g
ðsÞ
A ðRnÞ the Cauchy problem

(1.1), (1.2) has a unique solution u A C1ð½0;T �; gðsÞA0
ðRnÞÞ.

As Theorem 1, we shall obtain Theorem 3 from an a priori estimate; so we

introduce Gevrey-Sobolev spaces adapted to our problem. We fix d A �0; 1½ such

that 1=s ¼ ðq� 1 þ dÞ=q then for k > 0, t A ½0;T �, m A R we denote by Hk; t;mðRnÞ
the space of all functions f such that:

k f kk; t;m :¼ exp
k

d
ðT d � tdÞhDxi

1=s

� �
f

����
����
m

< y;

kgkm the norm of g in the usual Sobolev space H mðRnÞ.
From Paley-Wiener theorem it follows that

k f kk; t;m aCk f ks;A; f A g
ðsÞ
A ðRnÞVCy

0 ðRnÞ; 0a kT d=daT0

with T0 and C positive constants depending on A. Conversely, for every T1 < T

and k > 0 there is A1 > 0 such that

Hk; t;mðRnÞH g
ðsÞ
A ðRnÞ; t A ½0;T1�;A > A1; m > n=2:

For functions uðt; xÞ we define the space

C
j
TðHk; t;mÞ :¼

�
u; t ! exp

k

d
ðT d � tdÞhDxi

1=s

� �
qh
t uðt; �Þ is continuous from

½0;T � to H m�hðRnÞ; h ¼ 0; . . . ; j

�
:

Theorem 4. Under the hypotheses of Theorem 3 there are positive constants

k0;T0;C such that for every u A C 1
TðHk; t;mþ1Þ, kT d=daT0, kb k0, which satisfies

Pu ¼ 0 we have

kuðtÞkk; t;m þ kqtuðtÞkk; t;m�1 aCðkuð0Þkk;0;m þ kqtuð0Þkk;0;m�1Þ; 0a taT :ð1:8Þ

We shall prove Theorem 4 in Section 3. From estimate (1.8) we can solve

problem (1.1), (1.2) in ½0;T1�, T1 ¼ ðdT0=k0Þ1=d. This is su‰cient to prove

Theorem 3 since we have aj;k A C1ð½T1;T �; gðsÞA ðRnÞÞ that ensures gðsÞ well

posedness in ½T1;T �.
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2. Cy Well Posedness

In this section we prove Theorem 2 which implies Theorem 1.

Writing

P ¼ q2
t þ aðt; x;DxÞ þ bðt; x;DxÞ; Dx ¼

1

i
qx ði ¼

ffiffiffiffiffiffiffi
�1

p
Þ;

aðt; x; xÞ ¼
Xn

j;k¼1

aj;kðt; xÞxjxk; bðt; x; xÞ ¼ i
Xn

j¼1

bjðt; xÞxj þ bnþ1ðt; xÞ;

the assumptions on P are the following:

aðt; x; xÞb c0jxj2; c0 > 0;ð2:1Þ

jqb
xq

a
xaðt; x; xÞjaCa;bt

�phxi2�jaj; jajb 0; jbj > 0;ð2:2Þ

jqb
xq

a
xqtaðt; x; xÞjaCa;bt

�1�rjbjhxi2�jaj; jajb 0; jbjb 0;ð2:3Þ

jqb
xq

a
xbðt; x; xÞjaCa;bhxi

1�jaj; jajb 0; jbjb 0;ð2:4Þ

p; r A ½0; 1½, ðt; x; xÞ A �0;T � � Rn � Rn, hxi ¼ ð1 þ jxj2Þ1=2.

In particular (2.3) gives also

jqa
xaðt; x; xÞjaCa logð1 þ 1=tÞhxi2�jaj; jajb 0:ð2:5Þ

We modify the symbol a for hxia 2=t defining

a0ðt; x; xÞ ¼ jðthxiÞhxi2 þ ð1 � jðthxiÞÞaðt; x; xÞ;

j A CyðRÞ; 0a ja 1; j ¼ 1 in ½0; 1�; j ¼ 0 in ½2;þy½:

Then lðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
a0ðtÞ

p
, 0a taT , is a family of symbols of pseudodi¤erential

operators in Rn which satisfies

lðt; x; xÞb chxi; c > 0ð2:6Þ

jqb
xq

a
xlðt; x; xÞjaCa;bhxi

1�jaj½1 þHðthxiÞt�pjbjðlogð1 þ 1=tÞÞ1þjaj�;ð2:7Þ

HðyÞ ¼ 0 for y < 1; HðyÞ ¼ 1 for yb 1:

In particular, if we denote as usual by Sm
r; d the class of all symbols qðx; xÞ

such that jqb
xq

a
xqðx; xÞjaCa;bhxi

m�rjajþdjbj, 0a d < ra 1, we have that flðtÞ;
0a taTg is bounded in S1þe

r;p and fl�1ðtÞ; 0a taTg is bounded in S�1
r;p for

every e > 0 and every r A �p; 1½.
Another consequence is that the symbol rðt; x; xÞ of the operator a0 � l2

verifies t1�er A Cð½0;T �;S1
1;pÞ for every e A �0; 1 � p½.
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From (2.2), (2.3) and (2.5) we get:

jqb
xq

a
xqtlðt; x; xÞjaCa;bhxi

1�jajHðthxiÞt�1�djbjðlogð1 þ 1=tÞÞ1þjaj;ð2:8Þ

d ¼ maxfp; rg;

which implies the boundness in S1þe 0

1; d of ft1�eqtlðtÞ; 0a taTg for any given

e A �0; 1½, e 0 A �e; 1½, by using t�eðlogð1 þ 1=tÞÞ1þjaj
aCat

�e 0 aCahxi
e 0 on the sup-

port of HðthxiÞ.
Now we factorize the principal part of the operator P ¼ q2

t þ aþ b:

P ¼ ðqt � ilÞðqt þ ilÞ þ a� a0 þ a1;ð2:9Þ

a1 ¼ �i½qt; l� þ a0 � l2 þ b:

Obviously tpþmðaðtÞ � a0ðtÞÞ, 0a taT , is a bounded and continuous family

in S2�m
1;0 for any mb 0 while t1�ea1ðtÞ, 0a taT is bounded and continuous in

S1þe 0

1; d for every e A �0; 1 � d½, e 0 A �e; 1½. Hereafter we fix 0 < e < e 0 < 1 � d.

We have not a� a0 þ a1 A L1ð½0;T �;S1
r; dÞ that by Gronwall’s method would

give the classical energy inequality

kuðtÞks þ kqtuðtÞks�1 aCðkuð0Þks þ kqtuð0Þks�1Þ; C > 0; 0a taT

for every u A Cð½0;T �;Hsþ1ðRnÞÞVC1ð½0;T �;HsðRnÞÞ such that Pu ¼ 0.

Anyway a weaker condition in this direction holds true: a� a0 ¼
jðthxiÞða� hxi2Þ is bounded by Chxi2 logð1 þ 1=tÞ and vanishes for thxi > 2 so

we can find a smooth function c0ðt; xÞ such that

ja� a0jhxi�1
ac0; ðlogð1 þ 1=tÞÞ�1

c0 A Cð½0;T �;S1
1;0Þ

andðT

0

jqa
xc0ðt; xÞj dtaCahxi

1�jaj
ð2=hxi

0

logð1 þ 1=tÞ dta hahxi
�jaj logð1 þ hxiÞ:

Concerning a1 we have that

qtl ¼ ð2lÞ�1½hxij 0ðthxiÞðhxi2 � aÞ þ ð1 � jðthxiÞÞqta�

is bounded by Chxi2 logð1 þ 1=tÞ for thxia 2 and by t�1hxi for thxi > 2 while

the symbol of a0 � l2 þ b is bounded by Ct�1þehxi. So we can find c1ðt; xÞ such

that

ja1jhxi�1
ac1; t1�ec1 A Cð½0;T �;S e 0

1;0Þ
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and

ðT

0

jqa
xc1ðt; xÞj dtaCahxi

�jaj 1 þ hxi

ð2=hxi

0

logð1 þ 1=tÞ dtþ
ðT

2=hxi

1

t
dt

" #

a hahxi
�jaj logð1 þ hxiÞ:

Now we use the factorization (2.9) to reduce the equation Pu ¼ 0 to a first

order system. For u A Cð½0;T �;Hsþ1ðRnÞÞVC1ð½0;T �;HsðRnÞÞ let us define

U ¼ tðu1; u2Þ; u1 ¼ ðqt þ ilÞu; u2 ¼ hDxiu�mu1;

m the operator with symbol mðt; x; xÞ ¼ ð1 � jðthxi=3ÞÞhxi
2ilðt; x; xÞ to have hxi ¼ 2ilm

for thxi > 6 and ðsupp mÞV ðsupp a� a0Þ ¼ q.

Then it is easy to see that the equation Pu ¼ 0 is equivalent to a first order

2 � 2 system LU ¼ 0,

L ¼ qt þ Kðt; x;DxÞ; K ¼ Dþ A; A ¼ A0 þ A1;ð2:10Þ

where

D ¼ �il 0

0 il

� �
; tpA0 A Cð½0;T �;S1

1;0Þ;ð2:11Þ

A0ðt; x; xÞ ¼ 0 for thxi > 6; t1�eA1 A Cð½0;T �;S e 0

1; dÞ

and there are two positive functions c0ðt; xÞ;c1ðt; xÞ such that:

jA0jac0; ðlogð1 þ 1=tÞÞ�1c0 A Cð½0;T �;S1
1;0Þ;ð2:12Þ

jA1jac1; t1�ec1 A Cð½0;T �;S e 0

1;0Þ;ðT

0

jqa
xcðt; xÞj dta hahxi

�jaj logð1 þ hxiÞ; c ¼ c0 þ c1:

Since it is

C�1ðkuðtÞksþ1 þ kqtuðtÞks�eÞa kUðtÞks aCðkuðtÞksþ1þe þ kqtuðtÞksÞ; 0a taT ;

we prove Theorem 2 by the following result:

Theorem 2.1. There are positive constants C; h such that for every U A

Cð½0;T �;Hsþ1ðRnÞÞVC1ð½0;T �;HsðRnÞÞ which satisfies LU ¼ 0 we have

kUðtÞks�h aCkUð0Þks; 0a taT :ð2:13Þ
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Proof. It is su‰cient to prove (2.13) for s ¼ 0 since hDxi
sLhDxi

�s satisfies

the same hypotheses as L.

We look for lower bounds of the operator K ¼ Dþ A in (2.10). As it con-

cerns the diagonal part D, from (2.7) we have that the symbol dðt; x; xÞ of the

operator DðtÞ þD�ðtÞ satisfies t1�ed A Cð½0;T �;S0
1; dÞ so it follows

2 RehDUðtÞ;UðtÞib�Ct�1þehUðtÞ;UðtÞi; C > 0ð2:14Þ

for every U A Cð½0;T �;H 1ðRnÞÞ.
Next we make the change of variable

V ¼ wðt;DxÞU ; wðt; xÞ ¼ exp �
ð t

0

cðs; xÞ ds
� �

;

c ¼ c0 þ c1 the function in (2.12). We have

kUðtÞk�h0
a 2kVðtÞk0; Uð0Þ ¼ Vð0Þ; h0 > 0; 0 < taTð2:15Þ

and LU ¼ 0 if and only if L1V ¼ 0 with

L1 ¼ wLw�1 ¼ qt þ K1ðt; x;DxÞ;ð2:16Þ

K1 ¼ Dþ ðcI þ AÞ þ R1;

t1�eðlogð1 þ hxiÞÞ�1
R1 A Cð½0;T �;S0

1; dÞ

Now the symbol of cI þ A satisfies

t1�eðc0I þ A0Þ A Cð½0;T �;S1
1;0Þ; c0I þ ðA0 þ A�

0 Þ=2b 0 for large jxj;

t1�eðc1I þ A1Þ A Cð½0;T �;S e 0

1; dÞ; c1I þ ðA1 þ A�
1 Þ=2b 0 for large jxj;

e < e 0 < 1 � d; d ¼ maxfp; rg;

so the sharp Garding inequality gives

2 RehðcI þ AÞVðtÞ;VðtÞib�Ct�1þehVðtÞ;VðtÞi; C > 0ð2:17Þ

for every V A Cð½0;T �;H 1ðRnÞÞ.
For the operator R1 we have

2 RehR1VðtÞ;VðtÞib�h1t
�1þehlogð1 þ hDxiÞVðtÞ;VðtÞi; h1 > 0ð2:18Þ

that leads us to make the further change of variable (cf. [2]):

W ¼ ð1 þ hDxiÞ�aðtÞ
V ¼ ð1 þ hDxiÞ�aðtÞ

wðt;DxÞU ; aðtÞ ¼ h1t
e=e;

h1 the constant in (2.18). It is
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ð2:19Þ
kUðtÞk�h a 2aðTÞþ1kWðtÞk0; Uð0Þ ¼ Wð0Þ; h ¼ h0 þ h1T

e=e; 0a taT ;

h0 the constant in (2.15), and LU ¼ 0 if and only if L2W ¼ 0 with

L2 ¼ ð1 þ hDxiÞ�aðtÞ
L1ð1 þ hDxiÞaðtÞ ¼ qt þ K2ðt; x;DxÞ;ð2:20Þ

K2 ¼ Dþ ðcI þ AÞ þ ðh1t
�1þe logð1 þ hDxiÞ þ R1Þ þ R2;

t1�eR2 A Cð½0;T �;S0
1; dÞ:

Now h1t
�1þe logð1 þ hDxiÞ þ R1 is a positive operator by (2.18) while t1�eR2ðtÞ is

uniformly bounded in L2ðRnÞ for 0 < taT . From this, (2.14) and (2.17) we get

2 RehK2WðtÞ;WðtÞib�Ct�1þehWðtÞ;WðtÞi; C > 0

for every W A Cð½0;T �;H 1ðRnÞÞ, hence

d

dt
kWðtÞk2

0 aCt�1þekWðtÞk2
0

for every W A Cð½0;T �;H 1ðRnÞÞVC1ð½0;T �;H 0ðRnÞÞ such that L2W ¼ 0. This

gives

kWðtÞk2
0 a expðCt e=eÞkWð0Þk2

0

that is (2.13) with s ¼ 0 by (2.19).

3. gðsÞ Well Posedness

In this section we prove Theorem 4 which implies Theorem 3.

We need to introduce a class pseudodi¤erential operators in Gevrey spaces:

Definition 3.1. For m A R, s > 1, A > 0 we denote by Gm
s;A the space of all

symbols aðx; xÞ such that

jajGm
s;A; l

:¼ supðx;xÞ AR2n; jaþbjal; g AZ n
þ
jqa

xq
bþg
x aðx; xÞjA�jgjðg!Þ�shxi�mþjajð3:1Þ

is finite for every l A Zþ.

Set aLðx;DxÞ ¼ eLaðx;DxÞe�L, L ¼ khDxi
1=s, and denote by

jajSm
l
:¼ supðx;xÞ AR2n; jaþbjal jq

a
xq

b
xaðx; xÞjhxi�mþjaj

the usual norms in Sm
1;0. In [4] Kajitani proved the following result:
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Proposition 3.2. For every A > 0 there is T0 > 0 such that

jkj < T0; a A Gm
s;A ) aL A Sm

1;0; aL ¼ aþ r; r A S
m�1þ1=s
1;0ð3:2Þ

and for every l A Z n
þ there are Cl > 0 and l 0 A Z n

þ such that

jrj
S

m�1þ1=s

l

aCl jajGm

s;A; l 0
:ð3:3Þ

In particular we have that aðx;DxÞ, a A Gm
s;A, is a continuous operator from

Hk; t;mðRnÞ to Hk; t;m�mðRnÞ, Hk; t;mðRnÞ ¼ exp � k

d
ðT d � tdÞhDxi

1=s

� �
H mðRnÞ, for

0 < kT d=daT0, 0a taT .

Now we can begin the proof of Theorem 4. In this section the assumptions

on the operator

P ¼ q2
t þ aðt; x;DxÞ þ bðt; x;DxÞ

are the following:

aðt; x; xÞb c0jxj2; c0 > 0ð3:4Þ

a A Cð½0;T �;G2
s;AÞð3:5Þ

tqqta; 0 < taT ; is a continuous and bounded family in G2
s;A;ð3:6Þ

q > 1; s < q=ðq� 1Þ

b A Cð½0;T �;G1
s;AÞ:ð3:7Þ

Here we define

a0ðt; x; xÞ ¼ jðtqhxiÞhxi2 þ ð1 � jðtqhxiÞÞaðt; x; xÞ;ð3:8Þ

j A CyðRÞ; 0a ja 1; j ¼ 1 in ½0; 1�; j ¼ 0 in ½2;þy½

and take d > 0 so that 1=s ¼ ðq� 1 þ dÞ=q to have

t1�dða� a0Þ A Cð½0;T �;G1þ1=s
s;A Þð3:9Þ

using hxia 2t�q in the support of jðtqhxiÞ.
We have also

l ¼ ffiffiffiffiffi
a0

p
A Cð½0;T �;G1

s;AÞ; l�1 A Cð½0;T �;G�1
s;AÞ

and from (3.6) we get

t1�dqtl A Cð½0;T �;G1þ1=s
s;A Þð3:10Þ

by hxia 2t�q in supp j 0ðtqhxiÞ and t�q a hxi in suppð1 � jðtqhxiÞÞ.
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So we can write

P ¼ ðqt � ilÞðqt þ ilÞ þ r; t1�dr A Cð½0;T �;G1þ1=s
s;A Þ

and define

U ¼ tðu1; u2Þ; u1 ¼ ðqt þ ilÞu; u2 ¼ hDxiu�mu1;

mðt; x; xÞ ¼ hxi=2ilðt; x; xÞ to have that the equation Pu ¼ 0 is equivalent to a

first order 2 � 2 system LU ¼ 0,

L ¼ qt þ Kðt; x;DxÞ; K ¼ Dþ R;ð3:11Þ

D ¼ �il 0

0 il

� �
; t1�dR A Cð½0;T �;G1=s

s;A Þ:

Denoting by kukk; t;m the norm of u in Hk; t;mðRnÞ, it is

C�1ðkuðtÞkk; t;mþ1 þ kqtuðtÞkk; t;mÞa kUðtÞkk; t;m aCðkuðtÞkk; t;mþ1 þ kqtuðtÞkk; t;mÞ;

0a taT , 0 < kT d=daT0, T0 the constant in Proposition 3.2, thus we prove

Theorem 4 by the following result:

Theorem 3.3. There are positive constants k0;C such that for every U A

C 1
TðHk; t;mþ1Þ, kT d=daT0, kb k0, which satisfies LU ¼ 0 we have

kUðtÞkk; t;m aCkUð0Þkk;0;m; 0a taT :ð3:12Þ

Proof. It is su‰cient to prove (3.12) for m ¼ 0 since hDxi
mLhDxi

�m sat-

isfies the same hypotheses as L and this is equivalent to prove

kVðtÞk0 aCkVð0Þk0; 0a taTð3:13Þ

for every V A Cð½0;T �;H 1ðRnÞÞVC1ð½0;T �;H 0ðRnÞÞ such that LLV ¼ 0, LL ¼

eLLe�L, L ¼ k

d
ðT d � tdÞhDxi

1=s.

From Proposition 3.2 and (3.11) we have

LL ¼ qt þ kt�1þdhDxi
1=s þDþ R1; t1�dR1 A Cð½0;T �;S1=s

1;0Þ; kT d=daT0,

so we can take k large enough, say kb k0, to make kt�1þdhDxi
1=s þ R1ðtÞ

a positive operator while DðtÞ þD�ðtÞ is uniformly bounded in L2ðRnÞ for

0a taT . This gives

d

dt
kVðtÞk2

0 aCkVðtÞk2
0; 0a taT a ðdT0=kÞ1=d
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for every V A Cð½0;T �;H 1ðRnÞÞVC 1ð½0;T �;H 0ðRnÞÞ such that LLV ¼ 0 which

proves (3.13).

Remark. It is possible to prove Theorem 4 also for the critical index s ¼
q=ðq� 1Þ. This needs the use of the Sharp Garding inequality as in the proof

of Theorem 2 after an ad hoc version of Proposition 3.2 for more general

functions L.
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